organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Fluoro­benzyl­­idene)acetohydrazide

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China, bYantai Vocational and Technical institute of Engineering, Yantai 264006, People's Republic of China, and cMinistry of Personnel, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 21 March 2010; accepted 22 March 2010; online 27 March 2010)

The title compound, C9H9FN2O, was prepared by the reaction between 2-fluoro­benzophenone and acetohydrazide. In the crystal structure, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur, generating R22(8) loops.

Related literature

For background to Schiff bases, see: Cimerman et al. (1997[Cimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145-153.]); For related structures, see: Girgis (2006[Girgis, A. S. (2006). J. Chem. Res. pp. 81-85.]); Li & Jian (2008[Li, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9FN2O

  • Mr = 180.18

  • Monoclinic, P 21 /c

  • a = 5.3227 (11) Å

  • b = 8.4603 (17) Å

  • c = 19.656 (4) Å

  • β = 93.70 (3)°

  • V = 883.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 7687 measured reflections

  • 2010 independent reflections

  • 1515 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.128

  • S = 1.04

  • 2010 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.08 2.915 (2) 163
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have important applications in analytical chemistry (Cimerman et al., 1997). As part of our search for new Schiff bases with similar applications, we synthesized the title compound, (I), and report its crystal structure herein (Fig. 1).

All the bond lengths and angles in (I) are within normal ranges (Li & Jian, 2008). The C7=N2 bond length of 1.2732 (18)Å is slight shorter than the C=N double bond [1.281 (2) Å] reported (Girgis, 2006) in a related compound.

In the crystal structure, adjacent molecules are linked into a centro-symmetric supra-molecular dimer by intermolecular N—H···O hydrogen bonding (Table 1).

Related literature top

For background to Schiff bases, see: Cimerman et al. (1997); For related structures, see: Girgis (2006); Li & Jian (2008).

Experimental top

A mixture of 2-fluorobenzophenone (0.05 mol) and acethydrazide (0.05 mol) was stirred in refluxing ethanol(30 ml) for 4 h to afford the title compound (yield 70%). Colourless blocks of (I) were obtained by recrystallization from ethanol at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H and N—H distances in the range 0.93-0.97Å and 0.86 Å, respectively, and with Uiso(H) = 1.2Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
N'-(2-Fluorobenzylidene)acetohydrazide top
Crystal data top
C9H9FN2OF(000) = 376
Mr = 180.18Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1515 reflections
a = 5.3227 (11) Åθ = 3.2–27.5°
b = 8.4603 (17) ŵ = 0.11 mm1
c = 19.656 (4) ÅT = 293 K
β = 93.70 (3)°Block, colourless
V = 883.3 (3) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1515 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 66
7687 measured reflectionsk = 910
2010 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0888P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2010 reflectionsΔρmax = 0.14 e Å3
119 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (6)
Crystal data top
C9H9FN2OV = 883.3 (3) Å3
Mr = 180.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3227 (11) ŵ = 0.11 mm1
b = 8.4603 (17) ÅT = 293 K
c = 19.656 (4) Å0.30 × 0.30 × 0.20 mm
β = 93.70 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1515 reflections with I > 2σ(I)
7687 measured reflectionsRint = 0.036
2010 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
2010 reflectionsΔρmin = 0.21 e Å3
119 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.4557 (2)0.26752 (14)0.01843 (6)0.0474 (3)
O10.04461 (18)0.48232 (13)0.09198 (5)0.0578 (3)
N10.2546 (2)0.35774 (14)0.00633 (6)0.0505 (3)
H1A0.14530.38850.02120.061*
C10.6693 (3)0.15209 (16)0.11622 (7)0.0479 (3)
C80.2245 (2)0.39930 (17)0.07282 (7)0.0473 (3)
C70.4679 (3)0.24649 (16)0.08270 (7)0.0477 (3)
H7A0.34690.29190.10860.057*
F10.5354 (2)0.23104 (15)0.22231 (5)0.0865 (4)
C90.4142 (3)0.3418 (2)0.11987 (7)0.0583 (4)
H9A0.36990.37890.16520.087*
H9B0.41680.22840.11970.087*
H9C0.57770.38120.10490.087*
C60.8398 (3)0.0646 (2)0.08064 (8)0.0592 (4)
H6A0.82670.06490.03320.071*
C20.6989 (3)0.1453 (2)0.18648 (7)0.0586 (4)
C51.0271 (3)0.0222 (2)0.11457 (10)0.0708 (5)
H5A1.13970.07940.09000.085*
C30.8824 (4)0.0594 (2)0.22135 (9)0.0756 (5)
H3A0.89470.05800.26880.091*
C41.0489 (3)0.0250 (2)0.18462 (10)0.0756 (5)
H4A1.17600.08390.20720.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0448 (6)0.0508 (6)0.0460 (6)0.0032 (5)0.0023 (5)0.0011 (5)
O10.0518 (6)0.0700 (7)0.0507 (6)0.0133 (5)0.0049 (4)0.0030 (5)
N10.0475 (6)0.0591 (7)0.0447 (6)0.0106 (5)0.0006 (5)0.0019 (5)
C10.0475 (7)0.0482 (7)0.0471 (7)0.0069 (6)0.0046 (5)0.0041 (5)
C80.0434 (7)0.0520 (7)0.0455 (7)0.0015 (6)0.0035 (5)0.0004 (5)
C70.0482 (7)0.0490 (7)0.0455 (7)0.0010 (6)0.0006 (5)0.0021 (5)
F10.0899 (8)0.1230 (10)0.0462 (5)0.0075 (6)0.0006 (5)0.0129 (5)
C90.0538 (8)0.0733 (10)0.0478 (7)0.0058 (7)0.0039 (6)0.0000 (7)
C60.0601 (9)0.0623 (9)0.0545 (8)0.0069 (7)0.0007 (6)0.0061 (7)
C20.0588 (9)0.0683 (10)0.0475 (7)0.0101 (7)0.0058 (6)0.0002 (6)
C50.0599 (10)0.0664 (11)0.0850 (12)0.0100 (8)0.0034 (8)0.0118 (9)
C30.0764 (11)0.0912 (13)0.0558 (9)0.0153 (10)0.0222 (8)0.0153 (8)
C40.0619 (10)0.0734 (12)0.0880 (12)0.0051 (8)0.0233 (9)0.0253 (10)
Geometric parameters (Å, º) top
N2—C71.2732 (18)C9—H9A0.9600
N2—N11.3775 (16)C9—H9B0.9600
O1—C81.2269 (17)C9—H9C0.9600
N1—C81.3529 (17)C6—C51.376 (2)
N1—H1A0.8600C6—H6A0.9300
C1—C21.3809 (19)C2—C31.366 (2)
C1—C61.394 (2)C5—C41.375 (3)
C1—C71.4595 (19)C5—H5A0.9300
C8—C91.494 (2)C3—C41.379 (3)
C7—H7A0.9300C3—H3A0.9300
F1—C21.363 (2)C4—H4A0.9300
C7—N2—N1114.63 (11)H9A—C9—H9C109.5
C8—N1—N2121.75 (11)H9B—C9—H9C109.5
C8—N1—H1A119.1C5—C6—C1121.01 (15)
N2—N1—H1A119.1C5—C6—H6A119.5
C2—C1—C6116.37 (14)C1—C6—H6A119.5
C2—C1—C7120.46 (13)F1—C2—C3118.90 (14)
C6—C1—C7123.17 (12)F1—C2—C1117.35 (14)
O1—C8—N1119.12 (13)C3—C2—C1123.74 (16)
O1—C8—C9122.79 (13)C4—C5—C6120.45 (17)
N1—C8—C9118.08 (12)C4—C5—H5A119.8
N2—C7—C1120.89 (13)C6—C5—H5A119.8
N2—C7—H7A119.6C2—C3—C4118.43 (16)
C1—C7—H7A119.6C2—C3—H3A120.8
C8—C9—H9A109.5C4—C3—H3A120.8
C8—C9—H9B109.5C5—C4—C3120.00 (16)
H9A—C9—H9B109.5C5—C4—H4A120.0
C8—C9—H9C109.5C3—C4—H4A120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.082.915 (2)163
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H9FN2O
Mr180.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.3227 (11), 8.4603 (17), 19.656 (4)
β (°) 93.70 (3)
V3)883.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7687, 2010, 1515
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.128, 1.04
No. of reflections2010
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.082.915 (2)163
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors would like to thank the National Natural Science Foundation of Shandong Province (Y2008B29) and Yuandu Scholar of Weifang City for support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimerman, Z., Galic, N. & Bosner, B. (1997). Anal. Chim. Acta, 343, 145–153.  CrossRef CAS Web of Science Google Scholar
First citationGirgis, A. S. (2006). J. Chem. Res. pp. 81–85.  CrossRef Google Scholar
First citationLi, Y.-F. & Jian, F.-F. (2008). Acta Cryst. E64, o2409.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds