organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4-(3-hy­droxy­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India, bMaterials Research Centre, Indian Institute of Science, Bengaluru 560 012, India, cThe Madura College (Autonomous), Madurai 625 011, India, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 March 2010; accepted 24 March 2010; online 31 March 2010)

The 1,4-dihydro­pyridine ring in the title compound, C17H19NO5, has a flattened-boat conformation, and the benzene ring is almost orthogonal to it [dihedral angle = 82.98 (12)°]. The hydr­oxy group is disordered over two positions in a 0.780 (4):0.220 (4) ratio. In the crystal, hydrogen-bonding inter­actions of the type Na—H⋯Oc and Oh—H⋯Oc (a = amine, c = carbonyl and h = hydr­oxy) link the mol­ecules into a three-dimensional network.

Related literature

For further synthetic details, general background to this work and related structures, see: Rathore et al. (2009[Rathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375-381.]); Reddy et al. (2010[Reddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658-o659.]). For ring conformations, see: Cremer & Pople, (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO5

  • Mr = 317.33

  • Monoclinic, P 21 /c

  • a = 10.4863 (7) Å

  • b = 10.4091 (7) Å

  • c = 14.8702 (11) Å

  • β = 99.259 (4)°

  • V = 1601.98 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.17 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.]) Tmin = 0.646, Tmax = 0.746

  • 25465 measured reflections

  • 2831 independent reflections

  • 1777 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.140

  • S = 0.96

  • 2831 reflections

  • 226 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O1i 0.86 (1) 2.10 (1) 2.960 (3) 173 (2)
O5—H5o⋯O3ii 0.83 (1) 2.01 (5) 2.828 (4) 170 (6)
O5′—H5o'⋯O5ii 0.82 (1) 2.17 (12) 2.778 (10) 132 (1)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, (I), was determined as a part of an on-going study of Hantzsch 1,4-dihydropyridines which are notable for their biological activity (Rathore et al., 2009; Reddy et al., 2010).

The 1,4-dihydropyridine ring in (I), Fig. 1, has a flattened-boat conformation with the N1 [0.105 (4) Å] and C3 [0.267 (4) Å] atoms lying above the least-squares plane through the C1,C2,C4, and C5 atoms r.m.s. deviation = 0.0048 Å]. The ring puckering parameters (Cremer & Pople, 1975)are Q = 0.221 (2) Å, θ = 107.0 (5) °, and ϕ2 = 357.1 (6) °. The aryl ring is orthogonal to the 1,4-dihydropyridine ring, with the dihedral angle between their respective least-squares planes being 82.98 (12) °.

The crystal structure features significant hydrogen bonding interactions, Table 1. The NamineH···Ocarbonyl interactions lead to chains with glide symmetry along the c axis. OhydroxylH···Ocarbonyl hydrogen bonds exist normal to the chain resulting in a three-dimensional network, Fig. 2. As noted in the Experimental, the hydroxyl group is disordered over two positions so that the above description pertains to the major component of the structure only. The minor component of the disorder allows for the formation of OhydroxyH···Ohydroxy hydrogen bonds, Table 1, to provide addiotnal cohesion to the crystal packing.

Related literature top

For further synthetic details, general background to this work and related structures, see: Rathore et al. (2009); Reddy et al. (2010). For ring conformations, see: Cremer & Pople, (1975).

Experimental top

Dimethyl 1,4-dihydro-4-(3-hydroxyphenyl)-2,6-dimethylpyridine-3,5-dicarboxylate was prepared according to Hantzsch pyridine synthesis (Rathore et al., 2009). To a mixture of 3-hydroxybenzaldehyde (1.221 g, 10 mmol), methyl acetoacetate (2.26 ml, 20 mmol) and ammonium acetate (0.771 g, 10 mmol) in ethanol (10 ml) was added and heated over water bath for about 15 minutes with shaking to ensure thorough mixing. After 15 min, the reaction mixture was kept aside for two days. The solid that separated out was filtered and washed with an ethanol/diethyl ether mixture (1:4). The purity of the crude product was checked through TLC and recrystallized from an ethanol/chloroform mixture (3:2) to yield colourless blocks of (I). Yield: 77%, m. pt. 500–501 K.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The remaining H were located from a difference map and refined with O–H = 0.82±0.01 and N–H = 0.86±0.01, and with Uiso(H) = nUeq(parent atom), with n = 1.5 for O and n = 1.2 for N. The 3-hydroxyl group was found to be disordered over two positions. The anisotropic displacement ellipsoids were constrained to be equal for the two hydroxyl-O atoms and the major component had a site occupancy factor = 0.780 (4).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. For reasons of clarity, only the major component of the disorder is shown.
[Figure 2] Fig. 2. A view of the unit cell content of (I) shown in projection down the b axis. The N–H···O hydrogen bonds (blue dashed lines) link molecules into supramolecular chains along the c axis. These are connected into the three-dimensional network by O–H···O hydrogen bonds (orange dashed lines), largely obscured in the figure. Colour code: O, red; N, blue; C, grey; and H, green.
Dimethyl 4-(3-hydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C17H19NO5F(000) = 672
Mr = 317.33Dx = 1.316 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 250 reflections
a = 10.4863 (7) Åθ = 2.0–25.0°
b = 10.4091 (7) ŵ = 0.10 mm1
c = 14.8702 (11) ÅT = 293 K
β = 99.259 (4)°Block, colourless
V = 1601.98 (19) Å30.17 × 0.14 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2831 independent reflections
Radiation source: fine-focus sealed tube1777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.646, Tmax = 0.746k = 1212
25465 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.060P)2 + 0.9343P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2831 reflectionsΔρmax = 0.20 e Å3
226 parametersΔρmin = 0.30 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (15)
Crystal data top
C17H19NO5V = 1601.98 (19) Å3
Mr = 317.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4863 (7) ŵ = 0.10 mm1
b = 10.4091 (7) ÅT = 293 K
c = 14.8702 (11) Å0.17 × 0.14 × 0.11 mm
β = 99.259 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1777 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.746Rint = 0.063
25465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0476 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.20 e Å3
2831 reflectionsΔρmin = 0.30 e Å3
226 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.00543 (18)0.26412 (19)0.30899 (11)0.0533 (5)
O21.1268 (2)0.1391 (2)0.41024 (13)0.0691 (7)
O30.69399 (19)0.57282 (18)0.39888 (12)0.0550 (6)
O40.6633 (2)0.5861 (2)0.54328 (14)0.0695 (7)
N10.9365 (2)0.2976 (2)0.61286 (13)0.0415 (6)
H1N0.963 (2)0.277 (2)0.6689 (9)0.050*
C11.0040 (2)0.2429 (2)0.55046 (15)0.0363 (6)
C20.9694 (2)0.2726 (2)0.46116 (15)0.0334 (6)
C30.8480 (2)0.3508 (2)0.42852 (15)0.0343 (6)
H30.86760.41120.38200.041*
C40.8074 (2)0.4287 (2)0.50609 (16)0.0343 (6)
C50.8478 (2)0.3961 (2)0.59392 (16)0.0366 (6)
C61.1099 (3)0.1549 (3)0.59385 (18)0.0516 (7)
H6A1.09010.06830.57420.077*
H6B1.11690.15960.65890.077*
H6C1.19020.18050.57620.077*
C71.0337 (2)0.2271 (3)0.38735 (17)0.0402 (6)
C81.1905 (4)0.0913 (4)0.3373 (2)0.0949 (14)
H8A1.12860.04810.29290.142*
H8B1.25740.03220.36180.142*
H8C1.22760.16190.30900.142*
C90.7183 (2)0.5346 (2)0.47692 (17)0.0397 (6)
C100.5688 (3)0.6853 (3)0.5194 (2)0.0778 (11)
H10A0.60940.75910.49750.117*
H10B0.53180.70860.57210.117*
H10C0.50200.65440.47250.117*
C110.8128 (3)0.4554 (3)0.67894 (17)0.0533 (8)
H11A0.85030.53960.68730.080*
H11B0.84530.40270.73050.080*
H11C0.72060.46190.67320.080*
C120.7382 (2)0.2639 (2)0.38472 (16)0.0370 (6)
C130.6625 (3)0.2969 (3)0.30306 (18)0.0482 (7)
H130.67910.37280.27400.058*
O50.4875 (3)0.2541 (3)0.1858 (2)0.0789 (10)0.780 (4)
H5O0.437 (4)0.196 (4)0.167 (4)0.118*0.780 (4)
C140.5613 (3)0.2175 (3)0.2637 (2)0.0558 (8)0.780 (4)
C150.5379 (3)0.1037 (3)0.3039 (2)0.0558 (8)0.780 (4)
H150.47270.04930.27650.067*0.780 (4)
C160.6119 (3)0.0712 (3)0.3850 (2)0.0583 (8)0.780 (4)
H160.59550.00550.41310.070*0.780 (4)
O5'0.5794 (11)0.0300 (9)0.4212 (6)0.0789 (10)0.220 (4)
H5O'0.528 (13)0.059 (12)0.379 (6)0.118*0.220 (4)
C14'0.5613 (3)0.2175 (3)0.2637 (2)0.0558 (8)0.220 (4)
H14'0.50960.24220.20970.067*0.220 (4)
C15'0.5379 (3)0.1037 (3)0.3039 (2)0.0558 (8)0.220 (4)
H15'0.47270.04930.27650.067*0.220 (4)
C16'0.6119 (3)0.0712 (3)0.3850 (2)0.0583 (8)0.220 (4)
C170.7108 (3)0.1501 (3)0.42606 (19)0.0475 (7)
H170.75910.12650.48170.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0573 (12)0.0738 (14)0.0294 (10)0.0004 (10)0.0084 (9)0.0038 (9)
O20.0645 (14)0.0967 (17)0.0491 (12)0.0339 (13)0.0186 (10)0.0002 (11)
O30.0681 (14)0.0489 (12)0.0436 (12)0.0142 (10)0.0044 (9)0.0045 (9)
O40.0840 (16)0.0704 (14)0.0561 (13)0.0429 (13)0.0169 (11)0.0036 (11)
N10.0538 (14)0.0458 (13)0.0250 (11)0.0107 (11)0.0064 (10)0.0065 (9)
C10.0368 (14)0.0382 (14)0.0340 (13)0.0006 (11)0.0061 (11)0.0011 (11)
C20.0348 (13)0.0363 (14)0.0290 (12)0.0031 (11)0.0046 (10)0.0005 (10)
C30.0391 (14)0.0368 (14)0.0265 (12)0.0012 (11)0.0033 (10)0.0021 (10)
C40.0370 (14)0.0317 (13)0.0340 (13)0.0001 (11)0.0052 (11)0.0003 (10)
C50.0439 (15)0.0335 (14)0.0336 (13)0.0018 (12)0.0096 (11)0.0001 (10)
C60.0528 (17)0.0592 (18)0.0409 (15)0.0145 (14)0.0020 (13)0.0068 (13)
C70.0349 (14)0.0493 (16)0.0361 (15)0.0055 (13)0.0048 (11)0.0050 (12)
C80.080 (3)0.144 (4)0.066 (2)0.048 (3)0.030 (2)0.015 (2)
C90.0432 (15)0.0337 (14)0.0404 (15)0.0006 (12)0.0010 (12)0.0036 (12)
C100.081 (2)0.070 (2)0.083 (2)0.038 (2)0.015 (2)0.0006 (19)
C110.074 (2)0.0536 (18)0.0348 (15)0.0107 (15)0.0149 (14)0.0015 (12)
C120.0357 (14)0.0392 (15)0.0353 (13)0.0072 (12)0.0032 (11)0.0059 (11)
C130.0542 (17)0.0432 (16)0.0429 (15)0.0026 (13)0.0057 (13)0.0051 (12)
O50.089 (2)0.0661 (19)0.0653 (18)0.0201 (15)0.0358 (16)0.0042 (14)
C140.0505 (18)0.062 (2)0.0482 (17)0.0063 (15)0.0117 (14)0.0169 (15)
C150.0447 (17)0.0486 (18)0.071 (2)0.0035 (14)0.0014 (15)0.0187 (15)
C160.0500 (18)0.0465 (18)0.078 (2)0.0044 (14)0.0081 (16)0.0033 (15)
O5'0.089 (2)0.0661 (19)0.0653 (18)0.0201 (15)0.0358 (16)0.0042 (14)
C14'0.0505 (18)0.062 (2)0.0482 (17)0.0063 (15)0.0117 (14)0.0169 (15)
C15'0.0447 (17)0.0486 (18)0.071 (2)0.0035 (14)0.0014 (15)0.0187 (15)
C16'0.0500 (18)0.0465 (18)0.078 (2)0.0044 (14)0.0081 (16)0.0033 (15)
C170.0426 (16)0.0487 (17)0.0487 (16)0.0018 (13)0.0003 (13)0.0022 (13)
Geometric parameters (Å, º) top
O1—C71.218 (3)C10—H10B0.9600
O2—C71.342 (3)C10—H10C0.9600
O2—C81.450 (4)C11—H11A0.9600
O3—C91.214 (3)C11—H11B0.9600
O4—C91.333 (3)C11—H11C0.9600
O4—C101.436 (3)C12—C131.383 (3)
N1—C11.377 (3)C12—C171.386 (4)
N1—C51.382 (3)C13—C14'1.397 (4)
N1—H1N0.862 (10)C13—C141.397 (4)
C1—C21.355 (3)C13—H130.9300
C1—C61.502 (3)O5—C141.341 (4)
C2—C71.456 (3)O5—H5O0.827 (10)
C2—C31.523 (3)C14—C151.366 (4)
C3—C121.526 (3)C15—C161.367 (4)
C3—C41.525 (3)C15—H150.9300
C3—H30.9800C16—C171.385 (4)
C4—C51.350 (3)C16—H160.9300
C4—C91.465 (3)O5'—C16'1.255 (8)
C5—C111.505 (3)O5'—H5O'0.820 (11)
C6—H6A0.9600C14'—C15'1.366 (4)
C6—H6B0.9600C14'—H14'0.9300
C6—H6C0.9600C15'—C16'1.367 (4)
C8—H8A0.9600C15'—H15'0.9300
C8—H8B0.9600C16'—C171.385 (4)
C8—H8C0.9600C17—H170.9300
C10—H10A0.9600
C7—O2—C8116.6 (2)H10A—C10—H10B109.5
C9—O4—C10118.0 (2)O4—C10—H10C109.5
C1—N1—C5124.8 (2)H10A—C10—H10C109.5
C1—N1—H1N115.4 (18)H10B—C10—H10C109.5
C5—N1—H1N118.9 (18)C5—C11—H11A109.5
C2—C1—N1118.7 (2)C5—C11—H11B109.5
C2—C1—C6128.5 (2)H11A—C11—H11B109.5
N1—C1—C6112.8 (2)C5—C11—H11C109.5
C1—C2—C7125.5 (2)H11A—C11—H11C109.5
C1—C2—C3120.8 (2)H11B—C11—H11C109.5
C7—C2—C3113.5 (2)C13—C12—C17118.1 (2)
C2—C3—C12110.69 (19)C13—C12—C3121.0 (2)
C2—C3—C4111.33 (18)C17—C12—C3120.9 (2)
C12—C3—C4110.8 (2)C12—C13—C14'120.7 (3)
C2—C3—H3108.0C12—C13—C14120.7 (3)
C12—C3—H3108.0C12—C13—H13119.6
C4—C3—H3108.0C14'—C13—H13119.6
C5—C4—C9124.2 (2)C14—C13—H13119.6
C5—C4—C3121.0 (2)C14—O5—H5O109 (4)
C9—C4—C3114.7 (2)O5—C14—C15120.4 (3)
C4—C5—N1118.7 (2)O5—C14—C13119.2 (3)
C4—C5—C11128.9 (2)C15—C14—C13120.5 (3)
N1—C5—C11112.4 (2)C16—C15—C14118.9 (3)
C1—C6—H6A109.5C16—C15—H15120.5
C1—C6—H6B109.5C14—C15—H15120.5
H6A—C6—H6B109.5C15—C16—C17121.4 (3)
C1—C6—H6C109.5C15—C16—H16119.3
H6A—C6—H6C109.5C17—C16—H16119.3
H6B—C6—H6C109.5C16'—O5'—H5O'100 (8)
O1—C7—O2120.9 (2)C15'—C14'—C13120.5 (3)
O1—C7—C2123.2 (2)C15'—C14'—H14'119.8
O2—C7—C2115.9 (2)C13—C14'—H14'119.8
O2—C8—H8A109.5C16'—C15'—C14'118.9 (3)
O2—C8—H8B109.5C16'—C15'—H15'120.5
H8A—C8—H8B109.5C14'—C15'—H15'120.5
O2—C8—H8C109.5O5'—C16'—C15'115.5 (5)
H8A—C8—H8C109.5O5'—C16'—C17123.0 (5)
H8B—C8—H8C109.5C15'—C16'—C17121.4 (3)
O3—C9—O4121.8 (2)C16'—C17—C12120.3 (3)
O3—C9—C4123.7 (2)C16—C17—C12120.3 (3)
O4—C9—C4114.5 (2)C16'—C17—H17119.8
O4—C10—H10A109.5C16—C17—H17119.8
O4—C10—H10B109.5C12—C17—H17119.8
C5—N1—C1—C210.3 (4)C5—C4—C9—O3171.2 (3)
C5—N1—C1—C6169.9 (2)C3—C4—C9—O311.8 (4)
N1—C1—C2—C7177.5 (2)C5—C4—C9—O49.6 (4)
C6—C1—C2—C72.6 (4)C3—C4—C9—O4167.4 (2)
N1—C1—C2—C37.7 (4)C2—C3—C12—C13134.6 (2)
C6—C1—C2—C3172.1 (2)C4—C3—C12—C13101.4 (3)
C1—C2—C3—C12102.0 (3)C2—C3—C12—C1745.9 (3)
C7—C2—C3—C1273.3 (3)C4—C3—C12—C1778.0 (3)
C1—C2—C3—C421.7 (3)C17—C12—C13—C14'0.1 (4)
C7—C2—C3—C4163.0 (2)C3—C12—C13—C14'179.4 (2)
C2—C3—C4—C520.8 (3)C17—C12—C13—C140.1 (4)
C12—C3—C4—C5102.9 (3)C3—C12—C13—C14179.4 (2)
C2—C3—C4—C9162.1 (2)C12—C13—C14—O5178.1 (3)
C12—C3—C4—C974.3 (3)C12—C13—C14—C152.0 (4)
C9—C4—C5—N1177.2 (2)O5—C14—C15—C16177.6 (3)
C3—C4—C5—N15.9 (4)C13—C14—C15—C162.4 (4)
C9—C4—C5—C110.6 (4)C14—C15—C16—C171.0 (5)
C3—C4—C5—C11176.2 (3)C12—C13—C14'—C15'2.0 (4)
C1—N1—C5—C411.2 (4)C13—C14'—C15'—C16'2.4 (4)
C1—N1—C5—C11167.0 (2)C14'—C15'—C16'—O5'175.2 (7)
C8—O2—C7—O10.2 (4)C14'—C15'—C16'—C171.0 (5)
C8—O2—C7—C2179.1 (3)O5'—C16'—C17—C12176.8 (7)
C1—C2—C7—O1174.1 (2)C15'—C16'—C17—C120.9 (4)
C3—C2—C7—O110.8 (3)C15—C16—C17—C120.9 (4)
C1—C2—C7—O26.6 (4)C13—C12—C17—C16'1.3 (4)
C3—C2—C7—O2168.4 (2)C3—C12—C17—C16'179.2 (2)
C10—O4—C9—O32.8 (4)C13—C12—C17—C161.3 (4)
C10—O4—C9—C4176.3 (2)C3—C12—C17—C16179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.86 (1)2.10 (1)2.960 (3)173 (2)
O5—H5o···O3ii0.83 (1)2.01 (5)2.828 (4)170 (6)
O5—H5o'···O5ii0.82 (1)2.17 (12)2.778 (10)132 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19NO5
Mr317.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4863 (7), 10.4091 (7), 14.8702 (11)
β (°) 99.259 (4)
V3)1601.98 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.17 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.646, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
25465, 2831, 1777
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.140, 0.96
No. of reflections2831
No. of parameters226
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O1i0.862 (10)2.103 (14)2.960 (3)172.8 (19)
O5—H5o···O3ii0.827 (10)2.01 (5)2.828 (4)170 (6)
O5'—H5o'···O5ii0.820 (11)2.17 (12)2.778 (10)132 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kvpsvijayakumar@gmail.com.

Acknowledgements

VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SADABS. Bruker AXS Inc., Maddison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRathore, R. S., Reddy, B. P., Vijayakumar, V., Ragavan, R. V. & Narasimhamurthy, T. (2009). Acta Cryst. B65, 375–381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, P. B., Vijayakumar, V., Sarveswari, S., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o658–o659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds