organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro­anilinium hydrogen oxalate hemihydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: wajda_sta@yahoo.fr

(Received 25 March 2010; accepted 25 March 2010; online 31 March 2010)

In the title hydrated mol­ecular salt, C6H7ClN+·C2HO4·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, the anions are linked by O—H⋯O hydrogen bonds, forming chains propagating along the b axis. These chains are inter­connected through O—H⋯O hydrogen bonds from the water mol­ecules and N—H⋯O hydrogen bonds from the cations, building layers parallel to the ab plane.

Related literature

For background to supra­molecular networks, see: Subramanian & Zawarotko (1994[Subramanian, S. & Zawarotko, J. (1994). Coord. Chem. Rev. 137, 357-401.]). For related structures, see: Akriche & Rzaigui (2009[Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o793.]); Dhaouadi et al. (2008[Dhaouadi, H., Marouani, H., Rzaigui, M. & Madani, A. (2008). Mater. Res. Bull. 43, 3234-3244.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7ClN+·C2HO4·0.5H2O

  • Mr = 226.61

  • Monoclinic, C 2/c

  • a = 26.739 (2) Å

  • b = 5.701 (3) Å

  • c = 13.859 (2) Å

  • β = 111.02 (3)°

  • V = 1972.0 (11) Å3

  • Z = 8

  • Ag Kα radiation

  • λ = 0.56085 Å

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • 5686 measured reflections

  • 4806 independent reflections

  • 2341 reflections with I > 2σ(I)

  • Rint = 0.021

  • 2 standard reflections every 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.174

  • S = 1.01

  • 4806 reflections

  • 136 parameters

  • H-atom parameters not refined

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O1i 0.81 (2) 1.97 (2) 2.762 (2) 169 (2)
O3—H3⋯O2ii 0.82 1.79 2.606 (2) 173
N1—H1A⋯O5 0.89 1.93 2.802 (3) 165
N1—H1B⋯O1iii 0.89 1.98 2.792 (3) 151
N1—H1C⋯O2 0.89 1.92 2.790 (2) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) [x, -y, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrogen bonding is by far the most well- studied interaction which is employed to control the conformational and topological features of the molecular assembly in the solid state (Subramanian, S. & Zawarotko, J., 1994) . In this paper, we report the synthesis and the X-ray study of the title compound, (I), a new oxalate of para-chloroanilinium hemi-hydrate, C6H7NCl+.HC2O4-.0.5H2O. The asymmetric unit contains one oxalate anion, one para-chloroanilinium cation and a water molecule (Fig. 1).

The crystal structure of the title compound is characterized by the existence of inorganic layers, built by HC2O4- anions, ammonium cations and water molecules. Each anion is connected to its adjacent neighbours by O—H···O strong hydrogen bond to form chains along b axis. These chains are interconnected through O—H···O hydrogen bonds of the water molecules and N—H···O of the ammonium cations to build layers parallel to the (ab) planes at z = 0 and z = 1/2 (Fig. 2).

The protonated p-chloroaniline molecule is localized in the interlayer space, and neutralizes the negative charge of the anionic part. These groups are oriented in the same direction forming so intermolecular van der Waals interactions between them and establishing particularly hydrogen bonds with oxygen atoms of the anionic layers.

The C—C, C—O distances and O—C—O, C—C—O angles in oxalate anion have standard values (Akriche, S. & Rzaigui, M., 2009). The examination of the organic molecule shows that the N—C, C—C and C—Cl distances and C—C—C, C—C—N and C—C—Cl angles are comparable with those obtained in other salts associated to the same protonated amine (Dhaouadi, H. et al. 2008).

Related literature top

For background to supramolecular networks, see: Subramanian & Zawarotko (1994). For related structures, see: Akriche & Rzaigui (2009); Dhaouadi et al. (2008).

Experimental top

An ethanolic solution of p-chloroaniline (50 mmol, in 50 ml) was added under stirring to 100 ml of an aqueous solution of oxalate acid (1 M). Pink blocks of (I) appeared after few days of evaporation at room temperature.

Refinement top

All H atoms were positioned in a difference map and refined on the bond lengths and angles to regularize their geometry [N—H 0.89–0.90, C—H in the range 0.88–0.96 Å (CH3 ) C—H in the range 0.92–1.00 Å (Ar–H) and O—H in the range 0.87–0.90 Å ] and Uiso(H) [in the range 1.2–1.5 times Ueq of the parent atom]

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view of packing of (I).
4-Chloroanilinium hydrogen oxalate hemihydrate top
Crystal data top
C6H7ClN+·C2HO4·0.5H2OF(000) = 936
Mr = 226.61Dx = 1.527 Mg m3
Monoclinic, C2/cAg Kα radiation, λ = 0.56085 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 26.739 (2) Åθ = 9–11°
b = 5.701 (3) ŵ = 0.20 mm1
c = 13.859 (2) ÅT = 293 K
β = 111.02 (3)°Block, pink
V = 1972.0 (11) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.4°
Graphite monochromatorh = 544
non–profiled ω scansk = 09
5686 measured reflectionsl = 2322
4806 independent reflections2 standard reflections every 120 min
2341 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters not refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.8804P]
where P = (Fo2 + 2Fc2)/3
4806 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C6H7ClN+·C2HO4·0.5H2OV = 1972.0 (11) Å3
Mr = 226.61Z = 8
Monoclinic, C2/cAg Kα radiation, λ = 0.56085 Å
a = 26.739 (2) ŵ = 0.20 mm1
b = 5.701 (3) ÅT = 293 K
c = 13.859 (2) Å0.30 × 0.20 × 0.20 mm
β = 111.02 (3)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.021
5686 measured reflections2 standard reflections every 120 min
4806 independent reflections intensity decay: 5%
2341 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.174H-atom parameters not refined
S = 1.01Δρmax = 0.41 e Å3
4806 reflectionsΔρmin = 0.52 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.5152 (9)0.705 (4)0.2959 (17)0.047 (7)*
Cl10.19472 (2)0.44325 (17)0.06451 (5)0.0743 (3)
O50.50000.6144 (3)0.25000.0321 (4)
O20.44106 (6)0.1863 (2)0.46326 (9)0.0360 (3)
C70.44211 (7)0.0194 (3)0.52200 (12)0.0249 (3)
O30.44333 (6)0.3952 (2)0.54031 (10)0.0405 (3)
H30.44080.52270.51160.061*
C80.43716 (6)0.2276 (3)0.47280 (12)0.0254 (3)
O10.44687 (6)0.0354 (2)0.61417 (9)0.0401 (3)
N10.42789 (6)0.2638 (3)0.25679 (11)0.0304 (3)
H1A0.44600.38370.24420.046*
H1B0.43530.13380.22890.046*
H1C0.43740.24450.32480.046*
O40.42904 (6)0.2531 (2)0.38251 (9)0.0389 (3)
C10.37061 (7)0.3117 (3)0.21167 (12)0.0299 (3)
C60.35291 (8)0.5162 (4)0.15786 (16)0.0430 (5)
H60.37730.62590.15160.052*
C40.26302 (8)0.3917 (5)0.12275 (15)0.0463 (5)
C20.33516 (9)0.1479 (4)0.22190 (16)0.0449 (5)
H20.34770.01050.25880.054*
C50.29834 (9)0.5574 (4)0.11304 (19)0.0522 (6)
H50.28570.69550.07680.063*
C30.28077 (9)0.1887 (5)0.17710 (18)0.0523 (6)
H3A0.25640.07930.18380.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0367 (3)0.1244 (7)0.0581 (4)0.0117 (3)0.0125 (2)0.0091 (4)
O50.0451 (10)0.0241 (8)0.0239 (8)0.0000.0084 (7)0.000
O20.0605 (8)0.0192 (5)0.0290 (6)0.0017 (6)0.0167 (6)0.0022 (4)
C70.0327 (7)0.0186 (6)0.0235 (6)0.0026 (6)0.0102 (6)0.0021 (5)
O30.0757 (10)0.0167 (5)0.0308 (6)0.0014 (6)0.0212 (7)0.0012 (4)
C80.0325 (8)0.0186 (6)0.0243 (7)0.0015 (6)0.0094 (6)0.0005 (5)
O10.0714 (9)0.0255 (6)0.0286 (6)0.0124 (6)0.0243 (6)0.0070 (5)
N10.0357 (7)0.0295 (7)0.0264 (6)0.0009 (6)0.0117 (6)0.0000 (5)
O40.0616 (9)0.0292 (6)0.0242 (5)0.0026 (6)0.0134 (6)0.0036 (5)
C10.0354 (8)0.0305 (8)0.0235 (7)0.0009 (7)0.0102 (6)0.0026 (6)
C60.0426 (10)0.0331 (9)0.0466 (11)0.0019 (8)0.0079 (8)0.0051 (8)
C40.0343 (9)0.0695 (15)0.0343 (9)0.0042 (10)0.0112 (7)0.0095 (10)
C20.0476 (11)0.0448 (11)0.0454 (11)0.0042 (9)0.0207 (9)0.0099 (9)
C50.0462 (12)0.0451 (12)0.0532 (12)0.0098 (10)0.0031 (10)0.0055 (10)
C30.0443 (11)0.0651 (15)0.0511 (12)0.0100 (11)0.0216 (10)0.0033 (11)
Geometric parameters (Å, º) top
Cl1—C41.736 (2)N1—H1C0.8900
O5—H10.81 (2)C1—C61.374 (3)
O2—C71.2460 (19)C1—C21.373 (3)
C7—O11.2407 (19)C6—C51.385 (3)
C7—C81.549 (2)C6—H60.9300
O3—C81.3055 (19)C4—C31.370 (3)
O3—H30.8200C4—C51.376 (4)
C8—O41.1996 (19)C2—C31.381 (3)
N1—C11.457 (2)C2—H20.9300
N1—H1A0.8900C5—H50.9300
N1—H1B0.8900C3—H3A0.9300
O1—C7—O2125.89 (15)C1—C6—C5119.3 (2)
O1—C7—C8118.75 (14)C1—C6—H6120.3
O2—C7—C8115.36 (13)C5—C6—H6120.3
C8—O3—H3109.5C3—C4—C5121.3 (2)
O4—C8—O3126.01 (15)C3—C4—Cl1119.84 (19)
O4—C8—C7121.60 (14)C5—C4—Cl1118.87 (19)
O3—C8—C7112.39 (13)C1—C2—C3119.6 (2)
C1—N1—H1A109.5C1—C2—H2120.2
C1—N1—H1B109.5C3—C2—H2120.2
H1A—N1—H1B109.5C4—C5—C6119.3 (2)
C1—N1—H1C109.5C4—C5—H5120.3
H1A—N1—H1C109.5C6—C5—H5120.3
H1B—N1—H1C109.5C4—C3—C2119.4 (2)
C6—C1—C2121.13 (18)C4—C3—H3A120.3
C6—C1—N1119.76 (16)C2—C3—H3A120.3
C2—C1—N1119.09 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O1i0.81 (2)1.97 (2)2.762 (2)169 (2)
O3—H3···O2ii0.821.792.606 (2)173
N1—H1A···O50.891.932.802 (3)165
N1—H1B···O1iii0.891.982.792 (3)151
N1—H1C···O20.891.922.790 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC6H7ClN+·C2HO4·0.5H2O
Mr226.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)26.739 (2), 5.701 (3), 13.859 (2)
β (°) 111.02 (3)
V3)1972.0 (11)
Z8
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5686, 4806, 2341
Rint0.021
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.174, 1.01
No. of reflections4806
No. of parameters136
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.41, 0.52

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O1i0.81 (2)1.97 (2)2.762 (2)169 (2)
O3—H3···O2ii0.821.792.606 (2)173
N1—H1A···O50.891.932.802 (3)165
N1—H1B···O1iii0.891.982.792 (3)151
N1—H1C···O20.891.922.790 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y, z1/2.
 

References

First citationAkriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhaouadi, H., Marouani, H., Rzaigui, M. & Madani, A. (2008). Mater. Res. Bull. 43, 3234–3244.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanian, S. & Zawarotko, J. (1994). Coord. Chem. Rev. 137, 357–401.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds