organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o911-o912

2-Methyl-N-p-tolyl­benzamide: a second monoclinic polymorph

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 18 March 2010; accepted 19 March 2010; online 24 March 2010)

The title compound, C15H15NO, (I), is a polymorph of the structure (II) reported by Gowda et al. [Acta Cryst. (2008), E64, o1494]. Compound (II) crystalllizes in the space group C2/c (Z = 8), whereas the title compound occurs in space group P21/c (Z = 4). The two mol­ecular structures differ slightly in the relative orientations of their central amide group with respect to the benzoyl ring [dihedral angles of 55.99 (7) for (I) and 59.96 (11)° for (II)] and in the inclination of the benzoyl and aniline rings [88.67 (8) for (I) and 81.44 (5)° for (II)]. In the crystal structure of (I), mol­ecules are linked by N—H⋯O hydrogen bonds, forming C(4) chains, which are augmented by weak C—H⋯O inter­actions. The structure is further stabilized by C—H⋯π contacts involving both of the aromatic rings.

Related literature

For the biological activity of N-substituted benzamides, see: Olsson et al. (2002[Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971-978.]); Lindgren et al. (2001[Lindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267-277.]). For the use of heterocyclic analogs of benzanilide derivatives as potassium channel activators, see: Calderone et al. (2006[Calderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761-767.]). For the use of 2-nitro­benzamides in organic synthesis, see: Zhichkin et al. (2007[Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415-1418.]); Beccalli et al. (2005[Beccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61-68.]). For the original monoclinic polymorph, see: Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494.]). For the related N-(2,4-dimethyl­phen­yl)-2-methyl­benzamide, see: Gowda et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, P 21 /c

  • a = 20.259 (3) Å

  • b = 7.0681 (10) Å

  • c = 8.7941 (13) Å

  • β = 95.942 (9)°

  • V = 1252.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 89 K

  • 0.30 × 0.19 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.803, Tmax = 1.000

  • 8447 measured reflections

  • 1283 independent reflections

  • 1028 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 20.7°

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.07

  • 1283 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C7 and C8–C13 benzene rings, repectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.90 (3) 1.94 (3) 2.821 (3) 169 (2)
C9—H9⋯O1i 0.95 2.71 3.366 (3) 127
C7—H7⋯Cg2ii 0.95 2.84 3.751 (3) 160
C31—H31CCg1iii 0.98 2.86 3.676 (3) 141
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

N-substituted benzamides are well known anticancer compounds and the mechanism of action for N-substituted benzamide-induced apoptosis has been studied, using declopramide as a lead compound (Olsson et al., 2002). N-substituted benzamides inhibit the activity of nuclear factor- B and nuclear factor T cell activity while inducing activator protein 1 activity in T lymphocytes (Lindgren et al., 2001). Heterocyclic analogs of benzanilide derivatives are potassium channel activators (Calderone et al., 2006). N-alkylated 2-nitrobenzamides are intermediates in the synthesis of dibenzo[b,e][1,4]diazepines (Zhichkin et al., 2007) and N-acyl-2-nitrobenzamides are precursors of 2,3-disubstitued 3H-quinazoline-4-ones (Beccalli et al., 2005).

The title compound, (I), is a second monoclinic polymorph of the structure of this benzamide derivative which crystallises in the space group P21/c. An alternative structure, II, in the space group C2/c was reported previously by Gowda et al., (2008). The major structural differences between the two polymorphs lie in the orientations of their central C2,C1,O1,N1,C8 amide groups with respect to the C2···C6 benzoyl ring. In I the N1–C1–C2–C7 dihedral angle is 55.69 (3) for (I) whereas for (II) it is -60.69 (18). Furthermore the angle between the plane through C2,C1,O1,N1,C8 and the C2···C6 ring plane is 55.99 (7)/% in (I) but 59.96 (11) for (II) and the two phenyl rings are respectively inclined at 88.67 (8)/% for (I) and 81.44 (5)/% for (II). Bond distances in the molecule are normal and comparable to those in the second polymorph and in a closely related benzamide derivative (Gowda et al., 2009).

In the crystal structure intermolecular N1–H1···O1 hydrogen bonds form C(4) chains down the c axis (Bernstein et al. 1995). These chains are further stabilised by weak C9–H9···O1 interactions and C–H···π contacts involving both the aniline and benzoyl ring systems.

Related literature top

For the biological activity of N-substituted benzamides, see: Olsson et al. (2002); Lindgren et al. (2001). For the use of heterocyclic analogs of benzanilide derivatives as potassium channel activators, see: Calderone et al. (2006). For the use of 2-nitrobenzamides in organic synthesis, see: Zhichkin et al. (2007); Beccalli et al. (2005). For the original monoclinic polymorph, see: Gowda et al. (2008). For the related N-(2,4-dimethylphenyl)-2-methylbenzamide, see: Gowda et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2-Methylbenzoyl chloride (1 mmol) in CHCl3 was treated with 4-methylaniline (3.5 mmol) under a nitrogen atmosphere at reflux for 3.5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue from ethanol afforded colourless plates of (I) in 78% yield: Anal. calcd. for C15H25NO: C, 79.97; H, 6.71; N, 6.22; found: C, 80.06; H, 6.87; N, 6.01%

Refinement top

The H atom bound to N1 was located in a difference map and refined isotropically. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic and d(C—H) = 0.98 Å, Uiso = 1.5Ueq (C) for methyl C atoms. Crystals were very thin and weakly diffracting. Even with 60 s scans over 24 h, no useful data was observed beyond theta = 20.71 °.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for (I) viewed down the b axis with hydrogen bonds drawn as dashed lines and C—H···π interactions drawn as dotted lines. The blue and yellow spheres represent centroids of the benzene rings.
2-methyl-N-p-tolylbenzamide top
Crystal data top
C15H15NOF(000) = 480
Mr = 225.28Dx = 1.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1469 reflections
a = 20.259 (3) Åθ = 3.1–20.2°
b = 7.0681 (10) ŵ = 0.08 mm1
c = 8.7941 (13) ÅT = 89 K
β = 95.942 (9)°Rectangular plate, colourless
V = 1252.5 (3) Å30.30 × 0.19 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1283 independent reflections
Radiation source: fine-focus sealed tube1028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 20.7°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 2020
Tmin = 0.803, Tmax = 1.000k = 77
8447 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.3937P]
where P = (Fo2 + 2Fc2)/3
1283 reflections(Δ/σ)max = 0.002
159 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H15NOV = 1252.5 (3) Å3
Mr = 225.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.259 (3) ŵ = 0.08 mm1
b = 7.0681 (10) ÅT = 89 K
c = 8.7941 (13) Å0.30 × 0.19 × 0.06 mm
β = 95.942 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
1283 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
1028 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.052
8447 measured reflectionsθmax = 20.7°
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.16 e Å3
1283 reflectionsΔρmin = 0.23 e Å3
159 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73575 (10)0.2686 (3)0.6898 (2)0.0250 (6)
H1N0.7455 (11)0.297 (3)0.789 (3)0.030*
O10.76424 (8)0.0912 (2)0.48978 (19)0.0301 (5)
C10.77164 (12)0.1340 (3)0.6268 (3)0.0231 (7)
C20.82221 (12)0.0392 (3)0.7367 (3)0.0207 (7)
C30.88871 (13)0.0342 (3)0.7074 (3)0.0232 (7)
C310.91234 (13)0.1250 (4)0.5675 (3)0.0327 (7)
H31A0.89430.05570.47600.049*
H31B0.96090.12170.57530.049*
H31C0.89720.25670.56020.049*
C40.93384 (13)0.0562 (3)0.8148 (3)0.0269 (7)
H40.97950.05970.79880.032*
C50.91342 (14)0.1405 (3)0.9437 (3)0.0302 (7)
H50.94500.20131.01490.036*
C60.84744 (13)0.1368 (3)0.9697 (3)0.0285 (7)
H60.83340.19611.05790.034*
C70.80182 (12)0.0460 (3)0.8663 (3)0.0239 (7)
H70.75640.04190.88400.029*
C80.68730 (12)0.3892 (4)0.6124 (3)0.0230 (7)
C90.68482 (12)0.5755 (4)0.6619 (3)0.0278 (7)
H90.71460.61790.74550.033*
C100.63886 (13)0.6993 (4)0.5893 (3)0.0330 (7)
H100.63810.82700.62280.040*
C110.59398 (13)0.6409 (4)0.4687 (3)0.0327 (8)
C1110.54250 (14)0.7756 (4)0.3928 (3)0.0466 (9)
H11A0.52370.72230.29490.070*
H11B0.56340.89750.37510.070*
H11C0.50710.79390.45940.070*
C120.59739 (13)0.4542 (4)0.4208 (3)0.0345 (8)
H120.56770.41160.33700.041*
C130.64310 (12)0.3286 (4)0.4923 (3)0.0285 (7)
H130.64400.20090.45880.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0360 (14)0.0248 (14)0.0135 (12)0.0036 (11)0.0006 (11)0.0010 (11)
O10.0457 (12)0.0259 (11)0.0182 (12)0.0017 (9)0.0006 (9)0.0010 (8)
C10.0349 (17)0.0173 (16)0.0170 (17)0.0079 (13)0.0029 (13)0.0008 (12)
C20.0319 (17)0.0133 (14)0.0163 (15)0.0013 (12)0.0004 (13)0.0022 (12)
C30.0354 (18)0.0108 (14)0.0232 (16)0.0002 (12)0.0020 (13)0.0042 (12)
C310.0396 (17)0.0253 (17)0.0341 (17)0.0008 (13)0.0079 (13)0.0024 (13)
C40.0317 (16)0.0177 (16)0.0309 (18)0.0009 (12)0.0015 (13)0.0073 (13)
C50.042 (2)0.0206 (16)0.0259 (18)0.0066 (13)0.0043 (14)0.0010 (13)
C60.046 (2)0.0204 (16)0.0196 (16)0.0028 (13)0.0045 (14)0.0034 (12)
C70.0310 (16)0.0193 (15)0.0214 (16)0.0020 (12)0.0018 (13)0.0006 (12)
C80.0278 (15)0.0261 (17)0.0154 (15)0.0022 (13)0.0034 (13)0.0045 (13)
C90.0325 (16)0.0289 (18)0.0217 (16)0.0044 (13)0.0020 (13)0.0007 (13)
C100.0418 (18)0.0284 (17)0.0299 (17)0.0083 (14)0.0088 (15)0.0023 (14)
C110.0317 (17)0.040 (2)0.0267 (17)0.0069 (14)0.0062 (14)0.0112 (14)
C1110.0442 (19)0.054 (2)0.0430 (19)0.0141 (16)0.0079 (15)0.0182 (16)
C120.0324 (17)0.043 (2)0.0271 (17)0.0043 (14)0.0004 (13)0.0054 (14)
C130.0330 (16)0.0273 (17)0.0252 (17)0.0013 (14)0.0020 (14)0.0045 (13)
Geometric parameters (Å, º) top
N1—C11.351 (3)C6—H60.9500
N1—C81.420 (3)C7—H70.9500
N1—H1N0.90 (3)C8—C131.380 (3)
O1—C11.236 (3)C8—C91.389 (3)
C1—C21.493 (3)C9—C101.385 (3)
C2—C71.389 (3)C9—H90.9500
C2—C31.398 (3)C10—C111.387 (4)
C3—C41.399 (3)C10—H100.9500
C3—C311.509 (4)C11—C121.389 (4)
C31—H31A0.9800C11—C1111.515 (4)
C31—H31B0.9800C111—H11A0.9800
C31—H31C0.9800C111—H11B0.9800
C4—C51.381 (4)C111—H11C0.9800
C4—H40.9500C12—C131.386 (4)
C5—C61.380 (4)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—C71.386 (3)
C1—N1—C8126.9 (2)C6—C7—C2120.3 (2)
C1—N1—H1N118.9 (16)C6—C7—H7119.8
C8—N1—H1N113.8 (16)C2—C7—H7119.8
O1—C1—N1123.8 (2)C13—C8—C9119.5 (2)
O1—C1—C2121.8 (2)C13—C8—N1122.8 (2)
N1—C1—C2114.4 (2)C9—C8—N1117.7 (2)
C7—C2—C3121.0 (2)C10—C9—C8119.9 (2)
C7—C2—C1118.9 (2)C10—C9—H9120.0
C3—C2—C1120.1 (2)C8—C9—H9120.0
C2—C3—C4117.5 (2)C9—C10—C11121.4 (3)
C2—C3—C31122.2 (2)C9—C10—H10119.3
C4—C3—C31120.3 (2)C11—C10—H10119.3
C3—C31—H31A109.5C10—C11—C12117.8 (2)
C3—C31—H31B109.5C10—C11—C111121.1 (3)
H31A—C31—H31B109.5C12—C11—C111121.1 (3)
C3—C31—H31C109.5C11—C111—H11A109.5
H31A—C31—H31C109.5C11—C111—H11B109.5
H31B—C31—H31C109.5H11A—C111—H11B109.5
C5—C4—C3121.4 (2)C11—C111—H11C109.5
C5—C4—H4119.3H11A—C111—H11C109.5
C3—C4—H4119.3H11B—C111—H11C109.5
C6—C5—C4120.4 (2)C13—C12—C11121.5 (2)
C6—C5—H5119.8C13—C12—H12119.2
C4—C5—H5119.8C11—C12—H12119.2
C5—C6—C7119.4 (2)C8—C13—C12119.9 (3)
C5—C6—H6120.3C8—C13—H13120.0
C7—C6—H6120.3C12—C13—H13120.0
C8—N1—C1—O13.8 (4)C3—C2—C7—C60.4 (3)
C8—N1—C1—C2175.9 (2)C1—C2—C7—C6179.3 (2)
O1—C1—C2—C7124.6 (3)C1—N1—C8—C1338.7 (4)
N1—C1—C2—C755.7 (3)C1—N1—C8—C9141.7 (2)
O1—C1—C2—C354.3 (3)C13—C8—C9—C100.9 (4)
N1—C1—C2—C3125.4 (2)N1—C8—C9—C10179.4 (2)
C7—C2—C3—C41.3 (3)C8—C9—C10—C111.1 (4)
C1—C2—C3—C4179.8 (2)C9—C10—C11—C121.2 (4)
C7—C2—C3—C31179.9 (2)C9—C10—C11—C111178.2 (2)
C1—C2—C3—C311.0 (3)C10—C11—C12—C131.2 (4)
C2—C3—C4—C51.1 (3)C111—C11—C12—C13178.1 (2)
C31—C3—C4—C5180.0 (2)C9—C8—C13—C121.0 (4)
C3—C4—C5—C60.2 (4)N1—C8—C13—C12179.4 (2)
C4—C5—C6—C70.7 (4)C11—C12—C13—C81.1 (4)
C5—C6—C7—C20.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C7 and C8–C13 benzene rings, repectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.94 (3)2.821 (3)169 (2)
C9—H9···O1i0.952.713.366 (3)127
C7—H7···Cg2ii0.952.843.751 (3)160
C31—H31C···Cg1iii0.982.863.676 (3)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z3/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)20.259 (3), 7.0681 (10), 8.7941 (13)
β (°) 95.942 (9)
V3)1252.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.19 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.803, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8447, 1283, 1028
Rint0.052
θmax (°)20.7
(sin θ/λ)max1)0.498
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.07
No. of reflections1283
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C7 and C8–C13 benzene rings, repectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.90 (3)1.94 (3)2.821 (3)169 (2)
C9—H9···O1i0.952.713.366 (3)127
C7—H7···Cg2ii0.952.843.751 (3)160
C31—H31C···Cg1iii0.982.863.676 (3)141
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z3/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan, project No.20-Miscel/R&D/00/3834. We also thank the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeccalli, E. M., Broggini, G., Paladinoa, G. & Zonia, C. (2005). Tetrahedron, 61, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalderone, V., Fiamingo, F. L., Giorgi, I., Leonardi, M., Livi, O., Martelli, A. & Martinotti, E. (2006). Eur. J. Med. Chem. 41, 761–767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationLindgren, H., Pero, R. W., Ivars, F. & Leanderson, T. (2001). Mol. Immunol. 38, 267–277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 971–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett. 9, 1415–1418.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o911-o912
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds