Experimental
Crystal data
C6H7ClN+·C2HO4−·0.5H2O Mr = 226.61 Monoclinic, C 2/c a = 26.739 (2) Å b = 5.701 (3) Å c = 13.859 (2) Å β = 111.02 (3)° V = 1972.0 (11) Å3 Z = 8 Ag Kα radiation λ = 0.56085 Å μ = 0.20 mm−1 T = 293 K 0.30 × 0.20 × 0.20 mm
|
Data collection
Enraf–Nonius TurboCAD-4 diffractometer 5686 measured reflections 4806 independent reflections 2341 reflections with I > 2σ(I) Rint = 0.021 2 standard reflections every 120 min intensity decay: 5%
|
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O5—H1⋯O1i | 0.81 (2) | 1.97 (2) | 2.762 (2) | 169 (2) | O3—H3⋯O2ii | 0.82 | 1.79 | 2.606 (2) | 173 | N1—H1A⋯O5 | 0.89 | 1.93 | 2.802 (3) | 165 | N1—H1B⋯O1iii | 0.89 | 1.98 | 2.792 (3) | 151 | N1—H1C⋯O2 | 0.89 | 1.92 | 2.790 (2) | 167 | Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) . | |
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994
); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995
); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008
); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008
); molecular graphics: ORTEP-3 (Farrugia, 1997
); software used to prepare material for publication: WinGX (Farrugia, 1999
).
Supporting information
An ethanolic solution of p-chloroaniline (50 mmol, in 50 ml) was added under stirring to 100 ml of an aqueous solution of oxalate acid (1 M). Pink blocks of (I) appeared after few days of evaporation at room temperature.
All H atoms were positioned in a difference map and refined on the bond lengths and angles to regularize their geometry [N—H 0.89–0.90, C—H in the range 0.88–0.96 Å (CH3 ) C—H in the range 0.92–1.00 Å (Ar–H) and O—H in the range 0.87–0.90 Å ] and Uiso(H) [in the range 1.2–1.5 times Ueq of the parent atom]
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
4-Chloroanilinium hydrogen oxalate hemihydrate
top Crystal data top C6H7ClN+·C2HO4−·0.5H2O | F(000) = 936 |
Mr = 226.61 | Dx = 1.527 Mg m−3 |
Monoclinic, C2/c | Ag Kα radiation, λ = 0.56085 Å |
Hall symbol: -C 2yc | Cell parameters from 25 reflections |
a = 26.739 (2) Å | θ = 9–11° |
b = 5.701 (3) Å | µ = 0.20 mm−1 |
c = 13.859 (2) Å | T = 293 K |
β = 111.02 (3)° | Block, pink |
V = 1972.0 (11) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 8 | |
Data collection top Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.021 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.4° |
Graphite monochromator | h = −5→44 |
non–profiled ω scans | k = 0→9 |
5686 measured reflections | l = −23→22 |
4806 independent reflections | 2 standard reflections every 120 min |
2341 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.174 | H-atom parameters not refined |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0711P)2 + 0.8804P] where P = (Fo2 + 2Fc2)/3 |
4806 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
Crystal data top C6H7ClN+·C2HO4−·0.5H2O | V = 1972.0 (11) Å3 |
Mr = 226.61 | Z = 8 |
Monoclinic, C2/c | Ag Kα radiation, λ = 0.56085 Å |
a = 26.739 (2) Å | µ = 0.20 mm−1 |
b = 5.701 (3) Å | T = 293 K |
c = 13.859 (2) Å | 0.30 × 0.20 × 0.20 mm |
β = 111.02 (3)° | |
Data collection top Enraf–Nonius TurboCAD-4 diffractometer | Rint = 0.021 |
5686 measured reflections | 2 standard reflections every 120 min |
4806 independent reflections | intensity decay: 5% |
2341 reflections with I > 2σ(I) | |
Refinement top R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.174 | H-atom parameters not refined |
S = 1.01 | Δρmax = 0.41 e Å−3 |
4806 reflections | Δρmin = −0.52 e Å−3 |
136 parameters | |
Special details top Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
H1 | 0.5152 (9) | 0.705 (4) | 0.2959 (17) | 0.047 (7)* | |
Cl1 | 0.19472 (2) | 0.44325 (17) | 0.06451 (5) | 0.0743 (3) | |
O5 | 0.5000 | 0.6144 (3) | 0.2500 | 0.0321 (4) | |
O2 | 0.44106 (6) | 0.1863 (2) | 0.46326 (9) | 0.0360 (3) | |
C7 | 0.44211 (7) | 0.0194 (3) | 0.52200 (12) | 0.0249 (3) | |
O3 | 0.44333 (6) | −0.3952 (2) | 0.54031 (10) | 0.0405 (3) | |
H3 | 0.4408 | −0.5227 | 0.5116 | 0.061* | |
C8 | 0.43716 (6) | −0.2276 (3) | 0.47280 (12) | 0.0254 (3) | |
O1 | 0.44687 (6) | 0.0354 (2) | 0.61417 (9) | 0.0401 (3) | |
N1 | 0.42789 (6) | 0.2638 (3) | 0.25679 (11) | 0.0304 (3) | |
H1A | 0.4460 | 0.3837 | 0.2442 | 0.046* | |
H1B | 0.4353 | 0.1338 | 0.2289 | 0.046* | |
H1C | 0.4374 | 0.2445 | 0.3248 | 0.046* | |
O4 | 0.42904 (6) | −0.2531 (2) | 0.38251 (9) | 0.0389 (3) | |
C1 | 0.37061 (7) | 0.3117 (3) | 0.21167 (12) | 0.0299 (3) | |
C6 | 0.35291 (8) | 0.5162 (4) | 0.15786 (16) | 0.0430 (5) | |
H6 | 0.3773 | 0.6259 | 0.1516 | 0.052* | |
C4 | 0.26302 (8) | 0.3917 (5) | 0.12275 (15) | 0.0463 (5) | |
C2 | 0.33516 (9) | 0.1479 (4) | 0.22190 (16) | 0.0449 (5) | |
H2 | 0.3477 | 0.0105 | 0.2588 | 0.054* | |
C5 | 0.29834 (9) | 0.5574 (4) | 0.11304 (19) | 0.0522 (6) | |
H5 | 0.2857 | 0.6955 | 0.0768 | 0.063* | |
C3 | 0.28077 (9) | 0.1887 (5) | 0.17710 (18) | 0.0523 (6) | |
H3A | 0.2564 | 0.0793 | 0.1838 | 0.063* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl1 | 0.0367 (3) | 0.1244 (7) | 0.0581 (4) | 0.0117 (3) | 0.0125 (2) | −0.0091 (4) |
O5 | 0.0451 (10) | 0.0241 (8) | 0.0239 (8) | 0.000 | 0.0084 (7) | 0.000 |
O2 | 0.0605 (8) | 0.0192 (5) | 0.0290 (6) | −0.0017 (6) | 0.0167 (6) | 0.0022 (4) |
C7 | 0.0327 (7) | 0.0186 (6) | 0.0235 (6) | −0.0026 (6) | 0.0102 (6) | −0.0021 (5) |
O3 | 0.0757 (10) | 0.0167 (5) | 0.0308 (6) | −0.0014 (6) | 0.0212 (7) | 0.0012 (4) |
C8 | 0.0325 (8) | 0.0186 (6) | 0.0243 (7) | −0.0015 (6) | 0.0094 (6) | −0.0005 (5) |
O1 | 0.0714 (9) | 0.0255 (6) | 0.0286 (6) | −0.0124 (6) | 0.0243 (6) | −0.0070 (5) |
N1 | 0.0357 (7) | 0.0295 (7) | 0.0264 (6) | 0.0009 (6) | 0.0117 (6) | 0.0000 (5) |
O4 | 0.0616 (9) | 0.0292 (6) | 0.0242 (5) | 0.0026 (6) | 0.0134 (6) | −0.0036 (5) |
C1 | 0.0354 (8) | 0.0305 (8) | 0.0235 (7) | 0.0009 (7) | 0.0102 (6) | −0.0026 (6) |
C6 | 0.0426 (10) | 0.0331 (9) | 0.0466 (11) | −0.0019 (8) | 0.0079 (8) | 0.0051 (8) |
C4 | 0.0343 (9) | 0.0695 (15) | 0.0343 (9) | 0.0042 (10) | 0.0112 (7) | −0.0095 (10) |
C2 | 0.0476 (11) | 0.0448 (11) | 0.0454 (11) | −0.0042 (9) | 0.0207 (9) | 0.0099 (9) |
C5 | 0.0462 (12) | 0.0451 (12) | 0.0532 (12) | 0.0098 (10) | 0.0031 (10) | 0.0055 (10) |
C3 | 0.0443 (11) | 0.0651 (15) | 0.0511 (12) | −0.0100 (11) | 0.0216 (10) | 0.0033 (11) |
Geometric parameters (Å, º) top Cl1—C4 | 1.736 (2) | N1—H1C | 0.8900 |
O5—H1 | 0.81 (2) | C1—C6 | 1.374 (3) |
O2—C7 | 1.2460 (19) | C1—C2 | 1.373 (3) |
C7—O1 | 1.2407 (19) | C6—C5 | 1.385 (3) |
C7—C8 | 1.549 (2) | C6—H6 | 0.9300 |
O3—C8 | 1.3055 (19) | C4—C3 | 1.370 (3) |
O3—H3 | 0.8200 | C4—C5 | 1.376 (4) |
C8—O4 | 1.1996 (19) | C2—C3 | 1.381 (3) |
N1—C1 | 1.457 (2) | C2—H2 | 0.9300 |
N1—H1A | 0.8900 | C5—H5 | 0.9300 |
N1—H1B | 0.8900 | C3—H3A | 0.9300 |
| | | |
O1—C7—O2 | 125.89 (15) | C1—C6—C5 | 119.3 (2) |
O1—C7—C8 | 118.75 (14) | C1—C6—H6 | 120.3 |
O2—C7—C8 | 115.36 (13) | C5—C6—H6 | 120.3 |
C8—O3—H3 | 109.5 | C3—C4—C5 | 121.3 (2) |
O4—C8—O3 | 126.01 (15) | C3—C4—Cl1 | 119.84 (19) |
O4—C8—C7 | 121.60 (14) | C5—C4—Cl1 | 118.87 (19) |
O3—C8—C7 | 112.39 (13) | C1—C2—C3 | 119.6 (2) |
C1—N1—H1A | 109.5 | C1—C2—H2 | 120.2 |
C1—N1—H1B | 109.5 | C3—C2—H2 | 120.2 |
H1A—N1—H1B | 109.5 | C4—C5—C6 | 119.3 (2) |
C1—N1—H1C | 109.5 | C4—C5—H5 | 120.3 |
H1A—N1—H1C | 109.5 | C6—C5—H5 | 120.3 |
H1B—N1—H1C | 109.5 | C4—C3—C2 | 119.4 (2) |
C6—C1—C2 | 121.13 (18) | C4—C3—H3A | 120.3 |
C6—C1—N1 | 119.76 (16) | C2—C3—H3A | 120.3 |
C2—C1—N1 | 119.09 (16) | | |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O1i | 0.81 (2) | 1.97 (2) | 2.762 (2) | 169 (2) |
O3—H3···O2ii | 0.82 | 1.79 | 2.606 (2) | 173 |
N1—H1A···O5 | 0.89 | 1.93 | 2.802 (3) | 165 |
N1—H1B···O1iii | 0.89 | 1.98 | 2.792 (3) | 151 |
N1—H1C···O2 | 0.89 | 1.92 | 2.790 (2) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x, −y, z−1/2. |
Experimental details
Crystal data |
Chemical formula | C6H7ClN+·C2HO4−·0.5H2O |
Mr | 226.61 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 26.739 (2), 5.701 (3), 13.859 (2) |
β (°) | 111.02 (3) |
V (Å3) | 1972.0 (11) |
Z | 8 |
Radiation type | Ag Kα, λ = 0.56085 Å |
µ (mm−1) | 0.20 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
|
Data collection |
Diffractometer | Enraf–Nonius TurboCAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5686, 4806, 2341 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.836 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.174, 1.01 |
No. of reflections | 4806 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.41, −0.52 |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1···O1i | 0.81 (2) | 1.97 (2) | 2.762 (2) | 169 (2) |
O3—H3···O2ii | 0.82 | 1.79 | 2.606 (2) | 173 |
N1—H1A···O5 | 0.89 | 1.93 | 2.802 (3) | 165 |
N1—H1B···O1iii | 0.89 | 1.98 | 2.792 (3) | 151 |
N1—H1C···O2 | 0.89 | 1.92 | 2.790 (2) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) x, −y, z−1/2. |
References
Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o793. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dhaouadi, H., Marouani, H., Rzaigui, M. & Madani, A. (2008). Mater. Res. Bull. 43, 3234–3244. Web of Science CSD CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Subramanian, S. & Zawarotko, J. (1994). Coord. Chem. Rev. 137, 357–401. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open

access
Hydrogen bonding is by far the most well- studied interaction which is employed to control the conformational and topological features of the molecular assembly in the solid state (Subramanian, S. & Zawarotko, J., 1994) . In this paper, we report the synthesis and the X-ray study of the title compound, (I), a new oxalate of para-chloroanilinium hemi-hydrate, C6H7NCl+.HC2O4-.0.5H2O. The asymmetric unit contains one oxalate anion, one para-chloroanilinium cation and a water molecule (Fig. 1).
The crystal structure of the title compound is characterized by the existence of inorganic layers, built by HC2O4- anions, ammonium cations and water molecules. Each anion is connected to its adjacent neighbours by O—H···O strong hydrogen bond to form chains along b axis. These chains are interconnected through O—H···O hydrogen bonds of the water molecules and N—H···O of the ammonium cations to build layers parallel to the (ab) planes at z = 0 and z = 1/2 (Fig. 2).
The protonated p-chloroaniline molecule is localized in the interlayer space, and neutralizes the negative charge of the anionic part. These groups are oriented in the same direction forming so intermolecular van der Waals interactions between them and establishing particularly hydrogen bonds with oxygen atoms of the anionic layers.
The C—C, C—O distances and O—C—O, C—C—O angles in oxalate anion have standard values (Akriche, S. & Rzaigui, M., 2009). The examination of the organic molecule shows that the N—C, C—C and C—Cl distances and C—C—C, C—C—N and C—C—Cl angles are comparable with those obtained in other salts associated to the same protonated amine (Dhaouadi, H. et al. 2008).