organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-carb­oxy­anilinium) sulfate monohydrate

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 8 March 2010; accepted 9 March 2010; online 13 March 2010)

In the title hydrated mol­ecular salt, 2C7H8NO2+·SO42−·H2O, each cation in the asymmetric unit is stabilized by an intra­molecular N—H⋯O hydrogen bond. The O atoms of the sulfate ion are disordered over two sets of sites with an occupancy ratio of 0.541 (13):0.459 (13), which possibly optimizes the acceptance of N—H⋯O hydrogen bonds from the cations. The crystal structure also features aromatic ππ stacking [centroid–centroid separation = 3.842 (2) Å] and a C—H⋯π inter­action.

Related literature

For background to the properties and uses of amino­benzoic acids, see: Griss et al. (1984[Griss, G., Sauter, R., Grell, W., Hurnaus, R., Eisele, B. & Kahling, J. (1984). Eur. Patent No. EP 0 063 826.]); Pedanova et al. (1984[Pedanova, N. V., Shmulovich, V. G., Kalinina, I. G. & Gol'denberg, V. I. (1984). Pharm. Chem. J. 18, 626-629.]); Refaat (2010[Refaat, A. A. (2010). Int. J. Environ. Sci. Technol. 7, 183-213.]); Rogers & Clark (1973[Rogers, E. F. & Clark, R. L. (1973). US Patent No. 3 758 561.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H8NO2+·SO42−·H2O

  • Mr = 390.36

  • Monoclinic, P 21 /n

  • a = 11.260 (5) Å

  • b = 10.542 (4) Å

  • c = 15.358 (5) Å

  • β = 109.737 (5)°

  • V = 1715.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.934, Tmax = 0.955

  • 12530 measured reflections

  • 3748 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.02

  • 3748 reflections

  • 282 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6Ai 0.89 1.83 2.721 (6) 174
N1—H1B⋯O2 0.89 1.99 2.708 (3) 137
N1—H1B⋯O4ii 0.89 2.33 3.041 (3) 137
N1—H1C⋯O8Aiii 0.89 1.98 2.860 (11) 168
N2—H2A⋯O8Aiv 0.89 1.83 2.698 (12) 166
N2—H2B⋯O4 0.89 1.94 2.689 (3) 140
N2—H2B⋯O2ii 0.89 2.28 2.906 (3) 128
N2—H2C⋯O5Ai 0.89 2.00 2.839 (6) 157
O1—H1⋯O9v 0.82 1.75 2.557 (3) 168
O3—H3A⋯O7Av 0.82 1.70 2.512 (13) 167
O9—H9A⋯O6Avi 0.80 (3) 2.46 (3) 3.102 (8) 138 (3)
O9—H9A⋯O8Avi 0.80 (3) 2.38 (4) 3.115 (11) 153 (3)
O9—H9B⋯O5A 0.86 (3) 1.96 (3) 2.792 (7) 161 (3)
C4—H4⋯Cg2vii 0.93 2.75 3.600 (3) 153
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The salts of aminobenzoic acids have been reported as medicines as well as precursor for in the field of pharmaceutics (Griss et al., 1984). These are also useful for autoxidation of the fats forming free radicals, hence, in comparison to sulfated metal oxides, these can be used for production of biodiesel (Pedanova et al., 1984; Refaat, 2010). The structure of title compound (I, Fig. 1) is being reported here.

In the title compound (I) benzene rings A (C1–C6) and B (C8—C13) are of course planar with maximum r. m. s. deviations of 0.0025 and 0.0034 Å from the mean squares planes. The dihedral angle between A/B is 7.91 (13)°. The carboxylate groups C (O1/C7/O2) and D (O3/C14/O4) are oriented at dihedral angles of 11.94 (38)° and 10.86 (41)° with benzene rings A and B respectively. The O-atoms of SO4-2 are disordered over two set of sites with occupancy ratio of 0.541 (13):0.459 (13). The molecules are stabilized due to intra as well as inter-molecular H-bondings and C–H···π interactions (Table 1, Fig. 2). The ππ interaction between the centroids CgA and CgB of benzene rings A and B respectively, also play a role in the stabilization of molecules. The centroid to centroid distance is 3.842 (2) Å.

Related literature top

For background to the properties and uses of aminobenzoic acids, see: Griss et al. (1984); Pedanova et al. (1984); Refaat (2010); Rogers & Clark (1973).

Experimental top

Ethanolic solution of anthranilic acid (0.02 M) was refluxed in the presence of conc. H2SO4 (0.01 M) for 30 min. The contents were kept at room temperature for 24 h. The crystalline material formed was washed with n-hexane, ethyl acetate and diethyl ether, respectively and dried. This material was dissolverd in ethanol and colorless prisms of (I) were obtainesd by slow evaporation at room temperature.

Refinement top

Although all H-atoms were recognised from the difference fourier map but only coordinates of H-atoms of H2O were refined. The H-atoms were positioned geometrically (C—H = 0.93, O—H = 0.82, N—H = 0.89 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for NH3 and hydroxy H atoms, whereas x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted lines show the hydogen bonds.
Bis(2-carboxyanilinium) sulfate monohydrate top
Crystal data top
2C7H8NO2+·SO42·H2OF(000) = 816
Mr = 390.36Dx = 1.511 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3752 reflections
a = 11.260 (5) Åθ = 2.0–27.1°
b = 10.542 (4) ŵ = 0.24 mm1
c = 15.358 (5) ÅT = 296 K
β = 109.737 (5)°Prisms, colorless
V = 1715.9 (12) Å30.28 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3748 independent reflections
Radiation source: fine-focus sealed tube2528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 7.50 pixels mm-1θmax = 27.1°, θmin = 2.0°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1213
Tmin = 0.934, Tmax = 0.955l = 1918
12530 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3168P]
where P = (Fo2 + 2Fc2)/3
3748 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
2C7H8NO2+·SO42·H2OV = 1715.9 (12) Å3
Mr = 390.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.260 (5) ŵ = 0.24 mm1
b = 10.542 (4) ÅT = 296 K
c = 15.358 (5) Å0.28 × 0.25 × 0.20 mm
β = 109.737 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3748 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2528 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.955Rint = 0.036
12530 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.22 e Å3
3748 reflectionsΔρmin = 0.40 e Å3
282 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.45161 (14)0.45846 (15)0.61664 (12)0.0529 (6)
O20.24999 (14)0.41658 (17)0.58921 (13)0.0613 (7)
N10.15921 (15)0.19068 (17)0.51077 (12)0.0408 (6)
C10.36494 (17)0.28683 (19)0.51932 (13)0.0326 (6)
C20.27346 (18)0.19261 (19)0.48532 (14)0.0346 (6)
C30.2899 (2)0.0970 (2)0.43001 (16)0.0459 (8)
C40.3988 (2)0.0928 (2)0.40722 (16)0.0518 (8)
C50.4909 (2)0.1840 (2)0.44025 (15)0.0478 (8)
C60.47351 (18)0.2800 (2)0.49500 (14)0.0404 (7)
C70.34884 (18)0.3926 (2)0.57799 (14)0.0357 (6)
O30.20126 (14)0.69772 (16)0.43653 (12)0.0569 (6)
O40.01902 (14)0.62640 (15)0.44221 (12)0.0557 (6)
N20.09794 (14)0.43896 (16)0.32614 (12)0.0364 (6)
C80.12219 (17)0.51165 (19)0.35454 (13)0.0307 (6)
C90.02378 (18)0.42708 (18)0.31295 (13)0.0308 (6)
C100.0387 (2)0.3301 (2)0.25830 (15)0.0412 (7)
C110.1524 (2)0.3134 (2)0.24375 (16)0.0488 (8)
C120.2513 (2)0.3945 (2)0.28460 (15)0.0442 (7)
C130.23563 (18)0.4927 (2)0.33872 (14)0.0376 (6)
C140.10804 (19)0.6174 (2)0.41481 (14)0.0367 (7)
S10.82551 (5)0.10652 (5)0.37522 (4)0.0404 (2)
O5A0.7633 (7)0.2145 (4)0.3274 (4)0.0608 (16)0.541 (13)
O6A0.9595 (4)0.1055 (9)0.3666 (3)0.0576 (19)0.541 (13)
O7A0.8109 (9)0.1137 (12)0.4669 (9)0.053 (2)0.541 (13)
O8A0.7732 (9)0.0123 (10)0.3402 (8)0.051 (2)0.541 (13)
O5B0.6994 (8)0.1600 (10)0.3072 (4)0.078 (3)0.459 (13)
O6B0.9227 (7)0.1737 (8)0.3650 (3)0.0500 (19)0.459 (13)
O7B0.8590 (9)0.1102 (15)0.4772 (10)0.049 (2)0.459 (13)
O8B0.8163 (12)0.0309 (13)0.3482 (10)0.057 (3)0.459 (13)
O90.55554 (17)0.37630 (18)0.26338 (13)0.0535 (7)
H10.438340.512270.650810.0793*
H1A0.093560.167830.461960.0612*
H1B0.145690.267640.529340.0612*
H1C0.168990.135390.556460.0612*
H30.228140.035160.407850.0551*
H40.409910.028120.369490.0622*
H50.564380.180490.425450.0573*
H60.535430.341890.516400.0484*
H2A0.154810.468290.274470.0546*
H2B0.091090.492520.372370.0546*
H2C0.122280.363320.339620.0546*
H3A0.188550.753760.469360.0854*
H100.028000.275070.230780.0495*
H110.161950.247530.206410.0586*
H120.328300.382970.275700.0531*
H130.302500.547900.365420.0451*
H9A0.576 (3)0.407 (3)0.2229 (19)0.0642*
H9B0.607 (2)0.313 (3)0.2786 (18)0.0642*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0400 (8)0.0520 (11)0.0720 (12)0.0148 (8)0.0259 (8)0.0236 (9)
O20.0370 (9)0.0661 (12)0.0872 (13)0.0092 (8)0.0294 (9)0.0292 (10)
N10.0334 (9)0.0396 (11)0.0503 (11)0.0066 (8)0.0153 (8)0.0028 (9)
C10.0296 (10)0.0350 (12)0.0325 (10)0.0007 (9)0.0097 (8)0.0052 (9)
C20.0318 (10)0.0353 (12)0.0369 (11)0.0001 (9)0.0117 (9)0.0064 (10)
C30.0463 (12)0.0388 (13)0.0513 (14)0.0073 (11)0.0147 (11)0.0023 (11)
C40.0571 (15)0.0498 (15)0.0506 (14)0.0039 (12)0.0209 (12)0.0097 (12)
C50.0390 (12)0.0606 (16)0.0478 (13)0.0031 (12)0.0200 (10)0.0015 (12)
C60.0316 (10)0.0486 (14)0.0401 (11)0.0039 (10)0.0111 (9)0.0012 (11)
C70.0306 (10)0.0365 (12)0.0403 (11)0.0015 (9)0.0125 (9)0.0048 (10)
O30.0507 (9)0.0519 (10)0.0768 (13)0.0231 (8)0.0328 (9)0.0311 (9)
O40.0425 (9)0.0538 (10)0.0792 (12)0.0122 (8)0.0314 (9)0.0287 (9)
N20.0299 (9)0.0365 (10)0.0410 (10)0.0058 (8)0.0095 (8)0.0005 (8)
C80.0290 (9)0.0297 (11)0.0302 (10)0.0005 (9)0.0059 (8)0.0015 (9)
C90.0304 (10)0.0279 (11)0.0315 (10)0.0023 (9)0.0070 (8)0.0038 (9)
C100.0428 (12)0.0328 (12)0.0439 (12)0.0038 (10)0.0091 (10)0.0067 (10)
C110.0585 (15)0.0395 (13)0.0495 (14)0.0089 (12)0.0196 (12)0.0070 (11)
C120.0386 (12)0.0509 (14)0.0453 (12)0.0107 (11)0.0169 (10)0.0033 (12)
C130.0302 (10)0.0409 (12)0.0389 (11)0.0025 (9)0.0082 (9)0.0007 (10)
C140.0322 (10)0.0341 (12)0.0425 (12)0.0052 (9)0.0111 (9)0.0047 (10)
S10.0493 (3)0.0288 (3)0.0455 (3)0.0044 (3)0.0192 (3)0.0041 (3)
O5A0.045 (3)0.033 (2)0.096 (3)0.004 (2)0.013 (2)0.020 (2)
O6A0.0306 (19)0.080 (5)0.061 (2)0.002 (2)0.0141 (16)0.007 (2)
O7A0.075 (5)0.039 (3)0.058 (4)0.011 (5)0.041 (5)0.014 (3)
O8A0.065 (4)0.026 (4)0.048 (2)0.013 (3)0.001 (3)0.006 (2)
O5B0.046 (4)0.084 (5)0.093 (4)0.018 (4)0.009 (3)0.019 (3)
O6B0.045 (3)0.046 (4)0.064 (3)0.015 (3)0.025 (2)0.005 (2)
O7B0.061 (5)0.043 (3)0.047 (3)0.006 (5)0.025 (5)0.009 (2)
O8B0.099 (8)0.028 (3)0.057 (6)0.003 (5)0.045 (6)0.004 (3)
O90.0570 (11)0.0506 (11)0.0635 (12)0.0020 (8)0.0343 (9)0.0038 (9)
Geometric parameters (Å, º) top
S1—O7A1.474 (13)N2—H2B0.8900
S1—O8A1.411 (11)C1—C21.399 (3)
S1—O5B1.557 (8)C1—C71.483 (3)
S1—O6B1.356 (8)C1—C61.396 (3)
S1—O7B1.483 (14)C2—C31.370 (3)
S1—O5A1.407 (5)C3—C41.385 (3)
S1—O6A1.559 (5)C4—C51.379 (3)
S1—O8B1.501 (14)C5—C61.371 (3)
O1—C71.308 (3)C3—H30.9300
O2—C71.209 (3)C4—H40.9300
O1—H10.8200C5—H50.9300
O3—C141.301 (3)C6—H60.9300
O4—C141.215 (3)C8—C131.393 (3)
O3—H3A0.8200C8—C141.492 (3)
O9—H9A0.80 (3)C8—C91.397 (3)
O9—H9B0.86 (3)C9—C101.369 (3)
N1—C21.466 (3)C10—C111.383 (3)
N1—H1A0.8900C11—C121.376 (3)
N1—H1C0.8900C12—C131.376 (3)
N1—H1B0.8900C10—H100.9300
N2—C91.457 (3)C11—H110.9300
N2—H2A0.8900C12—H120.9300
N2—H2C0.8900C13—H130.9300
O5B—S1—O7B123.3 (6)C4—C5—C6119.7 (2)
O5B—S1—O8B101.6 (7)C1—C6—C5121.4 (2)
O6B—S1—O7B100.4 (5)O1—C7—C1113.84 (18)
O6B—S1—O8B117.1 (6)O1—C7—O2122.7 (2)
O7B—S1—O8B106.7 (8)O2—C7—C1123.5 (2)
O5A—S1—O8A116.7 (5)C4—C3—H3120.00
O6A—S1—O7A120.3 (5)C2—C3—H3120.00
O6A—S1—O8A104.7 (6)C3—C4—H4120.00
O7A—S1—O8A104.1 (7)C5—C4—H4120.00
O5B—S1—O6B108.8 (5)C4—C5—H5120.00
O5A—S1—O6A106.7 (4)C6—C5—H5120.00
O5A—S1—O7A105.1 (6)C5—C6—H6119.00
C7—O1—H1109.00C1—C6—H6119.00
C14—O3—H3A109.00C9—C8—C13117.46 (18)
H9A—O9—H9B100 (3)C9—C8—C14121.75 (18)
C2—N1—H1B109.00C13—C8—C14120.79 (18)
H1B—N1—H1C109.00N2—C9—C10117.75 (18)
H1A—N1—H1B109.00N2—C9—C8121.31 (17)
C2—N1—H1A109.00C8—C9—C10121.0 (2)
H1A—N1—H1C109.00C9—C10—C11120.4 (2)
C2—N1—H1C109.00C10—C11—C12119.9 (2)
C9—N2—H2C109.00C11—C12—C13119.6 (2)
C9—N2—H2B109.00C8—C13—C12121.7 (2)
C9—N2—H2A109.00O4—C14—C8123.2 (2)
H2A—N2—H2C109.00O3—C14—C8113.54 (19)
H2A—N2—H2B109.00O3—C14—O4123.3 (2)
H2B—N2—H2C109.00C11—C10—H10120.00
C2—C1—C7122.35 (18)C9—C10—H10120.00
C2—C1—C6117.69 (18)C10—C11—H11120.00
C6—C1—C7119.96 (18)C12—C11—H11120.00
N1—C2—C3118.01 (19)C13—C12—H12120.00
N1—C2—C1120.82 (18)C11—C12—H12120.00
C1—C2—C3121.1 (2)C12—C13—H13119.00
C2—C3—C4119.8 (2)C8—C13—H13119.00
C3—C4—C5120.3 (2)
C6—C1—C2—N1177.63 (18)C13—C8—C9—N2179.56 (18)
C6—C1—C2—C30.0 (3)C13—C8—C9—C100.5 (3)
C7—C1—C2—N13.4 (3)C14—C8—C9—N20.4 (3)
C7—C1—C2—C3179.0 (2)C14—C8—C9—C10179.60 (19)
C2—C1—C6—C50.5 (3)C9—C8—C13—C120.2 (3)
C7—C1—C6—C5179.48 (19)C14—C8—C13—C12178.92 (19)
C2—C1—C7—O1168.59 (19)C9—C8—C14—O3170.35 (18)
C2—C1—C7—O211.6 (3)C9—C8—C14—O410.8 (3)
C6—C1—C7—O112.4 (3)C13—C8—C14—O310.5 (3)
C6—C1—C7—O2167.4 (2)C13—C8—C14—O4168.3 (2)
N1—C2—C3—C4177.61 (19)N2—C9—C10—C11179.52 (19)
C1—C2—C3—C40.1 (3)C8—C9—C10—C110.5 (3)
C2—C3—C4—C50.3 (3)C9—C10—C11—C120.2 (3)
C3—C4—C5—C60.8 (3)C10—C11—C12—C130.8 (3)
C4—C5—C6—C10.9 (3)C11—C12—C13—C80.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6Ai0.891.832.721 (6)174
N1—H1B···O20.891.992.708 (3)137
N1—H1B···O4ii0.892.333.041 (3)137
N1—H1C···O8Aiii0.891.982.860 (11)168
N2—H2A···O8Aiv0.891.832.698 (12)166
N2—H2B···O40.891.942.689 (3)140
N2—H2B···O2ii0.892.282.906 (3)128
N2—H2C···O5Ai0.892.002.839 (6)157
O1—H1···O9v0.821.752.557 (3)168
O3—H3A···O7Av0.821.702.512 (13)167
O9—H9A···O6Avi0.80 (3)2.46 (3)3.102 (8)138 (3)
O9—H9A···O8Avi0.80 (3)2.38 (4)3.115 (11)153 (3)
O9—H9B···O5A0.86 (3)1.96 (3)2.792 (7)161 (3)
C4—H4···Cg2vii0.932.753.600 (3)153
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C7H8NO2+·SO42·H2O
Mr390.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.260 (5), 10.542 (4), 15.358 (5)
β (°) 109.737 (5)
V3)1715.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.28 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.934, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
12530, 3748, 2528
Rint0.036
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.02
No. of reflections3748
No. of parameters282
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6Ai0.891.832.721 (6)174
N1—H1B···O20.891.992.708 (3)137
N1—H1B···O4ii0.892.333.041 (3)137
N1—H1C···O8Aiii0.891.982.860 (11)168
N2—H2A···O8Aiv0.891.832.698 (12)166
N2—H2B···O40.891.942.689 (3)140
N2—H2B···O2ii0.892.282.906 (3)128
N2—H2C···O5Ai0.892.002.839 (6)157
O1—H1···O9v0.821.752.557 (3)168
O3—H3A···O7Av0.821.702.512 (13)167
O9—H9A···O6Avi0.80 (3)2.46 (3)3.102 (8)138 (3)
O9—H9A···O8Avi0.80 (3)2.38 (4)3.115 (11)153 (3)
O9—H9B···O5A0.86 (3)1.96 (3)2.792 (7)161 (3)
C4—H4···Cg2vii0.932.753.600 (3)153
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Bana Inter­national, Karachi, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGriss, G., Sauter, R., Grell, W., Hurnaus, R., Eisele, B. & Kahling, J. (1984). Eur. Patent No. EP 0 063 826.  Google Scholar
First citationPedanova, N. V., Shmulovich, V. G., Kalinina, I. G. & Gol'denberg, V. I. (1984). Pharm. Chem. J. 18, 626–629.  CrossRef Google Scholar
First citationRefaat, A. A. (2010). Int. J. Environ. Sci. Technol. 7, 183–213.  CrossRef CAS Google Scholar
First citationRogers, E. F. & Clark, R. L. (1973). US Patent No. 3 758 561.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds