metal-organic compounds
Triaqua(1,10-phenanthroline-2,9-dicarboxylato)cobalt(II) dihydrate
aState Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and bSchool of Chemistry and Biology Engineering, Taiyuan University of Science and, Technology, Taiyuan 030021, People's Republic of China
*Correspondence e-mail: gujzh@lzu.edu.cn
The title compound, [Co(C14H6N2O4)(H2O)3]·2H2O, has twofold The CoII atom is in a distorted pentagonal-bipyramidal coordination environment with two N atoms and two O atoms from a tetradentate 1,10-phenanthroline-2,9-dicarboxylate ligand and one O atom from a water molecule forming the pentagonal plane, and two O atoms from two water molecules occupying axial positions. In the crystal, adjacent molecules are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For the structures and properties of coordination compounds, see: Zhao et al. (2008); Poulsen et al. (2005). For the use of multi-carboxylate and heterocyclic in coordination chemistry, see: Luo et al. (2009); Han et al. (2009) and for the dicarboxylate ligand H2PDA (H2PDA is 1,10-phenanthroline-2,9-dicarboxylic acid), see: Xie et al. (2005). For the isotypic structure [Mg(PDA)(H2O)3]·2H2O, see: Park et al. (2001). For the high affinity of the CoII ion to water molecules, see: (Zhang & Chen (2009). For bond distances and angles in other seven-coordinated CoII complexes, see: Newkome et al. (1984); Rajput & Biradha (2007). For the synthesis of 1,10-phenanthroline-2,9-dicarboxylic acid, see: De Cian et al. (2007).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810007567/hg2639sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007567/hg2639Isup2.hkl
1,10-Phenanthroline-2,9-dicarboxylic acid was synthesized by using a literature method (De Cian et al., 2007). To a solution of cobalt nitrate hexahydrate (0.145 g, 0.5 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.135 g, 0.5 mmol) and sodium hydroxide (0.04 g, 1.0 mmol). The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution yielded single crystals in ca 50% yield. Anal. Calcd for C14H16CoN2O9: C, 40.50; H, 3.88; N, 6.75. Found: C, 40.01; H, 4.12; N, 6.45.
The coordinated water H atoms were located in a difference Fourier map and refined with distance constraints of O—H = 0.83 (3) Å. The free water H atoms attached to oxygen atoms were placed at calculated positions and refined with the riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of (I) showing 50% proability displacement ellipsoids and the atom-numbering scheme (Symmetry code A: -x+7/4,-y+7/4,z). |
[Co(C14H6N2O4)(H2O)3]·2H2O | F(000) = 3408 |
Mr = 415.22 | Dx = 1.688 Mg m−3 |
Orthorhombic, Fddd | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -F 2uv 2vw | Cell parameters from 2624 reflections |
a = 7.4093 (5) Å | θ = 3.0–25.2° |
b = 18.9267 (17) Å | µ = 1.11 mm−1 |
c = 46.609 (4) Å | T = 296 K |
V = 6536.1 (9) Å3 | Block, yellow |
Z = 16 | 0.20 × 0.19 × 0.17 mm |
Bruker APEXII CCD diffractometer | 1520 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 27.5°, θmin = 1.8° |
ϕ and ω scans | h = −9→9 |
9724 measured reflections | k = −24→23 |
1877 independent reflections | l = −45→60 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0494P)2 + 16.2882P] where P = (Fo2 + 2Fc2)/3 |
1877 reflections | (Δ/σ)max = 0.001 |
132 parameters | Δρmax = 0.96 e Å−3 |
2 restraints | Δρmin = −0.46 e Å−3 |
[Co(C14H6N2O4)(H2O)3]·2H2O | V = 6536.1 (9) Å3 |
Mr = 415.22 | Z = 16 |
Orthorhombic, Fddd | Mo Kα radiation |
a = 7.4093 (5) Å | µ = 1.11 mm−1 |
b = 18.9267 (17) Å | T = 296 K |
c = 46.609 (4) Å | 0.20 × 0.19 × 0.17 mm |
Bruker APEXII CCD diffractometer | 1520 reflections with I > 2σ(I) |
9724 measured reflections | Rint = 0.032 |
1877 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | 2 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0494P)2 + 16.2882P] where P = (Fo2 + 2Fc2)/3 |
1877 reflections | Δρmax = 0.96 e Å−3 |
132 parameters | Δρmin = −0.46 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.8750 | 0.8750 | 0.575281 (8) | 0.02703 (15) | |
C1 | 0.5006 (3) | 0.79758 (12) | 0.56914 (5) | 0.0303 (5) | |
C2 | 0.5619 (3) | 0.81188 (11) | 0.53888 (5) | 0.0286 (5) | |
C3 | 0.4668 (3) | 0.79146 (13) | 0.51428 (5) | 0.0369 (5) | |
H3 | 0.3573 | 0.7678 | 0.5160 | 0.044* | |
C4 | 0.5356 (4) | 0.80639 (13) | 0.48763 (5) | 0.0403 (6) | |
H4 | 0.4723 | 0.7936 | 0.4712 | 0.048* | |
C5 | 0.7025 (3) | 0.84111 (12) | 0.48536 (5) | 0.0336 (5) | |
C6 | 0.7884 (3) | 0.85853 (11) | 0.51113 (4) | 0.0283 (5) | |
C7 | 0.7938 (4) | 0.85890 (13) | 0.45911 (5) | 0.0426 (6) | |
H7 | 0.7394 | 0.8479 | 0.4417 | 0.051* | |
H3A | 0.953 (3) | 0.8937 (8) | 0.6302 (4) | 0.063 (10)* | |
H5A | 0.8692 | 0.7242 | 0.6386 | 0.075* | |
H5B | 0.8592 | 0.6518 | 0.6227 | 0.075* | 0.50 |
H5B' | 0.7138 | 0.7061 | 0.6221 | 0.075* | 0.50 |
H4A | 1.088 (5) | 0.7728 (17) | 0.5770 (7) | 0.049 (10)* | |
H4B | 0.955 (5) | 0.7546 (18) | 0.5909 (8) | 0.060 (11)* | |
N6 | 0.7184 (2) | 0.84503 (10) | 0.53724 (4) | 0.0274 (4) | |
O1 | 0.6029 (2) | 0.82142 (9) | 0.58824 (4) | 0.0380 (4) | |
O2 | 0.3589 (2) | 0.76361 (11) | 0.57280 (4) | 0.0446 (5) | |
O3 | 0.8750 | 0.8750 | 0.61974 (5) | 0.0459 (7) | |
O4 | 0.9892 (3) | 0.77204 (10) | 0.57658 (4) | 0.0359 (4) | |
O5 | 0.8336 (4) | 0.69890 (11) | 0.62306 (5) | 0.0670 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0278 (3) | 0.0337 (3) | 0.0196 (2) | −0.00067 (18) | 0.000 | 0.000 |
C1 | 0.0231 (11) | 0.0333 (12) | 0.0344 (12) | 0.0020 (9) | 0.0013 (9) | −0.0046 (9) |
C2 | 0.0256 (11) | 0.0298 (11) | 0.0305 (11) | 0.0043 (9) | −0.0041 (9) | −0.0060 (8) |
C3 | 0.0325 (13) | 0.0401 (13) | 0.0382 (13) | −0.0006 (10) | −0.0095 (10) | −0.0084 (10) |
C4 | 0.0463 (15) | 0.0418 (14) | 0.0328 (13) | 0.0055 (11) | −0.0153 (11) | −0.0087 (10) |
C5 | 0.0438 (14) | 0.0321 (12) | 0.0248 (11) | 0.0101 (11) | −0.0069 (9) | −0.0048 (9) |
C6 | 0.0313 (12) | 0.0296 (11) | 0.0239 (10) | 0.0057 (9) | −0.0010 (9) | −0.0015 (8) |
C7 | 0.0637 (17) | 0.0412 (14) | 0.0228 (11) | 0.0069 (12) | −0.0065 (11) | −0.0037 (9) |
N6 | 0.0261 (9) | 0.0320 (9) | 0.0241 (9) | 0.0013 (8) | −0.0014 (7) | −0.0023 (7) |
O1 | 0.0327 (9) | 0.0544 (10) | 0.0268 (8) | −0.0075 (8) | 0.0024 (7) | −0.0060 (7) |
O2 | 0.0304 (10) | 0.0550 (11) | 0.0483 (11) | −0.0086 (8) | 0.0052 (8) | −0.0053 (8) |
O3 | 0.0490 (16) | 0.0680 (17) | 0.0206 (11) | −0.0285 (14) | 0.000 | 0.000 |
O4 | 0.0312 (11) | 0.0403 (10) | 0.0363 (10) | 0.0012 (8) | −0.0012 (8) | 0.0004 (8) |
O5 | 0.1009 (19) | 0.0418 (11) | 0.0582 (13) | −0.0027 (12) | 0.0008 (13) | −0.0004 (10) |
Co1—O3 | 2.072 (2) | C4—C5 | 1.404 (4) |
Co1—O4 | 2.1254 (19) | C4—H4 | 0.9300 |
Co1—O4i | 2.1254 (19) | C5—C6 | 1.399 (3) |
Co1—N6i | 2.1936 (18) | C5—C7 | 1.438 (3) |
Co1—N6 | 2.1936 (18) | C6—N6 | 1.348 (3) |
Co1—O1 | 2.3364 (16) | C6—C6i | 1.426 (5) |
Co1—O1i | 2.3364 (16) | C7—C7i | 1.349 (6) |
C1—O2 | 1.243 (3) | C7—H7 | 0.9300 |
C1—O1 | 1.253 (3) | O3—H3A | 0.837 (17) |
C1—C2 | 1.506 (3) | O4—H4A | 0.74 (4) |
C2—N6 | 1.320 (3) | O4—H4B | 0.79 (4) |
C2—C3 | 1.400 (3) | O5—H5A | 0.9066 |
C3—C4 | 1.372 (4) | O5—H5B | 0.9119 |
C3—H3 | 0.9300 | O5—H5B' | 0.8988 |
O3—Co1—O4 | 88.37 (5) | C4—C3—C2 | 119.8 (2) |
O3—Co1—O4i | 88.37 (5) | C4—C3—H3 | 120.1 |
O4—Co1—O4i | 176.75 (11) | C2—C3—H3 | 120.1 |
O3—Co1—N6i | 143.92 (5) | C3—C4—C5 | 119.5 (2) |
O4—Co1—N6i | 92.83 (8) | C3—C4—H4 | 120.3 |
O4i—Co1—N6i | 89.80 (7) | C5—C4—H4 | 120.3 |
O3—Co1—N6 | 143.92 (5) | C6—C5—C4 | 116.5 (2) |
O4—Co1—N6 | 89.80 (7) | C6—C5—C7 | 117.5 (2) |
O4i—Co1—N6 | 92.83 (8) | C4—C5—C7 | 126.0 (2) |
N6i—Co1—N6 | 72.16 (10) | N6—C6—C5 | 123.7 (2) |
O3—Co1—O1 | 75.02 (4) | N6—C6—C6i | 115.43 (12) |
O4—Co1—O1 | 86.46 (8) | C5—C6—C6i | 120.83 (14) |
O4i—Co1—O1 | 92.69 (7) | C7i—C7—C5 | 121.69 (15) |
N6i—Co1—O1 | 141.06 (6) | C7i—C7—H7 | 119.2 |
N6—Co1—O1 | 68.91 (6) | C5—C7—H7 | 119.2 |
O3—Co1—O1i | 75.02 (4) | C2—N6—C6 | 118.72 (18) |
O4—Co1—O1i | 92.69 (7) | C2—N6—Co1 | 122.73 (14) |
O4i—Co1—O1i | 86.46 (8) | C6—N6—Co1 | 118.50 (15) |
N6i—Co1—O1i | 68.91 (6) | C1—O1—Co1 | 119.62 (15) |
N6—Co1—O1i | 141.06 (6) | Co1—O3—H3A | 125.6 (15) |
O1—Co1—O1i | 150.03 (8) | Co1—O4—H4A | 112 (3) |
O2—C1—O1 | 126.8 (2) | Co1—O4—H4B | 106 (2) |
O2—C1—C2 | 118.4 (2) | H4A—O4—H4B | 108 (3) |
O1—C1—C2 | 114.7 (2) | H5A—O5—H5B | 118.1 |
N6—C2—C3 | 121.7 (2) | H5A—O5—H5B' | 104.2 |
N6—C2—C1 | 113.83 (18) | H5B—O5—H5B' | 110.7 |
C3—C2—C1 | 124.5 (2) | ||
O2—C1—C2—N6 | −176.6 (2) | C6i—C6—N6—Co1 | 0.2 (3) |
O1—C1—C2—N6 | 2.6 (3) | O3—Co1—N6—C2 | −2.8 (2) |
O2—C1—C2—C3 | 2.2 (3) | O4—Co1—N6—C2 | 84.14 (17) |
O1—C1—C2—C3 | −178.6 (2) | O4i—Co1—N6—C2 | −93.94 (17) |
N6—C2—C3—C4 | −0.5 (4) | N6i—Co1—N6—C2 | 177.2 (2) |
C1—C2—C3—C4 | −179.2 (2) | O1—Co1—N6—C2 | −2.14 (16) |
C2—C3—C4—C5 | 1.0 (4) | O1i—Co1—N6—C2 | 178.19 (14) |
C3—C4—C5—C6 | −0.1 (3) | O3—Co1—N6—C6 | 179.93 (11) |
C3—C4—C5—C7 | 178.5 (2) | O4—Co1—N6—C6 | −93.11 (16) |
C4—C5—C6—N6 | −1.3 (3) | O4i—Co1—N6—C6 | 88.81 (16) |
C7—C5—C6—N6 | 179.9 (2) | N6i—Co1—N6—C6 | −0.07 (11) |
C4—C5—C6—C6i | 177.6 (2) | O1—Co1—N6—C6 | −179.40 (17) |
C7—C5—C6—C6i | −1.2 (4) | O1i—Co1—N6—C6 | 0.9 (2) |
C6—C5—C7—C7i | 0.1 (4) | O2—C1—O1—Co1 | 174.59 (19) |
C4—C5—C7—C7i | −178.6 (3) | C2—C1—O1—Co1 | −4.5 (3) |
C3—C2—N6—C6 | −0.9 (3) | O3—Co1—O1—C1 | −176.70 (18) |
C1—C2—N6—C6 | 178.00 (18) | O4—Co1—O1—C1 | −87.44 (18) |
C3—C2—N6—Co1 | −178.11 (16) | O4i—Co1—O1—C1 | 95.71 (18) |
C1—C2—N6—Co1 | 0.7 (3) | N6i—Co1—O1—C1 | 2.7 (2) |
C5—C6—N6—C2 | 1.8 (3) | N6—Co1—O1—C1 | 3.71 (16) |
C6i—C6—N6—C2 | −177.2 (2) | O1i—Co1—O1—C1 | −176.70 (18) |
C5—C6—N6—Co1 | 179.17 (16) |
Symmetry code: (i) −x+7/4, −y+7/4, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O1ii | 0.837 (17) | 1.957 (16) | 2.778 (2) | 167 (2) |
O5—H5A···O2iii | 0.91 | 1.95 | 2.837 (3) | 164 |
O5—H5B···O5iv | 0.91 | 1.93 | 2.803 (4) | 161 |
O5—H5B′···O5iii | 0.90 | 2.22 | 3.096 (6) | 165 |
O4—H4A···O2v | 0.74 (4) | 2.02 (4) | 2.750 (3) | 171 (4) |
O4—H4B···O5 | 0.79 (4) | 2.04 (4) | 2.818 (3) | 169 (3) |
Symmetry codes: (ii) x+1/2, −y+7/4, −z+5/4; (iii) −x+5/4, y, −z+5/4; (iv) x, −y+5/4, −z+5/4; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C14H6N2O4)(H2O)3]·2H2O |
Mr | 415.22 |
Crystal system, space group | Orthorhombic, Fddd |
Temperature (K) | 296 |
a, b, c (Å) | 7.4093 (5), 18.9267 (17), 46.609 (4) |
V (Å3) | 6536.1 (9) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 1.11 |
Crystal size (mm) | 0.20 × 0.19 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9724, 1877, 1520 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.098, 1.06 |
No. of reflections | 1877 |
No. of parameters | 132 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
w = 1/[σ2(Fo2) + (0.0494P)2 + 16.2882P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 0.96, −0.46 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O1i | 0.837 (17) | 1.957 (16) | 2.778 (2) | 167 (2) |
O5—H5A···O2ii | 0.91 | 1.95 | 2.837 (3) | 163.8 |
O5—H5B···O5iii | 0.91 | 1.93 | 2.803 (4) | 161.0 |
O5—H5B'···O5ii | 0.90 | 2.22 | 3.096 (6) | 165.0 |
O4—H4A···O2iv | 0.74 (4) | 2.02 (4) | 2.750 (3) | 171 (4) |
O4—H4B···O5 | 0.79 (4) | 2.04 (4) | 2.818 (3) | 169 (3) |
Symmetry codes: (i) x+1/2, −y+7/4, −z+5/4; (ii) −x+5/4, y, −z+5/4; (iii) x, −y+5/4, −z+5/4; (iv) x+1, y, z. |
Acknowledgements
The authors are grateful to the National Natural Science Foundation of China (grant No. 20872055).
References
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
De Cian, A., DeLemos, E., Mergny, J.-L., Teulade-Fichou, M.-P. & Monchaud, D. (2007). J. Am. Chem. Soc. 129, 1856–1857. Web of Science CrossRef PubMed CAS Google Scholar
Han, L., Zhou, Y., Zhao, W.-N., Li, X. & Liang, Y.-X. (2009). Cryst. Growth Des. 9, 660–662. Web of Science CSD CrossRef CAS Google Scholar
Luo, F., Che, Y. X. & Zheng, J. M. (2009). Cryst. Growth Des. 9, 1066–1071. Web of Science CSD CrossRef CAS Google Scholar
Newkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400–2408. CSD CrossRef CAS Web of Science Google Scholar
Park, K.-M., Yoon, I., Seo, J., Lee, Y. H. & Lee, S. S. (2001). Acta Cryst. E57, m154–m156. Web of Science CSD CrossRef IUCr Journals Google Scholar
Poulsen, R. D., Bentien, A., Chevalier, M. & Iversen, B. B. (2005). J. Am. Chem. Soc. 127, 9156–9166. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rajput, L. & Biradha, K. (2007). Cryst. Growth Des. 7, 2376–2379. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Xie, Y.-B., Li, J.-R. & Bu, X.-H. (2005). J. Mol. Struct. 741, 249–253. Web of Science CrossRef CAS Google Scholar
Zhang, W. & Chen, Y.-T. (2009). Acta Cryst. E65, m1548. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhao, X. Y., Liang, D. D., Liu, S. X., Sun, C. Y., Cao, R. G., Gao, C. Y., Ren, Y. H. & Su, Z. M. (2008). Inorg. Chem. 47, 7133–7138. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the research of coordination compounds has been one of the most attractive fields due to their peculiar structures and properties (Zhao et al., 2008; Poulsen et al., 2005). Many multi-carboxylate or heterocyclic carboxylic acids are used for this purpose (Luo et al., 2009; Han et al., 2009). In the designed synthesis of the coordination compounds, H2PDA is an excellent dicarboxylate ligand (Xie et al., 2005). In order to extend the investigation, we have prepared the CoII complex of H2PDA, and report its crystal structure here.
The title compound (Fig. 1) is located on a twofold axis of symmetry which passes through the Co and O3 atoms, which is isomorphous with [Mg(PDA)(H2O)3].2H2O (Park et al., 2001). The seven-coordinated Co atom is in a distorted pentagonal bipyramidal geometry. Two N and two O atoms from PDA and one O atom from a water molecule define the pentagonal plane, and the two axial positions are occupied by O atoms derived from two water molecules.
Important bond distances and angles are presented in Table 1. The bond distances between Co and the PDA donor atoms [Co—O1 2.3364 (16) Å and Co—N6 2.1936 (18) Å] are significantly longer than those to the coordinated water molecules [Co—O3 2.072 (2) Å and Co—O4 2.1254 (19) Å]. This is probably due to the high rigidity of PDA as well as the high affinity of the CoII ion to water molecules (Zhang & Chen, 2009). The carboxylate groups of the PDA ligand are almost coplanar with the phenanthroline unit as indicated by the O1—C1—C2—N6 torsion angle of 2.6 (3)°. All bond distances and angles are similar to those observed in other seven-coordinated CoII complexes (Newkome et al., 1984; Rajput & Biradha, 2007). Adjacent molecules are linked by O—H···O hydrogen bonds, forming a three-dimensional network.