organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-(2-Chloro­phen­yl)-5,6,5′,6′,7′,7a′-hexa­hydro-1′H,1′′H-di­spiro­[imidazo[2,1-b][1,3]thia­zole-2,2′-pyrrolizine-3′(2′H),3′′-indole]-2′′,3(2H,3′′H)-dione

aSchool of of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
*Correspondence e-mail: liaobohnust@163.com

(Received 8 March 2010; accepted 11 March 2010; online 17 March 2010)

In the title compound, C24H21ClN4O2S, the two adjacent spiro junctions link an almost planar (r.m.s. deviation = 0.017 Å) 2-oxindole ring, a hexa­hydro-1H-pyrrolizine ring and a tetra­hydro­imidazo[2,1-b]thia­zole ring. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur, generating an R22(16) loop.

Related literature

For backgound to the properties of spiro-compounds, see: James et al. (1991[James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.]). For further synthetic details, see: Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21ClN4O2S

  • Mr = 464.96

  • Triclinic, [P \overline 1]

  • a = 8.6798 (18) Å

  • b = 11.078 (2) Å

  • c = 11.372 (2) Å

  • α = 78.984 (7)°

  • β = 81.867 (10)°

  • γ = 81.718 (11)°

  • V = 1054.8 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.78 mm−1

  • T = 113 K

  • 0.28 × 0.24 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear . Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.510, Tmax = 0.606

  • 21105 measured reflections

  • 3986 independent reflections

  • 3512 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.02

  • 3986 reflections

  • 294 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N2i 0.88 (2) 2.10 (2) 2.971 (2) 170 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear . Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella,1984). In this paper, the structure of the title compound is reported. The molecular structure of (I) is shown in Fig. 1. There exists a di-spiro ring system in the molecule which was consist of a 2-oxindole ring, a hexahydro-1H-pyrrolizine ring and a tetrahydroimidazo[2,1-b]thiazole ring. 2-oxindole ring (C8/C11/C12/C13/C14/C15/C10/N3/C9) is nearly planar that the mean deviation from this plane is 0.017Å. Two molecules are connected into a dimer by two N—H···N hydrogen bonds (Fig. 2).

Related literature top

For backgound to the properties of spiro-compounds, see: James et al. (1991); Kobayashi et al. (1991). For further synthetic details, see: Caramella & Grunanger (1984).

Experimental top

A solution of 2-(2-chlorobenzylidene)-5,6-dihydroimidazo[2,1-b]thiazol-3(2H)-one (1 mmol), isatin (1 mmol) and proline (1 mmol) in methanol (30 ml) was refluxed overnight. Completion of the reaction was evidenced by TLC analysis. The solvent was removed in vacuo. The crude product was subjected to column chromatography using petroleum ether-ethyl acetate (v/v 5:1) as eluent to afford the title compound (I). m.p.463 K; ^1Ĥ-NMR (δ, p.p.m.): 1.80-1.84 (m, 3H), 2.13-2.20 (m, 2H), 2.77-2.80 (m, 1H), 3.44-3.47 (m, 1H), 3.55-3.57 (m, 1H), 3.90-3.92 (m, 2H), 3.98-4.00 (m, 1H), 4.64-4.66 (m, 1H), 6.83 (d, J = 7.5 Hz, 1H), 7.03-7.04 (m, 1H), 7.23-7.29 (m, 2H), 7.36-7.39 (m, 2H), 7.61-7.63 (m, 1H), 7.87-7.89 (m, 1H), 8.53 (bs, 1H); 20 mg of (I) was dissolved in 15 ml dioxane-ethyl acetate mixed solvent ; the solution was kept at room temperature for 15 d by natural evaporation to give colorless blocks of (I).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The hydrogen bonds of structure(I).
1'-(2-Chlorophenyl)-5,6,5',6',7',7a'-hexahydro-1'H,1''H- dispiro[imidazo[2,1-b][1,3]thiazole-2,2'-pyrrolizine- 3'(2'H),3''-indole]-2'',3(2H,3''H)-dione top
Crystal data top
C24H21ClN4O2SZ = 2
Mr = 464.96F(000) = 484
Triclinic, P1Dx = 1.464 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54187 Å
a = 8.6798 (18) ÅCell parameters from 2350 reflections
b = 11.078 (2) Åθ = 21.5–67.5°
c = 11.372 (2) ŵ = 2.78 mm1
α = 78.984 (7)°T = 113 K
β = 81.867 (10)°Block, colorless
γ = 81.718 (11)°0.28 × 0.24 × 0.20 mm
V = 1054.8 (4) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3986 independent reflections
Radiation source: fine-focus sealed tube3512 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.075
Detector resolution: 7.31 pixels mm-1θmax = 72.1°, θmin = 4.0°
ω and ϕ scansh = 910
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
k = 1313
Tmin = 0.510, Tmax = 0.606l = 1414
21105 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0802P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3986 reflectionsΔρmax = 0.41 e Å3
294 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0128 (10)
Crystal data top
C24H21ClN4O2Sγ = 81.718 (11)°
Mr = 464.96V = 1054.8 (4) Å3
Triclinic, P1Z = 2
a = 8.6798 (18) ÅCu Kα radiation
b = 11.078 (2) ŵ = 2.78 mm1
c = 11.372 (2) ÅT = 113 K
α = 78.984 (7)°0.28 × 0.24 × 0.20 mm
β = 81.867 (10)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3986 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
3512 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 0.606Rint = 0.075
21105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.41 e Å3
3986 reflectionsΔρmin = 0.53 e Å3
294 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.24861 (7)0.40648 (4)0.48838 (4)0.03409 (17)
S10.43258 (5)0.19148 (3)0.16037 (3)0.01711 (15)
O10.13769 (14)0.10571 (11)0.44297 (10)0.0206 (3)
O20.21446 (14)0.28209 (11)0.03632 (10)0.0211 (3)
N10.37173 (17)0.02732 (13)0.35068 (12)0.0179 (3)
N20.60368 (17)0.02950 (13)0.24368 (12)0.0202 (3)
N30.20977 (17)0.07131 (13)0.01187 (12)0.0182 (3)
N40.03261 (16)0.24825 (12)0.17028 (12)0.0174 (3)
C10.22952 (19)0.20199 (14)0.23784 (13)0.0150 (3)
C20.2381 (2)0.10826 (15)0.35725 (13)0.0162 (3)
C30.4828 (2)0.05014 (15)0.25168 (13)0.0165 (3)
C40.4173 (2)0.09606 (15)0.41941 (15)0.0219 (4)
H4A0.34720.15650.41190.026*
H4B0.41920.09360.50580.026*
C50.5847 (2)0.12500 (16)0.35418 (15)0.0228 (4)
H5A0.66440.12260.40760.027*
H5B0.59790.20860.33240.027*
C60.15375 (19)0.33307 (14)0.26047 (14)0.0163 (3)
H60.10570.32310.34650.020*
C70.0155 (2)0.36758 (15)0.18111 (14)0.0179 (3)
H70.05090.41450.09990.021*
C80.11006 (19)0.16210 (15)0.15955 (13)0.0150 (3)
C90.18421 (19)0.18303 (15)0.02409 (14)0.0169 (3)
C100.15500 (19)0.02286 (15)0.07815 (14)0.0165 (3)
C110.09088 (19)0.02528 (15)0.18252 (14)0.0160 (3)
C120.0259 (2)0.05294 (15)0.28191 (14)0.0190 (4)
H120.01770.02200.35330.023*
C130.0256 (2)0.17737 (16)0.27560 (16)0.0217 (4)
H130.01870.23140.34310.026*
C140.0894 (2)0.22283 (16)0.17121 (16)0.0228 (4)
H140.08800.30780.16840.027*
C150.1554 (2)0.14631 (15)0.07089 (15)0.0214 (4)
H150.19920.17770.00030.026*
C160.1309 (2)0.43859 (16)0.24054 (16)0.0237 (4)
H16A0.16880.51320.18430.028*
H16B0.10820.46410.31450.028*
C170.2531 (2)0.34589 (17)0.27121 (18)0.0287 (4)
H17A0.31340.35110.35110.034*
H17B0.32680.36170.20950.034*
C180.1555 (2)0.21991 (16)0.27193 (16)0.0220 (4)
H18A0.11010.19020.34890.026*
H18B0.21820.15730.25770.026*
C190.2614 (2)0.43184 (15)0.24310 (14)0.0179 (3)
C200.3102 (2)0.47270 (15)0.33957 (15)0.0208 (4)
C210.4077 (2)0.56475 (16)0.32325 (17)0.0261 (4)
H210.43770.59040.39090.031*
C220.4612 (2)0.61903 (16)0.20712 (18)0.0266 (4)
H220.52880.68170.19450.032*
C230.4147 (2)0.58077 (16)0.10959 (16)0.0253 (4)
H230.45000.61790.02980.030*
C240.3173 (2)0.48903 (16)0.12801 (15)0.0222 (4)
H240.28740.46410.05990.027*
H10.255 (3)0.064 (2)0.085 (2)0.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0545 (4)0.0322 (3)0.0213 (2)0.0151 (2)0.0128 (2)0.00515 (18)
S10.0177 (2)0.0147 (2)0.0184 (2)0.00019 (16)0.00128 (15)0.00395 (15)
O10.0237 (7)0.0229 (6)0.0163 (6)0.0034 (5)0.0004 (5)0.0073 (4)
O20.0280 (7)0.0175 (6)0.0183 (6)0.0026 (5)0.0036 (5)0.0037 (4)
N10.0221 (8)0.0151 (7)0.0167 (6)0.0001 (6)0.0035 (5)0.0039 (5)
N20.0233 (8)0.0173 (7)0.0213 (7)0.0020 (6)0.0052 (6)0.0083 (5)
N30.0240 (8)0.0164 (7)0.0156 (7)0.0008 (6)0.0024 (5)0.0089 (5)
N40.0185 (7)0.0142 (7)0.0213 (7)0.0019 (6)0.0037 (5)0.0096 (5)
C10.0170 (8)0.0151 (8)0.0142 (7)0.0015 (6)0.0004 (6)0.0073 (6)
C20.0214 (9)0.0145 (8)0.0156 (7)0.0035 (6)0.0042 (6)0.0070 (6)
C30.0202 (9)0.0148 (8)0.0172 (7)0.0017 (7)0.0049 (6)0.0079 (6)
C40.0292 (10)0.0141 (8)0.0223 (8)0.0004 (7)0.0072 (7)0.0024 (6)
C50.0290 (10)0.0166 (8)0.0237 (8)0.0030 (7)0.0080 (7)0.0065 (6)
C60.0190 (9)0.0141 (8)0.0176 (7)0.0007 (6)0.0021 (6)0.0082 (6)
C70.0209 (9)0.0124 (8)0.0219 (8)0.0007 (7)0.0045 (6)0.0076 (6)
C80.0171 (8)0.0154 (8)0.0144 (7)0.0006 (6)0.0024 (6)0.0078 (5)
C90.0184 (8)0.0176 (8)0.0162 (7)0.0018 (6)0.0055 (6)0.0075 (6)
C100.0159 (8)0.0174 (8)0.0181 (7)0.0017 (6)0.0050 (6)0.0081 (6)
C110.0166 (8)0.0148 (8)0.0190 (7)0.0010 (6)0.0050 (6)0.0089 (6)
C120.0204 (9)0.0185 (8)0.0200 (8)0.0012 (7)0.0036 (6)0.0080 (6)
C130.0205 (9)0.0179 (8)0.0270 (8)0.0030 (7)0.0037 (7)0.0033 (6)
C140.0240 (10)0.0138 (8)0.0335 (9)0.0013 (7)0.0082 (7)0.0101 (7)
C150.0253 (9)0.0178 (8)0.0238 (8)0.0037 (7)0.0063 (7)0.0126 (6)
C160.0228 (9)0.0187 (9)0.0319 (9)0.0035 (7)0.0052 (7)0.0130 (7)
C170.0216 (10)0.0236 (10)0.0416 (10)0.0026 (8)0.0005 (8)0.0139 (8)
C180.0189 (9)0.0194 (8)0.0289 (9)0.0003 (7)0.0008 (7)0.0101 (6)
C190.0200 (9)0.0116 (7)0.0238 (8)0.0028 (6)0.0037 (6)0.0101 (6)
C200.0238 (9)0.0159 (8)0.0251 (8)0.0012 (7)0.0077 (7)0.0082 (6)
C210.0259 (10)0.0185 (9)0.0381 (10)0.0006 (7)0.0108 (8)0.0127 (7)
C220.0226 (10)0.0163 (9)0.0438 (11)0.0034 (7)0.0020 (8)0.0132 (7)
C230.0277 (10)0.0172 (8)0.0302 (9)0.0021 (7)0.0045 (7)0.0083 (7)
C240.0271 (10)0.0167 (8)0.0242 (8)0.0009 (7)0.0016 (7)0.0106 (6)
Geometric parameters (Å, º) top
Cl1—C201.7522 (18)C8—C91.571 (2)
S1—C31.7407 (16)C10—C151.385 (2)
S1—C11.8539 (17)C10—C111.404 (2)
O1—C21.211 (2)C11—C121.390 (2)
O2—C91.220 (2)C12—C131.394 (2)
N1—C21.363 (2)C12—H120.9500
N1—C31.384 (2)C13—C141.390 (2)
N1—C41.469 (2)C13—H130.9500
N2—C31.275 (2)C14—C151.390 (3)
N2—C51.486 (2)C14—H140.9500
N3—C91.355 (2)C15—H150.9500
N3—C101.400 (2)C16—C171.540 (3)
N3—H10.88 (2)C16—H16A0.9900
N4—C81.456 (2)C16—H16B0.9900
N4—C71.474 (2)C17—C181.524 (2)
N4—C181.477 (2)C17—H17A0.9900
C1—C21.548 (2)C17—H17B0.9900
C1—C61.558 (2)C18—H18A0.9900
C1—C81.614 (2)C18—H18B0.9900
C4—C51.555 (3)C19—C241.394 (2)
C4—H4A0.9900C19—C201.401 (2)
C4—H4B0.9900C20—C211.387 (3)
C5—H5A0.9900C21—C221.387 (3)
C5—H5B0.9900C21—H210.9500
C6—C191.507 (2)C22—C231.389 (3)
C6—C71.563 (2)C22—H220.9500
C6—H61.0000C23—C241.381 (3)
C7—C161.537 (2)C23—H230.9500
C7—H71.0000C24—H240.9500
C8—C111.517 (2)
C3—S1—C191.34 (8)N3—C9—C8107.47 (13)
C2—N1—C3118.08 (13)C15—C10—N3127.81 (15)
C2—N1—C4132.63 (14)C15—C10—C11121.99 (16)
C3—N1—C4108.49 (13)N3—C10—C11110.17 (14)
C3—N2—C5105.37 (14)C12—C11—C10119.27 (15)
C9—N3—C10112.22 (13)C12—C11—C8132.62 (14)
C9—N3—H1120.9 (15)C10—C11—C8108.11 (14)
C10—N3—H1126.9 (15)C11—C12—C13119.24 (15)
C8—N4—C7106.79 (13)C11—C12—H12120.4
C8—N4—C18119.35 (13)C13—C12—H12120.4
C7—N4—C18106.15 (12)C14—C13—C12120.45 (17)
C2—C1—C6111.70 (12)C14—C13—H13119.8
C2—C1—C8109.24 (13)C12—C13—H13119.8
C6—C1—C8103.51 (12)C13—C14—C15121.26 (16)
C2—C1—S1104.85 (11)C13—C14—H14119.4
C6—C1—S1116.29 (11)C15—C14—H14119.4
C8—C1—S1111.25 (10)C10—C15—C14117.79 (15)
O1—C2—N1125.06 (15)C10—C15—H15121.1
O1—C2—C1124.45 (15)C14—C15—H15121.1
N1—C2—C1110.46 (13)C7—C16—C17104.65 (13)
N2—C3—N1117.43 (14)C7—C16—H16A110.8
N2—C3—S1130.89 (13)C17—C16—H16A110.8
N1—C3—S1111.62 (12)C7—C16—H16B110.8
N1—C4—C599.92 (13)C17—C16—H16B110.8
N1—C4—H4A111.8H16A—C16—H16B108.9
C5—C4—H4A111.8C18—C17—C16104.10 (15)
N1—C4—H4B111.8C18—C17—H17A110.9
C5—C4—H4B111.8C16—C17—H17A110.9
H4A—C4—H4B109.5C18—C17—H17B110.9
N2—C5—C4107.58 (13)C16—C17—H17B110.9
N2—C5—H5A110.2H17A—C17—H17B109.0
C4—C5—H5A110.2N4—C18—C17101.57 (14)
N2—C5—H5B110.2N4—C18—H18A111.5
C4—C5—H5B110.2C17—C18—H18A111.5
H5A—C5—H5B108.5N4—C18—H18B111.5
C19—C6—C1117.03 (14)C17—C18—H18B111.5
C19—C6—C7113.84 (13)H18A—C18—H18B109.3
C1—C6—C7105.08 (12)C24—C19—C20116.04 (16)
C19—C6—H6106.8C24—C19—C6121.04 (15)
C1—C6—H6106.8C20—C19—C6122.91 (15)
C7—C6—H6106.8C21—C20—C19122.76 (17)
N4—C7—C16105.48 (14)C21—C20—Cl1117.18 (13)
N4—C7—C6105.24 (12)C19—C20—Cl1120.06 (14)
C16—C7—C6113.85 (13)C20—C21—C22119.36 (17)
N4—C7—H7110.7C20—C21—H21120.3
C16—C7—H7110.7C22—C21—H21120.3
C6—C7—H7110.7C21—C22—C23119.26 (18)
N4—C8—C11116.83 (14)C21—C22—H22120.4
N4—C8—C9108.11 (12)C23—C22—H22120.4
C11—C8—C9101.84 (12)C24—C23—C22120.37 (17)
N4—C8—C1106.18 (12)C24—C23—H23119.8
C11—C8—C1115.78 (12)C22—C23—H23119.8
C9—C8—C1107.48 (13)C23—C24—C19122.21 (16)
O2—C9—N3126.81 (15)C23—C24—H24118.9
O2—C9—C8125.72 (14)C19—C24—H24118.9
C3—S1—C1—C217.34 (11)C2—C1—C8—C9139.50 (13)
C3—S1—C1—C6141.23 (11)C6—C1—C8—C9101.38 (13)
C3—S1—C1—C8100.62 (11)S1—C1—C8—C924.22 (14)
C3—N1—C2—O1173.38 (15)C10—N3—C9—O2177.34 (16)
C4—N1—C2—O118.2 (3)C10—N3—C9—C83.48 (18)
C3—N1—C2—C18.4 (2)N4—C8—C9—O252.9 (2)
C4—N1—C2—C1159.95 (16)C11—C8—C9—O2176.57 (16)
C6—C1—C2—O137.6 (2)C1—C8—C9—O261.3 (2)
C8—C1—C2—O176.26 (19)N4—C8—C9—N3127.87 (14)
S1—C1—C2—O1164.42 (14)C11—C8—C9—N34.24 (16)
C6—C1—C2—N1144.15 (14)C1—C8—C9—N3117.90 (14)
C8—C1—C2—N1101.94 (15)C9—N3—C10—C15176.92 (16)
S1—C1—C2—N117.38 (15)C9—N3—C10—C111.15 (19)
C5—N2—C3—N11.89 (19)C15—C10—C11—C120.1 (2)
C5—N2—C3—S1175.10 (13)N3—C10—C11—C12178.33 (14)
C2—N1—C3—N2176.64 (14)C15—C10—C11—C8179.98 (14)
C4—N1—C3—N25.6 (2)N3—C10—C11—C81.82 (18)
C2—N1—C3—S15.81 (19)N4—C8—C11—C1259.1 (2)
C4—N1—C3—S1176.82 (11)C9—C8—C11—C12176.61 (17)
C1—S1—C3—N2168.82 (16)C1—C8—C11—C1267.1 (2)
C1—S1—C3—N114.05 (12)N4—C8—C11—C10121.09 (14)
C2—N1—C4—C5178.86 (16)C9—C8—C11—C103.57 (16)
C3—N1—C4—C59.66 (16)C1—C8—C11—C10112.67 (15)
C3—N2—C5—C48.22 (18)C10—C11—C12—C130.2 (2)
N1—C4—C5—N210.75 (16)C8—C11—C12—C13179.98 (16)
C2—C1—C6—C19107.20 (16)C11—C12—C13—C140.0 (3)
C8—C1—C6—C19135.39 (13)C12—C13—C14—C150.1 (3)
S1—C1—C6—C1913.08 (17)N3—C10—C15—C14177.82 (16)
C2—C1—C6—C7125.40 (14)C11—C10—C15—C140.0 (2)
C8—C1—C6—C77.99 (15)C13—C14—C15—C100.2 (3)
S1—C1—C6—C7114.32 (12)N4—C7—C16—C175.22 (17)
C8—N4—C7—C16158.43 (12)C6—C7—C16—C17109.65 (16)
C18—N4—C7—C1630.09 (16)C7—C16—C17—C1820.32 (18)
C8—N4—C7—C637.75 (15)C8—N4—C18—C17163.22 (14)
C18—N4—C7—C690.59 (14)C7—N4—C18—C1742.69 (16)
C19—C6—C7—N4156.75 (13)C16—C17—C18—N438.17 (17)
C1—C6—C7—N427.44 (16)C1—C6—C19—C2476.18 (19)
C19—C6—C7—C1688.23 (17)C7—C6—C19—C2446.8 (2)
C1—C6—C7—C16142.45 (14)C1—C6—C19—C20104.47 (18)
C7—N4—C8—C11163.22 (13)C7—C6—C19—C20132.52 (16)
C18—N4—C8—C1143.02 (19)C24—C19—C20—C210.2 (2)
C7—N4—C8—C982.74 (14)C6—C19—C20—C21179.17 (15)
C18—N4—C8—C9157.06 (14)C24—C19—C20—Cl1179.45 (12)
C7—N4—C8—C132.35 (15)C6—C19—C20—Cl11.2 (2)
C18—N4—C8—C187.84 (16)C19—C20—C21—C220.4 (3)
C2—C1—C8—N4104.98 (14)Cl1—C20—C21—C22179.24 (13)
C6—C1—C8—N414.14 (15)C20—C21—C22—C230.6 (3)
S1—C1—C8—N4139.74 (11)C21—C22—C23—C240.5 (3)
C2—C1—C8—C1126.48 (18)C22—C23—C24—C190.3 (3)
C6—C1—C8—C11145.59 (13)C20—C19—C24—C230.1 (2)
S1—C1—C8—C1188.80 (14)C6—C19—C24—C23179.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N2i0.88 (2)2.10 (2)2.971 (2)170 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H21ClN4O2S
Mr464.96
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.6798 (18), 11.078 (2), 11.372 (2)
α, β, γ (°)78.984 (7), 81.867 (10), 81.718 (11)
V3)1054.8 (4)
Z2
Radiation typeCu Kα
µ (mm1)2.78
Crystal size (mm)0.28 × 0.24 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.510, 0.606
No. of measured, independent and
observed [I > 2σ(I)] reflections
21105, 3986, 3512
Rint0.075
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.02
No. of reflections3986
No. of parameters294
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.53

Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N2i0.88 (2)2.10 (2)2.971 (2)170 (2)
Symmetry code: (i) x+1, y, z.
 

References

First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.  Google Scholar
First citationJames, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2001). CrystalClear . Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds