organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2,5-Di­meth­oxy­benzyl­­idene)-2,4-di­hydroxy­benzohydrazide

aCollege of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
*Correspondence e-mail: jlljx@163.com, jlliubo@yeah.net

(Received 24 March 2010; accepted 25 March 2010; online 31 March 2010)

In the title compound, C16H16N2O5, the dihedral angle between the two benzene rings is 4.2 (2)° and an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked into layers lying parallel to the bc plane by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the biological properties of Schiff base compounds, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Sinha et al. (2008[Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160-165.]). For Schiff base compounds containing 2,5-dimethoxy­benzaldehyde, see: Wang et al. (2009[Wang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O5

  • Mr = 316.31

  • Monoclinic, P 21 /c

  • a = 7.8600 (16) Å

  • b = 15.358 (3) Å

  • c = 12.425 (3) Å

  • β = 99.80 (3)°

  • V = 1478.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.18 × 0.17 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.984

  • 7757 measured reflections

  • 2626 independent reflections

  • 1698 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.112

  • S = 1.02

  • 2626 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.82 1.76 2.495 (2) 148
O2—H2⋯O3i 0.82 1.92 2.664 (2) 151
N1—H1A⋯O1ii 0.86 2.17 3.012 (2) 166
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been of great interest for many years. Some of the complexes derived from Schiff bases have been found to have pharmacological and antitumor properties (Bhandari et al., 2008; Sinha et al., 2008). In this paper, the crystal structure of the title compound, (I), a new Schiff base compound derived from the condensation reaction of 2,4-dihydroxybenzohydrazide with 2,5-dimethoxybenzaldehyde is reported.

The Schiff base molecule of the compound displays a trans configuration with respect to the C=N and C—N bonds(Fig. 1). All the bond lengths are within their normal ranges (Allen et al., 1987) and comparable to other Schiff base compounds containing 2,5-dimethoxybenzaldehyde (Wang et al., 2009). The dihedral angle between the two benzene rings is 4.2 (2)°. Intramolecular O—H···O hydrogen bonds are observed(Table 1). Molecules are linked into layers parallel to the bc plane by O—H···O and N—H···O hydrogen bonds(Fig. 2).

Related literature top

For the biological properties of Schiff base compounds, see: Bhandari et al., 2008; Sinha et al., 2008. For Schiff base compounds containing 2,5-dimethoxybenzaldehyde, see: Wang et al., (2009). For reference structural data, see: Allen et al. (1987).

Experimental top

2,5-dimethoxybenzaldehyde (0.1 mmol, 16.6 mg) and 2,4-dihydroxybenzohydrazide (0.1 mmol, 16.8 mg) were dissolved in a 95% ethanol solution (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Light yellow blocks of (I) were formed by gradual evaporation of the solvent over a period of three days at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.93–0.96 Å, O—H = 0.82–0.85 Å and N—H = 0.86 Å. Uiso(H) = 1.2Ueq(C,N), and 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. The dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing of (I). Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonds have been omitted for clarity.
(E)-N'-(2,5-Dimethoxybenzylidene)-2,4-dihydroxybenzohydrazide top
Crystal data top
C16H16N2O5F(000) = 664
Mr = 316.31Dx = 1.421 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1224 reflections
a = 7.8600 (16) Åθ = 2.7–22.4°
b = 15.358 (3) ŵ = 0.11 mm1
c = 12.425 (3) ÅT = 295 K
β = 99.80 (3)°Block, light yellow
V = 1478.0 (5) Å30.18 × 0.17 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2626 independent reflections
Radiation source: fine-focus sealed tube1698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.981, Tmax = 0.984k = 1718
7757 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.2321P]
where P = (Fo2 + 2Fc2)/3
2626 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H16N2O5V = 1478.0 (5) Å3
Mr = 316.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8600 (16) ŵ = 0.11 mm1
b = 15.358 (3) ÅT = 295 K
c = 12.425 (3) Å0.18 × 0.17 × 0.15 mm
β = 99.80 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2626 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1698 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.039
7757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.02Δρmax = 0.15 e Å3
2626 reflectionsΔρmin = 0.20 e Å3
212 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5668 (2)0.18995 (10)0.34476 (11)0.0523 (5)
H10.60070.24040.34380.078*
O20.2931 (2)0.02763 (10)0.10807 (13)0.0623 (5)
H20.31620.05730.16350.093*
O30.6343 (2)0.33256 (9)0.26549 (11)0.0477 (4)
O40.7730 (2)0.58885 (10)0.13674 (12)0.0569 (5)
O51.0792 (2)0.67891 (10)0.28127 (12)0.0529 (4)
N10.6247 (2)0.35121 (10)0.08522 (13)0.0390 (5)
H1A0.59570.33310.01920.047*
N20.7069 (2)0.42982 (11)0.10809 (13)0.0390 (5)
C10.5091 (3)0.21858 (13)0.15178 (15)0.0329 (5)
C20.5058 (3)0.16342 (13)0.24143 (16)0.0354 (5)
C30.4396 (3)0.08035 (14)0.22852 (16)0.0391 (5)
H30.44360.04390.28870.047*
C40.3674 (3)0.05154 (14)0.12604 (17)0.0421 (6)
C50.3657 (3)0.10522 (15)0.03614 (17)0.0527 (7)
H50.31680.08570.03310.063*
C60.4356 (3)0.18663 (14)0.04918 (16)0.0451 (6)
H60.43420.22180.01190.054*
C70.5915 (3)0.30376 (13)0.17057 (16)0.0368 (5)
C80.7456 (3)0.47279 (13)0.02779 (17)0.0386 (5)
H80.71600.45200.04320.046*
C90.8368 (3)0.55503 (13)0.04948 (16)0.0365 (5)
C100.8507 (3)0.61312 (14)0.03424 (16)0.0405 (5)
C110.9361 (3)0.69144 (14)0.01112 (19)0.0463 (6)
H110.94480.73040.06720.056*
C121.0081 (3)0.71168 (15)0.09455 (18)0.0468 (6)
H121.06270.76510.10970.056*
C131.0003 (3)0.65342 (14)0.17882 (17)0.0405 (5)
C140.9151 (3)0.57596 (14)0.15574 (17)0.0380 (5)
H140.90940.53660.21190.046*
C151.1064 (3)0.61377 (16)0.36363 (18)0.0576 (7)
H15A0.99700.59380.37850.086*
H15B1.17260.63770.42900.086*
H15C1.16800.56580.33900.086*
C160.8212 (4)0.63418 (17)0.22690 (18)0.0649 (8)
H16A0.78390.69360.22600.097*
H16B0.76790.60700.29380.097*
H16C0.94450.63240.22160.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0799 (12)0.0477 (11)0.0280 (8)0.0122 (9)0.0054 (8)0.0022 (7)
O20.0909 (13)0.0381 (10)0.0523 (10)0.0194 (9)0.0042 (10)0.0057 (8)
O30.0727 (11)0.0384 (9)0.0312 (8)0.0072 (8)0.0064 (7)0.0044 (7)
O40.0792 (12)0.0540 (11)0.0359 (9)0.0129 (9)0.0045 (8)0.0054 (7)
O50.0636 (11)0.0464 (10)0.0445 (9)0.0064 (8)0.0026 (8)0.0036 (8)
N10.0569 (12)0.0289 (10)0.0321 (10)0.0078 (9)0.0098 (8)0.0038 (8)
N20.0502 (11)0.0294 (10)0.0384 (10)0.0049 (8)0.0101 (9)0.0028 (8)
C10.0414 (12)0.0287 (12)0.0293 (11)0.0003 (9)0.0075 (9)0.0018 (9)
C20.0394 (12)0.0395 (13)0.0283 (11)0.0013 (10)0.0082 (9)0.0015 (10)
C30.0469 (13)0.0365 (13)0.0343 (12)0.0012 (10)0.0078 (10)0.0097 (10)
C40.0487 (14)0.0327 (13)0.0440 (13)0.0046 (10)0.0058 (11)0.0039 (10)
C50.0797 (18)0.0412 (14)0.0332 (13)0.0130 (13)0.0014 (12)0.0002 (11)
C60.0657 (16)0.0386 (13)0.0300 (12)0.0073 (11)0.0052 (11)0.0064 (10)
C70.0451 (13)0.0342 (12)0.0315 (12)0.0049 (10)0.0080 (10)0.0016 (10)
C80.0487 (14)0.0341 (13)0.0333 (12)0.0013 (10)0.0076 (10)0.0035 (10)
C90.0415 (13)0.0312 (12)0.0378 (12)0.0006 (10)0.0095 (10)0.0001 (10)
C100.0467 (14)0.0383 (13)0.0365 (12)0.0003 (10)0.0071 (11)0.0011 (10)
C110.0558 (15)0.0357 (13)0.0478 (14)0.0033 (11)0.0099 (12)0.0075 (10)
C120.0521 (15)0.0331 (13)0.0550 (15)0.0036 (10)0.0090 (12)0.0000 (11)
C130.0420 (13)0.0370 (13)0.0421 (13)0.0014 (10)0.0061 (10)0.0039 (10)
C140.0429 (13)0.0329 (12)0.0393 (12)0.0012 (10)0.0098 (10)0.0036 (9)
C150.0654 (17)0.0599 (17)0.0439 (14)0.0057 (13)0.0006 (13)0.0041 (12)
C160.089 (2)0.0674 (19)0.0395 (14)0.0021 (16)0.0143 (14)0.0098 (13)
Geometric parameters (Å, º) top
O1—C21.355 (2)C5—C61.364 (3)
O1—H10.8200C5—H50.9300
O2—C41.351 (2)C6—H60.9300
O2—H20.8200C8—C91.455 (3)
O3—C71.251 (2)C8—H80.9300
O4—C101.367 (2)C9—C101.389 (3)
O4—C161.424 (3)C9—C141.396 (3)
O5—C131.375 (2)C10—C111.384 (3)
O5—C151.421 (3)C11—C121.374 (3)
N1—C71.348 (2)C11—H110.9300
N1—N21.376 (2)C12—C131.387 (3)
N1—H1A0.8600C12—H120.9300
N2—C81.275 (2)C13—C141.371 (3)
C1—C61.396 (3)C14—H140.9300
C1—C21.403 (3)C15—H15A0.9600
C1—C71.461 (3)C15—H15B0.9600
C2—C31.377 (3)C15—H15C0.9600
C3—C41.376 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.387 (3)C16—H16C0.9600
C2—O1—H1109.5C9—C8—H8120.7
C4—O2—H2109.5C10—C9—C14118.8 (2)
C10—O4—C16117.56 (18)C10—C9—C8121.21 (19)
C13—O5—C15117.08 (17)C14—C9—C8119.95 (19)
C7—N1—N2117.31 (17)O4—C10—C11123.68 (19)
C7—N1—H1A121.3O4—C10—C9116.29 (19)
N2—N1—H1A121.3C11—C10—C9120.0 (2)
C8—N2—N1117.29 (17)C12—C11—C10120.1 (2)
C6—C1—C2116.88 (19)C12—C11—H11119.9
C6—C1—C7124.33 (18)C10—C11—H11119.9
C2—C1—C7118.77 (18)C11—C12—C13120.8 (2)
O1—C2—C3117.07 (18)C11—C12—H12119.6
O1—C2—C1121.30 (19)C13—C12—H12119.6
C3—C2—C1121.64 (19)C14—C13—O5124.6 (2)
C4—C3—C2119.61 (19)C14—C13—C12119.0 (2)
C4—C3—H3120.2O5—C13—C12116.4 (2)
C2—C3—H3120.2C13—C14—C9121.2 (2)
O2—C4—C3122.76 (19)C13—C14—H14119.4
O2—C4—C5117.22 (19)C9—C14—H14119.4
C3—C4—C5120.0 (2)O5—C15—H15A109.5
C6—C5—C4120.1 (2)O5—C15—H15B109.5
C6—C5—H5120.0H15A—C15—H15B109.5
C4—C5—H5120.0O5—C15—H15C109.5
C5—C6—C1121.75 (19)H15A—C15—H15C109.5
C5—C6—H6119.1H15B—C15—H15C109.5
C1—C6—H6119.1O4—C16—H16A109.5
O3—C7—N1119.56 (19)O4—C16—H16B109.5
O3—C7—C1120.54 (18)H16A—C16—H16B109.5
N1—C7—C1119.89 (18)O4—C16—H16C109.5
N2—C8—C9118.67 (19)H16A—C16—H16C109.5
N2—C8—H8120.7H16B—C16—H16C109.5
C7—N1—N2—C8176.80 (19)N1—N2—C8—C9178.34 (17)
C6—C1—C2—O1176.99 (19)N2—C8—C9—C10166.4 (2)
C7—C1—C2—O14.5 (3)N2—C8—C9—C1414.8 (3)
C6—C1—C2—C32.6 (3)C16—O4—C10—C1117.6 (3)
C7—C1—C2—C3175.98 (19)C16—O4—C10—C9163.9 (2)
O1—C2—C3—C4176.54 (19)C14—C9—C10—O4179.36 (18)
C1—C2—C3—C43.0 (3)C8—C9—C10—O40.6 (3)
C2—C3—C4—O2176.9 (2)C14—C9—C10—C112.1 (3)
C2—C3—C4—C51.7 (3)C8—C9—C10—C11179.09 (19)
O2—C4—C5—C6178.7 (2)O4—C10—C11—C12178.8 (2)
C3—C4—C5—C60.0 (4)C9—C10—C11—C120.4 (3)
C4—C5—C6—C10.4 (4)C10—C11—C12—C131.7 (3)
C2—C1—C6—C50.8 (3)C15—O5—C13—C1414.2 (3)
C7—C1—C6—C5177.6 (2)C15—O5—C13—C12166.4 (2)
N2—N1—C7—O30.6 (3)C11—C12—C13—C141.9 (3)
N2—N1—C7—C1178.22 (17)C11—C12—C13—O5178.70 (19)
C6—C1—C7—O3170.6 (2)O5—C13—C14—C9179.43 (19)
C2—C1—C7—O311.0 (3)C12—C13—C14—C90.0 (3)
C6—C1—C7—N110.6 (3)C10—C9—C14—C131.9 (3)
C2—C1—C7—N1167.86 (19)C8—C9—C14—C13179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.762.495 (2)148
O2—H2···O3i0.821.922.664 (2)151
N1—H1A···O1ii0.862.173.012 (2)166
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O5
Mr316.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.8600 (16), 15.358 (3), 12.425 (3)
β (°) 99.80 (3)
V3)1478.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.18 × 0.17 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
7757, 2626, 1698
Rint0.039
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.112, 1.02
No. of reflections2626
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.821.762.495 (2)148
O2—H2···O3i0.821.922.664 (2)151
N1—H1A···O1ii0.862.173.012 (2)166
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H. & Mishra, A. K. (2008). Eur. J. Med. Chem. 43, 160–165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, S.-Y., Yuan, L., Xu, L., Zhang, Z., Diao, Y.-P. & Lv, D.-C. (2009). Acta Cryst. E65, o1154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds