organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o972-o973

Ethyl 6-chloro-2-[(2-chloro-7,8-di­methyl­quinolin-3-yl)meth­­oxy]-4-phenyl­quinoline-3-carboxyl­ate

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 March 2010; accepted 25 March 2010; online 27 March 2010)

In the title compound, C30H24Cl2N2O3, the two quinoline ring systems are almost planar [maximum deviations = 0.029 (2) and 0.018 (3) Å] and the dihedral angle between them is 4.17 (8)°. The dihedral angle between the phenyl ring and its attached quinoline ring is 69.06 (13)°. The packing is stabilized by C—H⋯O, C—H⋯N, weak ππ stacking [centroid–centroid distances = 3.7985 (16) and 3.7662 (17) Å] and C—H⋯π inter­actions.

Related literature

For related structures, see: Khan et al. (2009[Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686.], 2010a[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.],b[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.]); Roopan et al. (2009[Roopan, S. M., Khan, F. N., Vijetha, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2982.]). For background to quinolines, see: Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161-169.]); Savini et al. (2001[Savini, L., Chiasserini, L., Pellerano, C., Filippelli, W. & Falcone, G. (2001). Farmaco, 56, 939-945.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24Cl2N2O3

  • Mr = 531.41

  • Monoclinic, P 21 /n

  • a = 8.3187 (5) Å

  • b = 28.0038 (17) Å

  • c = 11.2093 (7) Å

  • β = 98.721 (6)°

  • V = 2581.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.29 × 0.24 × 0.20 mm

Data collection
  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.921, Tmax = 0.944

  • 25780 measured reflections

  • 4808 independent reflections

  • 1857 reflections with I > 2σ(I)

  • Rint = 0.123

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.072

  • S = 0.81

  • 4808 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3 and Cg5 are the centroids of the N2/C13–C16/C21, C4–C9 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.97 2.59 3.364 (3) 137
C26—H26⋯N1i 0.93 2.54 3.418 (4) 157
C10—H10CCg2ii 0.96 2.94 3.753 (3) 143
C12—H12BCg3ii 0.97 2.82 3.652 (3) 144
C24—H24BCg5iii 0.96 2.98 3.821 (4) 147
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A literature search on recent years suggest that there has been sustained interest in the synthesis of quinolines (Roopan et al., 2009; Roopan & Khan, 2009) and are widely used in antimalarial and therapeutic properties. A number of quinoline derivatives are known to possess antitumour, antimicrobial, hypotensive, antileishmanial, anti-HI and anti-inflammatory activities. Application of quinoline derivatives almost spreading in all branch of medicinal chemistry. The chemistry of quinolinylquinoline derivatives contuse to draw attention of synthetic organic chemist due to their varied biological activities. Prompted by recent literature observations (Savini et al., 2001) and as a part of our search for bio-active quinoline derivatives, we undertook the synthesis of quinolinylquinoline.

In the title molecule (I), Fig. 1, there are two quinoline ring systems (N1/C1–C9) and (N2/C13–C21) and they are almost planar, with maximum deviations of 0.029 (2) Å for atom N1 and -0.018 (3) Å for atom C17, respectively. The quinoline systems (N1/C1–C9) and (N2/C13–C21 make a dihedral angle of 4.17 (8)° with each other and, dihedral angles of 68.68 (13)° and 69.06 (13)°, respectively, with the phenyl ring (C25–C30).

In the title molecule, there are weak intramolecular C—H···O and C—H···N interactions (Table 1). The crystal packing is stabilized by weak π-π interactions [Cg1···Cg1(1-x, -y, -z) = 3.7985 (16) and Cg3···Cg4(-x, -y, -z) = 3.7662 (17); where Cg1, Cg3 and Cg4 are the centroids of the N1/C1–C3/C8/C9, C4–C9 and C16–C21 rings, respectively]. In the crystal structure, there are also some C—H···π interactions (Table 1). A view of the packing diagram down the a-axis is shown in Fig. 2.

Related literature top

For related structures, see: Khan et al. (2009, 2010a,b); Roopan et al. (2009). For background to quinolines, see: Roopan & Khan (2009); Savini et al. (2001).

Experimental top

To a well-mixed solution of ethyl6-chloro-1,2-dihydro-2-oxo-4-phenyl quinoline-3-carboxylate (327 mg, 1 mmol, in 2 ml of DMF), KOtBu (112 mg, 1 mmol, in 10 ml THF) and 2-chloro-3-(chloromethyl)-7,8-dimethylquinoline (239 mg, 1 mmol) were added and the resulting mixture was refluxed at 343 K for 1 h. Completion of the reaction was monitored by TLC. After that, excess solvent was removed under reduced pressure. The residue was mixed well with crushed ice. Separated solid was filtered, dried in air and then re-crystallized with chloroform. Colourless blocks of (I) were grown by solvent evaporation from a solution of the compound in acetone.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93-0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing diagram and the hydrogen bonding interactions of (I) down the a-axis. All H atoms have been omitted for clarity.
Ethyl 6-chloro-2-[(2-chloro-7,8-dimethylquinolin-3-yl)methoxy]-4- phenylquinoline-3-carboxylate top
Crystal data top
C30H24Cl2N2O3F(000) = 1104
Mr = 531.41Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 985 reflections
a = 8.3187 (5) Åθ = 2.6–25.5°
b = 28.0038 (17) ŵ = 0.29 mm1
c = 11.2093 (7) ÅT = 295 K
β = 98.721 (6)°Block, colourless
V = 2581.1 (3) Å30.29 × 0.24 × 0.20 mm
Z = 4
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4808 independent reflections
Radiation source: Enhance (Mo) X-ray Source1857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.123
ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.921, Tmax = 0.944k = 3333
25780 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0132P)2]
where P = (Fo2 + 2Fc2)/3
4808 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C30H24Cl2N2O3V = 2581.1 (3) Å3
Mr = 531.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3187 (5) ŵ = 0.29 mm1
b = 28.0038 (17) ÅT = 295 K
c = 11.2093 (7) Å0.29 × 0.24 × 0.20 mm
β = 98.721 (6)°
Data collection top
Oxford Xcalibur Eos (Nova) CCD detector
diffractometer
4808 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
1857 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.944Rint = 0.123
25780 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.81Δρmax = 0.18 e Å3
4808 reflectionsΔρmin = 0.21 e Å3
337 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.41574 (10)0.09830 (3)0.17492 (7)0.0664 (3)
Cl20.16048 (10)0.18075 (3)0.62865 (7)0.0769 (4)
O10.1593 (2)0.03957 (7)0.09664 (16)0.0491 (8)
O20.0023 (3)0.10440 (8)0.08652 (19)0.0761 (10)
O30.1613 (2)0.16113 (8)0.00331 (17)0.0582 (9)
N10.4330 (3)0.09180 (8)0.0534 (2)0.0431 (10)
N20.0969 (3)0.05269 (8)0.2868 (2)0.0408 (10)
C10.3783 (3)0.07019 (10)0.0336 (3)0.0414 (11)
C20.2954 (3)0.02581 (10)0.0283 (3)0.0379 (12)
C30.2746 (3)0.00415 (10)0.0811 (3)0.0417 (11)
C40.3142 (3)0.00413 (11)0.2960 (3)0.0504 (12)
C50.3682 (4)0.02691 (12)0.3888 (3)0.0546 (14)
C60.4432 (3)0.07216 (12)0.3737 (3)0.0480 (12)
C70.4630 (3)0.09424 (11)0.2636 (3)0.0432 (11)
C80.4087 (3)0.07039 (11)0.1658 (3)0.0395 (12)
C90.3322 (3)0.02535 (10)0.1802 (3)0.0378 (12)
C100.5389 (3)0.14318 (10)0.2462 (3)0.0614 (14)
C110.4988 (3)0.09507 (11)0.4838 (2)0.0705 (14)
C120.2312 (3)0.00526 (9)0.1354 (3)0.0453 (12)
C130.0961 (3)0.06702 (11)0.1771 (3)0.0410 (12)
C140.0399 (3)0.11247 (10)0.1293 (3)0.0372 (12)
C150.0212 (3)0.14355 (10)0.2034 (3)0.0358 (11)
C160.0267 (3)0.12959 (11)0.3255 (3)0.0357 (11)
C170.0888 (3)0.15872 (10)0.4103 (3)0.0436 (12)
C180.0858 (3)0.14366 (12)0.5255 (3)0.0491 (12)
C190.0249 (3)0.09918 (12)0.5634 (3)0.0548 (14)
C200.0334 (3)0.06967 (11)0.4830 (3)0.0483 (12)
C210.0335 (3)0.08365 (11)0.3622 (3)0.0403 (12)
C220.0606 (4)0.12451 (12)0.0010 (3)0.0479 (14)
C230.1936 (4)0.18050 (13)0.1109 (3)0.0786 (17)
C240.1264 (5)0.22927 (12)0.1233 (3)0.117 (2)
C250.0804 (4)0.19251 (10)0.1607 (3)0.0383 (12)
C260.2210 (4)0.19679 (11)0.0785 (3)0.0546 (12)
C270.2764 (4)0.24215 (13)0.0418 (3)0.0706 (17)
C280.1930 (5)0.28234 (12)0.0844 (3)0.0725 (17)
C290.0541 (4)0.27775 (12)0.1640 (3)0.0652 (16)
C300.0047 (3)0.23285 (12)0.2034 (3)0.0548 (14)
H30.221600.025100.090800.0500*
H40.264900.025600.308500.0610*
H50.355600.012400.464300.0660*
H10A0.467600.166300.289500.0920*
H10B0.556400.151000.161800.0920*
H10C0.641100.143300.276100.0920*
H11A0.615500.096100.472700.1060*
H11B0.459700.076600.554400.1060*
H11C0.456300.126900.493700.1060*
H12A0.150800.026400.161400.0550*
H12B0.318800.000700.202200.0550*
H170.132100.188500.387100.0530*
H190.023900.089500.642900.0660*
H200.073800.039800.508400.0580*
H23A0.142900.160700.177100.0940*
H23B0.309800.181200.112700.0940*
H24A0.013000.228500.115900.1760*
H24B0.139300.241900.201000.1760*
H24C0.183300.249200.061200.1760*
H260.277900.169700.048000.0650*
H270.372000.245200.012700.0850*
H280.231300.312400.059100.0870*
H290.003100.305000.192800.0780*
H300.100300.230200.258000.0660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0992 (7)0.0524 (5)0.0464 (6)0.0156 (5)0.0069 (5)0.0096 (5)
Cl20.0844 (6)0.0995 (8)0.0504 (6)0.0134 (6)0.0214 (5)0.0159 (6)
O10.0695 (15)0.0410 (13)0.0387 (14)0.0177 (12)0.0145 (11)0.0021 (12)
O20.111 (2)0.0710 (17)0.0426 (17)0.0241 (16)0.0002 (14)0.0091 (14)
O30.0746 (16)0.0637 (16)0.0393 (15)0.0123 (14)0.0185 (12)0.0066 (13)
N10.0479 (17)0.0351 (16)0.0463 (18)0.0037 (13)0.0073 (14)0.0069 (15)
N20.0441 (16)0.0414 (17)0.0374 (17)0.0010 (13)0.0080 (14)0.0012 (15)
C10.052 (2)0.0300 (19)0.040 (2)0.0020 (17)0.0001 (17)0.0026 (17)
C20.040 (2)0.035 (2)0.037 (2)0.0036 (16)0.0005 (16)0.0030 (17)
C30.042 (2)0.0336 (19)0.049 (2)0.0054 (16)0.0058 (17)0.0024 (18)
C40.058 (2)0.050 (2)0.044 (2)0.0052 (18)0.0101 (18)0.002 (2)
C50.062 (2)0.062 (3)0.040 (2)0.003 (2)0.0089 (18)0.006 (2)
C60.041 (2)0.058 (2)0.046 (2)0.0081 (19)0.0101 (18)0.013 (2)
C70.0334 (19)0.045 (2)0.050 (2)0.0063 (17)0.0027 (17)0.012 (2)
C80.039 (2)0.041 (2)0.038 (2)0.0057 (17)0.0039 (16)0.0024 (18)
C90.042 (2)0.034 (2)0.037 (2)0.0003 (17)0.0049 (16)0.0016 (18)
C100.058 (2)0.060 (2)0.068 (3)0.004 (2)0.0154 (18)0.013 (2)
C110.075 (2)0.085 (3)0.055 (2)0.010 (2)0.0216 (19)0.015 (2)
C120.057 (2)0.035 (2)0.043 (2)0.0024 (17)0.0045 (17)0.0048 (17)
C130.038 (2)0.044 (2)0.041 (2)0.0028 (18)0.0056 (17)0.008 (2)
C140.043 (2)0.037 (2)0.031 (2)0.0002 (17)0.0039 (16)0.0036 (17)
C150.0320 (19)0.036 (2)0.039 (2)0.0060 (16)0.0044 (16)0.0016 (17)
C160.0286 (18)0.039 (2)0.040 (2)0.0006 (16)0.0073 (16)0.0008 (17)
C170.039 (2)0.048 (2)0.044 (2)0.0028 (17)0.0067 (17)0.0008 (19)
C180.043 (2)0.061 (2)0.044 (2)0.0015 (19)0.0092 (17)0.004 (2)
C190.051 (2)0.076 (3)0.038 (2)0.002 (2)0.0085 (17)0.001 (2)
C200.052 (2)0.050 (2)0.043 (2)0.0035 (18)0.0079 (18)0.0073 (19)
C210.038 (2)0.045 (2)0.037 (2)0.0021 (17)0.0030 (16)0.0001 (18)
C220.053 (2)0.037 (2)0.054 (3)0.0071 (19)0.009 (2)0.002 (2)
C230.105 (3)0.080 (3)0.057 (3)0.009 (3)0.032 (2)0.016 (2)
C240.221 (5)0.068 (3)0.073 (3)0.017 (3)0.054 (3)0.007 (3)
C250.046 (2)0.034 (2)0.037 (2)0.0016 (18)0.0133 (16)0.0047 (17)
C260.061 (2)0.042 (2)0.058 (2)0.0007 (19)0.0005 (19)0.0012 (19)
C270.068 (3)0.063 (3)0.078 (3)0.009 (2)0.002 (2)0.019 (2)
C280.080 (3)0.044 (3)0.101 (3)0.012 (2)0.038 (2)0.024 (2)
C290.076 (3)0.038 (2)0.090 (3)0.013 (2)0.040 (2)0.007 (2)
C300.055 (2)0.048 (2)0.063 (3)0.002 (2)0.0141 (18)0.010 (2)
Geometric parameters (Å, º) top
Cl1—C11.754 (3)C20—C211.410 (5)
Cl2—C181.738 (3)C23—C241.474 (5)
O1—C121.430 (3)C25—C261.380 (5)
O1—C131.351 (4)C25—C301.380 (4)
O2—C221.182 (4)C26—C271.392 (5)
O3—C221.322 (4)C27—C281.370 (5)
O3—C231.453 (4)C28—C291.355 (5)
N1—C11.288 (4)C29—C301.396 (5)
N1—C81.382 (4)C3—H30.9300
N2—C131.293 (4)C4—H40.9300
N2—C211.371 (4)C5—H50.9300
C1—C21.418 (4)C10—H10A0.9600
C2—C31.356 (5)C10—H10B0.9600
C2—C121.501 (4)C10—H10C0.9600
C3—C91.406 (4)C11—H11A0.9600
C4—C51.354 (5)C11—H11B0.9600
C4—C91.415 (5)C11—H11C0.9600
C5—C61.411 (5)C12—H12A0.9700
C6—C71.368 (5)C12—H12B0.9700
C6—C111.524 (4)C17—H170.9300
C7—C81.415 (4)C19—H190.9300
C7—C101.509 (4)C20—H200.9300
C8—C91.411 (4)C23—H23A0.9700
C13—C141.432 (4)C23—H23B0.9700
C14—C151.354 (4)C24—H24A0.9600
C14—C221.512 (5)C24—H24B0.9600
C15—C161.431 (5)C24—H24C0.9600
C15—C251.510 (4)C26—H260.9300
C16—C171.409 (4)C27—H270.9300
C16—C211.419 (4)C28—H280.9300
C17—C181.355 (5)C29—H290.9300
C18—C191.387 (5)C30—H300.9300
C19—C201.365 (4)
C12—O1—C13119.0 (2)C26—C27—C28121.3 (3)
C22—O3—C23118.3 (2)C27—C28—C29119.2 (3)
C1—N1—C8117.8 (2)C28—C29—C30121.1 (3)
C13—N2—C21116.3 (3)C25—C30—C29119.4 (3)
Cl1—C1—N1116.0 (2)C2—C3—H3120.00
Cl1—C1—C2116.7 (2)C9—C3—H3119.00
N1—C1—C2127.3 (3)C5—C4—H4120.00
C1—C2—C3115.1 (3)C9—C4—H4120.00
C1—C2—C12122.2 (3)C4—C5—H5119.00
C3—C2—C12122.7 (3)C6—C5—H5119.00
C2—C3—C9120.9 (3)C7—C10—H10A109.00
C5—C4—C9120.4 (3)C7—C10—H10B109.00
C4—C5—C6121.5 (3)C7—C10—H10C109.00
C5—C6—C7120.3 (3)H10A—C10—H10B110.00
C5—C6—C11117.6 (3)H10A—C10—H10C109.00
C7—C6—C11122.1 (3)H10B—C10—H10C109.00
C6—C7—C8118.5 (3)C6—C11—H11A109.00
C6—C7—C10121.2 (3)C6—C11—H11B110.00
C8—C7—C10120.3 (3)C6—C11—H11C109.00
N1—C8—C7118.8 (3)H11A—C11—H11B109.00
N1—C8—C9119.6 (3)H11A—C11—H11C110.00
C7—C8—C9121.7 (3)H11B—C11—H11C109.00
C3—C9—C4123.1 (3)O1—C12—H12A111.00
C3—C9—C8119.3 (3)O1—C12—H12B110.00
C4—C9—C8117.6 (3)C2—C12—H12A111.00
O1—C12—C2106.1 (2)C2—C12—H12B111.00
O1—C13—N2120.8 (3)H12A—C12—H12B109.00
O1—C13—C14113.2 (3)C16—C17—H17120.00
N2—C13—C14125.9 (3)C18—C17—H17120.00
C13—C14—C15118.3 (3)C18—C19—H19120.00
C13—C14—C22118.5 (3)C20—C19—H19120.00
C15—C14—C22123.2 (3)C19—C20—H20119.00
C14—C15—C16118.7 (3)C21—C20—H20119.00
C14—C15—C25121.6 (3)O3—C23—H23A110.00
C16—C15—C25119.7 (3)O3—C23—H23B110.00
C15—C16—C17123.7 (3)C24—C23—H23A110.00
C15—C16—C21117.7 (3)C24—C23—H23B110.00
C17—C16—C21118.6 (3)H23A—C23—H23B108.00
C16—C17—C18120.5 (3)C23—C24—H24A110.00
Cl2—C18—C17119.4 (2)C23—C24—H24B109.00
Cl2—C18—C19118.9 (3)C23—C24—H24C109.00
C17—C18—C19121.6 (3)H24A—C24—H24B109.00
C18—C19—C20119.4 (3)H24A—C24—H24C109.00
C19—C20—C21121.2 (3)H24B—C24—H24C109.00
N2—C21—C16123.1 (3)C25—C26—H26120.00
N2—C21—C20118.2 (3)C27—C26—H26121.00
C16—C21—C20118.6 (3)C26—C27—H27119.00
O2—C22—O3125.8 (3)C28—C27—H27119.00
O2—C22—C14125.7 (3)C27—C28—H28120.00
O3—C22—C14108.5 (3)C29—C28—H28120.00
O3—C23—C24108.1 (3)C28—C29—H29119.00
C15—C25—C26119.6 (3)C30—C29—H29119.00
C15—C25—C30120.5 (3)C25—C30—H30120.00
C26—C25—C30119.9 (3)C29—C30—H30120.00
C25—C26—C27119.1 (3)
C13—O1—C12—C2177.7 (2)O1—C13—C14—C15178.0 (2)
C12—O1—C13—N21.6 (4)O1—C13—C14—C221.4 (4)
C12—O1—C13—C14175.3 (2)N2—C13—C14—C151.3 (4)
C23—O3—C22—O23.1 (5)N2—C13—C14—C22175.2 (3)
C23—O3—C22—C14177.2 (2)C13—C14—C15—C160.0 (4)
C22—O3—C23—C24113.9 (3)C13—C14—C15—C25179.0 (3)
C8—N1—C1—Cl1178.8 (2)C22—C14—C15—C16176.3 (3)
C8—N1—C1—C20.6 (4)C22—C14—C15—C252.6 (4)
C1—N1—C8—C7177.9 (3)C13—C14—C22—O264.1 (4)
C1—N1—C8—C92.6 (4)C13—C14—C22—O3115.7 (3)
C21—N2—C13—O1178.5 (2)C15—C14—C22—O2119.6 (4)
C21—N2—C13—C142.0 (4)C15—C14—C22—O360.7 (4)
C13—N2—C21—C161.6 (4)C14—C15—C16—C17179.4 (3)
C13—N2—C21—C20179.4 (3)C14—C15—C16—C210.3 (4)
Cl1—C1—C2—C3177.3 (2)C25—C15—C16—C171.6 (4)
Cl1—C1—C2—C124.5 (3)C25—C15—C16—C21178.7 (3)
N1—C1—C2—C30.9 (4)C14—C15—C25—C2670.0 (4)
N1—C1—C2—C12177.4 (3)C14—C15—C25—C30110.1 (4)
C1—C2—C3—C90.2 (4)C16—C15—C25—C26111.1 (3)
C12—C2—C3—C9178.0 (2)C16—C15—C25—C3068.8 (4)
C1—C2—C12—O1178.9 (2)C15—C16—C17—C18178.1 (3)
C3—C2—C12—O13.1 (3)C21—C16—C17—C182.2 (4)
C2—C3—C9—C4179.7 (3)C15—C16—C21—N20.5 (4)
C2—C3—C9—C81.7 (4)C15—C16—C21—C20178.3 (2)
C9—C4—C5—C60.1 (5)C17—C16—C21—N2179.8 (3)
C5—C4—C9—C3178.1 (3)C17—C16—C21—C202.0 (4)
C5—C4—C9—C80.4 (4)C16—C17—C18—Cl2179.0 (2)
C4—C5—C6—C70.1 (5)C16—C17—C18—C191.2 (4)
C4—C5—C6—C11179.6 (3)Cl2—C18—C19—C20179.7 (2)
C5—C6—C7—C80.8 (4)C17—C18—C19—C200.1 (4)
C5—C6—C7—C10178.4 (3)C18—C19—C20—C210.3 (4)
C11—C6—C7—C8179.7 (2)C19—C20—C21—N2178.7 (3)
C11—C6—C7—C101.1 (4)C19—C20—C21—C160.8 (4)
C6—C7—C8—N1178.0 (3)C15—C25—C26—C27178.6 (3)
C6—C7—C8—C91.5 (4)C30—C25—C26—C271.3 (5)
C10—C7—C8—N12.8 (4)C15—C25—C30—C29178.9 (3)
C10—C7—C8—C9177.8 (2)C26—C25—C30—C290.9 (5)
N1—C8—C9—C33.2 (4)C25—C26—C27—C280.9 (5)
N1—C8—C9—C4178.2 (2)C26—C27—C28—C290.1 (5)
C7—C8—C9—C3177.4 (3)C27—C28—C29—C300.2 (5)
C7—C8—C9—C41.3 (4)C28—C29—C30—C250.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg5 are the centroids of the N2/C13–C16/C21, C4–C9 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.972.593.364 (3)137
C26—H26···N1i0.932.543.418 (4)157
C10—H10C···Cg2ii0.962.943.753 (3)143
C12—H12B···Cg3ii0.972.823.652 (3)144
C24—H24B···Cg5iii0.962.983.821 (4)147
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC30H24Cl2N2O3
Mr531.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)8.3187 (5), 28.0038 (17), 11.2093 (7)
β (°) 98.721 (6)
V3)2581.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.29 × 0.24 × 0.20
Data collection
DiffractometerOxford Xcalibur Eos (Nova) CCD detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.921, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
25780, 4808, 1857
Rint0.123
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.072, 0.81
No. of reflections4808
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2, Cg3 and Cg5 are the centroids of the N2/C13–C16/C21, C4–C9 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.972.593.364 (3)137
C26—H26···N1i0.932.543.418 (4)157
C10—H10C···Cg2ii0.962.943.753 (3)143
C12—H12B···Cg3ii0.972.823.652 (3)144
C24—H24B···Cg5iii0.962.983.821 (4)147
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2686.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161–169.  CrossRef Google Scholar
First citationRoopan, S. M., Khan, F. N., Vijetha, M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, o2982.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavini, L., Chiasserini, L., Pellerano, C., Filippelli, W. & Falcone, G. (2001). Farmaco, 56, 939–945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o972-o973
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds