metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m372-m373

Tri­aqua­(1,10-phenanthroline-2,9-di­carboxyl­ato)cobalt(II) dihydrate

aState Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and bSchool of Chemistry and Biology Engineering, Taiyuan University of Science and, Technology, Taiyuan 030021, People's Republic of China
*Correspondence e-mail: gujzh@lzu.edu.cn

(Received 27 January 2010; accepted 27 February 2010; online 6 March 2010)

The title compound, [Co(C14H6N2O4)(H2O)3]·2H2O, has two­fold crystallographic symmetry. The CoII atom is in a distorted penta­gonal-bipyramidal coordination environment with two N atoms and two O atoms from a tetradentate 1,10-phenanthroline-2,9-dicarboxyl­ate ligand and one O atom from a water mol­ecule forming the penta­gonal plane, and two O atoms from two water mol­ecules occupying axial positions. In the crystal, adjacent mol­ecules are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the structures and properties of coordination compounds, see: Zhao et al. (2008[Zhao, X. Y., Liang, D. D., Liu, S. X., Sun, C. Y., Cao, R. G., Gao, C. Y., Ren, Y. H. & Su, Z. M. (2008). Inorg. Chem. 47, 7133-7138.]); Poulsen et al. (2005[Poulsen, R. D., Bentien, A., Chevalier, M. & Iversen, B. B. (2005). J. Am. Chem. Soc. 127, 9156-9166.]). For the use of multi-carboxyl­ate and heterocyclic carboxylic acids in coordination chemistry, see: Luo et al. (2009[Luo, F., Che, Y. X. & Zheng, J. M. (2009). Cryst. Growth Des. 9, 1066-1071.]); Han et al. (2009[Han, L., Zhou, Y., Zhao, W.-N., Li, X. & Liang, Y.-X. (2009). Cryst. Growth Des. 9, 660-662.]) and for the dicarboxyl­ate ligand H2PDA (H2PDA is 1,10-phenanthroline-2,9-dicarboxylic acid), see: Xie et al. (2005[Xie, Y.-B., Li, J.-R. & Bu, X.-H. (2005). J. Mol. Struct. 741, 249-253.]). For the isotypic structure [Mg(PDA)(H2O)3]·2H2O, see: Park et al. (2001[Park, K.-M., Yoon, I., Seo, J., Lee, Y. H. & Lee, S. S. (2001). Acta Cryst. E57, m154-m156.]). For the high affinity of the CoII ion to water mol­ecules, see: (Zhang & Chen (2009[Zhang, W. & Chen, Y.-T. (2009). Acta Cryst. E65, m1548.]). For bond distances and angles in other seven-coordinated CoII complexes, see: Newkome et al. (1984[Newkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400-2408.]); Rajput & Biradha (2007[Rajput, L. & Biradha, K. (2007). Cryst. Growth Des. 7, 2376-2379.]). For the synthesis of 1,10-phenanthroline-2,9-dicarboxylic acid, see: De Cian et al. (2007[De Cian, A., DeLemos, E., Mergny, J.-L., Teulade-Fichou, M.-P. & Monchaud, D. (2007). J. Am. Chem. Soc. 129, 1856-1857.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H6N2O4)(H2O)3]·2H2O

  • Mr = 415.22

  • Orthorhombic, F d d d

  • a = 7.4093 (5) Å

  • b = 18.9267 (17) Å

  • c = 46.609 (4) Å

  • V = 6536.1 (9) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 296 K

  • 0.20 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 9724 measured reflections

  • 1877 independent reflections

  • 1520 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.06

  • 1877 reflections

  • 132 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.837 (17) 1.957 (16) 2.778 (2) 167 (2)
O5—H5A⋯O2ii 0.91 1.95 2.837 (3) 164
O5—H5B⋯O5iii 0.91 1.93 2.803 (4) 161
O5—H5B′⋯O5ii 0.90 2.22 3.096 (6) 165
O4—H4A⋯O2iv 0.74 (4) 2.02 (4) 2.750 (3) 171 (4)
O4—H4B⋯O5 0.79 (4) 2.04 (4) 2.818 (3) 169 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{7\over 4}}, -z+{\script{5\over 4}}]; (ii) [-x+{\script{5\over 4}}, y, -z+{\script{5\over 4}}]; (iii) [x, -y+{\script{5\over 4}}, -z+{\script{5\over 4}}]; (iv) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In recent years, the research of coordination compounds has been one of the most attractive fields due to their peculiar structures and properties (Zhao et al., 2008; Poulsen et al., 2005). Many multi-carboxylate or heterocyclic carboxylic acids are used for this purpose (Luo et al., 2009; Han et al., 2009). In the designed synthesis of the coordination compounds, H2PDA is an excellent dicarboxylate ligand (Xie et al., 2005). In order to extend the investigation, we have prepared the CoII complex of H2PDA, and report its crystal structure here.

The title compound (Fig. 1) is located on a twofold axis of symmetry which passes through the Co and O3 atoms, which is isomorphous with [Mg(PDA)(H2O)3].2H2O (Park et al., 2001). The seven-coordinated Co atom is in a distorted pentagonal bipyramidal geometry. Two N and two O atoms from PDA and one O atom from a water molecule define the pentagonal plane, and the two axial positions are occupied by O atoms derived from two water molecules.

Important bond distances and angles are presented in Table 1. The bond distances between Co and the PDA donor atoms [Co—O1 2.3364 (16) Å and Co—N6 2.1936 (18) Å] are significantly longer than those to the coordinated water molecules [Co—O3 2.072 (2) Å and Co—O4 2.1254 (19) Å]. This is probably due to the high rigidity of PDA as well as the high affinity of the CoII ion to water molecules (Zhang & Chen, 2009). The carboxylate groups of the PDA ligand are almost coplanar with the phenanthroline unit as indicated by the O1—C1—C2—N6 torsion angle of 2.6 (3)°. All bond distances and angles are similar to those observed in other seven-coordinated CoII complexes (Newkome et al., 1984; Rajput & Biradha, 2007). Adjacent molecules are linked by O—H···O hydrogen bonds, forming a three-dimensional network.

Related literature top

For the structures and properties of coordination compounds, see: Zhao et al. (2008); Poulsen et al. (2005). For the use of multi-carboxylate and heterocyclic carboxylic acids in coordination chemistry, see: Luo et al. (2009); Han et al. (2009) and for the dicarboxylate ligand H2PDA (PDA is [please define]), see: Xie et al. (2005). For the isomorphous structure [Mg(PDA)(H2O)3].2H2O, see: Park et al. (2001). For the high affinity of the CoII ion to water molecules, see: (Zhang & Chen (2009). For bond distances and angles in other seven-coordinated CoII complexes, see: Newkome et al. (1984); Rajput & Biradha (2007). For the synthesis of 1,10-phenanthroline-2,9-dicarboxylic acid, see: De Cian et al. (2007).

Experimental top

1,10-Phenanthroline-2,9-dicarboxylic acid was synthesized by using a literature method (De Cian et al., 2007). To a solution of cobalt nitrate hexahydrate (0.145 g, 0.5 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.135 g, 0.5 mmol) and sodium hydroxide (0.04 g, 1.0 mmol). The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution yielded single crystals in ca 50% yield. Anal. Calcd for C14H16CoN2O9: C, 40.50; H, 3.88; N, 6.75. Found: C, 40.01; H, 4.12; N, 6.45.

Refinement top

The coordinated water H atoms were located in a difference Fourier map and refined with distance constraints of O—H = 0.83 (3) Å. The free water H atoms attached to oxygen atoms were placed at calculated positions and refined with the riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% proability displacement ellipsoids and the atom-numbering scheme (Symmetry code A: -x+7/4,-y+7/4,z).
Triaqua(1,10-phenanthroline-2,9-dicarboxylato)cobalt(II) dihydrate top
Crystal data top
[Co(C14H6N2O4)(H2O)3]·2H2OF(000) = 3408
Mr = 415.22Dx = 1.688 Mg m3
Orthorhombic, FdddMo Kα radiation, λ = 0.71073 Å
Hall symbol: -F 2uv 2vwCell parameters from 2624 reflections
a = 7.4093 (5) Åθ = 3.0–25.2°
b = 18.9267 (17) ŵ = 1.11 mm1
c = 46.609 (4) ÅT = 296 K
V = 6536.1 (9) Å3Block, yellow
Z = 160.20 × 0.19 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
1520 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 99
9724 measured reflectionsk = 2423
1877 independent reflectionsl = 4560
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 16.2882P]
where P = (Fo2 + 2Fc2)/3
1877 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.96 e Å3
2 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Co(C14H6N2O4)(H2O)3]·2H2OV = 6536.1 (9) Å3
Mr = 415.22Z = 16
Orthorhombic, FdddMo Kα radiation
a = 7.4093 (5) ŵ = 1.11 mm1
b = 18.9267 (17) ÅT = 296 K
c = 46.609 (4) Å0.20 × 0.19 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
1520 reflections with I > 2σ(I)
9724 measured reflectionsRint = 0.032
1877 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 16.2882P]
where P = (Fo2 + 2Fc2)/3
1877 reflectionsΔρmax = 0.96 e Å3
132 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.87500.87500.575281 (8)0.02703 (15)
C10.5006 (3)0.79758 (12)0.56914 (5)0.0303 (5)
C20.5619 (3)0.81188 (11)0.53888 (5)0.0286 (5)
C30.4668 (3)0.79146 (13)0.51428 (5)0.0369 (5)
H30.35730.76780.51600.044*
C40.5356 (4)0.80639 (13)0.48763 (5)0.0403 (6)
H40.47230.79360.47120.048*
C50.7025 (3)0.84111 (12)0.48536 (5)0.0336 (5)
C60.7884 (3)0.85853 (11)0.51113 (4)0.0283 (5)
C70.7938 (4)0.85890 (13)0.45911 (5)0.0426 (6)
H70.73940.84790.44170.051*
H3A0.953 (3)0.8937 (8)0.6302 (4)0.063 (10)*
H5A0.86920.72420.63860.075*
H5B0.85920.65180.62270.075*0.50
H5B'0.71380.70610.62210.075*0.50
H4A1.088 (5)0.7728 (17)0.5770 (7)0.049 (10)*
H4B0.955 (5)0.7546 (18)0.5909 (8)0.060 (11)*
N60.7184 (2)0.84503 (10)0.53724 (4)0.0274 (4)
O10.6029 (2)0.82142 (9)0.58824 (4)0.0380 (4)
O20.3589 (2)0.76361 (11)0.57280 (4)0.0446 (5)
O30.87500.87500.61974 (5)0.0459 (7)
O40.9892 (3)0.77204 (10)0.57658 (4)0.0359 (4)
O50.8336 (4)0.69890 (11)0.62306 (5)0.0670 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0278 (3)0.0337 (3)0.0196 (2)0.00067 (18)0.0000.000
C10.0231 (11)0.0333 (12)0.0344 (12)0.0020 (9)0.0013 (9)0.0046 (9)
C20.0256 (11)0.0298 (11)0.0305 (11)0.0043 (9)0.0041 (9)0.0060 (8)
C30.0325 (13)0.0401 (13)0.0382 (13)0.0006 (10)0.0095 (10)0.0084 (10)
C40.0463 (15)0.0418 (14)0.0328 (13)0.0055 (11)0.0153 (11)0.0087 (10)
C50.0438 (14)0.0321 (12)0.0248 (11)0.0101 (11)0.0069 (9)0.0048 (9)
C60.0313 (12)0.0296 (11)0.0239 (10)0.0057 (9)0.0010 (9)0.0015 (8)
C70.0637 (17)0.0412 (14)0.0228 (11)0.0069 (12)0.0065 (11)0.0037 (9)
N60.0261 (9)0.0320 (9)0.0241 (9)0.0013 (8)0.0014 (7)0.0023 (7)
O10.0327 (9)0.0544 (10)0.0268 (8)0.0075 (8)0.0024 (7)0.0060 (7)
O20.0304 (10)0.0550 (11)0.0483 (11)0.0086 (8)0.0052 (8)0.0053 (8)
O30.0490 (16)0.0680 (17)0.0206 (11)0.0285 (14)0.0000.000
O40.0312 (11)0.0403 (10)0.0363 (10)0.0012 (8)0.0012 (8)0.0004 (8)
O50.1009 (19)0.0418 (11)0.0582 (13)0.0027 (12)0.0008 (13)0.0004 (10)
Geometric parameters (Å, º) top
Co1—O32.072 (2)C4—C51.404 (4)
Co1—O42.1254 (19)C4—H40.9300
Co1—O4i2.1254 (19)C5—C61.399 (3)
Co1—N6i2.1936 (18)C5—C71.438 (3)
Co1—N62.1936 (18)C6—N61.348 (3)
Co1—O12.3364 (16)C6—C6i1.426 (5)
Co1—O1i2.3364 (16)C7—C7i1.349 (6)
C1—O21.243 (3)C7—H70.9300
C1—O11.253 (3)O3—H3A0.837 (17)
C1—C21.506 (3)O4—H4A0.74 (4)
C2—N61.320 (3)O4—H4B0.79 (4)
C2—C31.400 (3)O5—H5A0.9066
C3—C41.372 (4)O5—H5B0.9119
C3—H30.9300O5—H5B'0.8988
O3—Co1—O488.37 (5)C4—C3—C2119.8 (2)
O3—Co1—O4i88.37 (5)C4—C3—H3120.1
O4—Co1—O4i176.75 (11)C2—C3—H3120.1
O3—Co1—N6i143.92 (5)C3—C4—C5119.5 (2)
O4—Co1—N6i92.83 (8)C3—C4—H4120.3
O4i—Co1—N6i89.80 (7)C5—C4—H4120.3
O3—Co1—N6143.92 (5)C6—C5—C4116.5 (2)
O4—Co1—N689.80 (7)C6—C5—C7117.5 (2)
O4i—Co1—N692.83 (8)C4—C5—C7126.0 (2)
N6i—Co1—N672.16 (10)N6—C6—C5123.7 (2)
O3—Co1—O175.02 (4)N6—C6—C6i115.43 (12)
O4—Co1—O186.46 (8)C5—C6—C6i120.83 (14)
O4i—Co1—O192.69 (7)C7i—C7—C5121.69 (15)
N6i—Co1—O1141.06 (6)C7i—C7—H7119.2
N6—Co1—O168.91 (6)C5—C7—H7119.2
O3—Co1—O1i75.02 (4)C2—N6—C6118.72 (18)
O4—Co1—O1i92.69 (7)C2—N6—Co1122.73 (14)
O4i—Co1—O1i86.46 (8)C6—N6—Co1118.50 (15)
N6i—Co1—O1i68.91 (6)C1—O1—Co1119.62 (15)
N6—Co1—O1i141.06 (6)Co1—O3—H3A125.6 (15)
O1—Co1—O1i150.03 (8)Co1—O4—H4A112 (3)
O2—C1—O1126.8 (2)Co1—O4—H4B106 (2)
O2—C1—C2118.4 (2)H4A—O4—H4B108 (3)
O1—C1—C2114.7 (2)H5A—O5—H5B118.1
N6—C2—C3121.7 (2)H5A—O5—H5B'104.2
N6—C2—C1113.83 (18)H5B—O5—H5B'110.7
C3—C2—C1124.5 (2)
O2—C1—C2—N6176.6 (2)C6i—C6—N6—Co10.2 (3)
O1—C1—C2—N62.6 (3)O3—Co1—N6—C22.8 (2)
O2—C1—C2—C32.2 (3)O4—Co1—N6—C284.14 (17)
O1—C1—C2—C3178.6 (2)O4i—Co1—N6—C293.94 (17)
N6—C2—C3—C40.5 (4)N6i—Co1—N6—C2177.2 (2)
C1—C2—C3—C4179.2 (2)O1—Co1—N6—C22.14 (16)
C2—C3—C4—C51.0 (4)O1i—Co1—N6—C2178.19 (14)
C3—C4—C5—C60.1 (3)O3—Co1—N6—C6179.93 (11)
C3—C4—C5—C7178.5 (2)O4—Co1—N6—C693.11 (16)
C4—C5—C6—N61.3 (3)O4i—Co1—N6—C688.81 (16)
C7—C5—C6—N6179.9 (2)N6i—Co1—N6—C60.07 (11)
C4—C5—C6—C6i177.6 (2)O1—Co1—N6—C6179.40 (17)
C7—C5—C6—C6i1.2 (4)O1i—Co1—N6—C60.9 (2)
C6—C5—C7—C7i0.1 (4)O2—C1—O1—Co1174.59 (19)
C4—C5—C7—C7i178.6 (3)C2—C1—O1—Co14.5 (3)
C3—C2—N6—C60.9 (3)O3—Co1—O1—C1176.70 (18)
C1—C2—N6—C6178.00 (18)O4—Co1—O1—C187.44 (18)
C3—C2—N6—Co1178.11 (16)O4i—Co1—O1—C195.71 (18)
C1—C2—N6—Co10.7 (3)N6i—Co1—O1—C12.7 (2)
C5—C6—N6—C21.8 (3)N6—Co1—O1—C13.71 (16)
C6i—C6—N6—C2177.2 (2)O1i—Co1—O1—C1176.70 (18)
C5—C6—N6—Co1179.17 (16)
Symmetry code: (i) x+7/4, y+7/4, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1ii0.837 (17)1.957 (16)2.778 (2)167 (2)
O5—H5A···O2iii0.911.952.837 (3)164
O5—H5B···O5iv0.911.932.803 (4)161
O5—H5B···O5iii0.902.223.096 (6)165
O4—H4A···O2v0.74 (4)2.02 (4)2.750 (3)171 (4)
O4—H4B···O50.79 (4)2.04 (4)2.818 (3)169 (3)
Symmetry codes: (ii) x+1/2, y+7/4, z+5/4; (iii) x+5/4, y, z+5/4; (iv) x, y+5/4, z+5/4; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C14H6N2O4)(H2O)3]·2H2O
Mr415.22
Crystal system, space groupOrthorhombic, Fddd
Temperature (K)296
a, b, c (Å)7.4093 (5), 18.9267 (17), 46.609 (4)
V3)6536.1 (9)
Z16
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.20 × 0.19 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9724, 1877, 1520
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.06
No. of reflections1877
No. of parameters132
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0494P)2 + 16.2882P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.96, 0.46

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.837 (17)1.957 (16)2.778 (2)167 (2)
O5—H5A···O2ii0.911.952.837 (3)163.8
O5—H5B···O5iii0.911.932.803 (4)161.0
O5—H5B'···O5ii0.902.223.096 (6)165.0
O4—H4A···O2iv0.74 (4)2.02 (4)2.750 (3)171 (4)
O4—H4B···O50.79 (4)2.04 (4)2.818 (3)169 (3)
Symmetry codes: (i) x+1/2, y+7/4, z+5/4; (ii) x+5/4, y, z+5/4; (iii) x, y+5/4, z+5/4; (iv) x+1, y, z.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (grant No. 20872055).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Cian, A., DeLemos, E., Mergny, J.-L., Teulade-Fichou, M.-P. & Monchaud, D. (2007). J. Am. Chem. Soc. 129, 1856–1857.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHan, L., Zhou, Y., Zhao, W.-N., Li, X. & Liang, Y.-X. (2009). Cryst. Growth Des. 9, 660–662.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, F., Che, Y. X. & Zheng, J. M. (2009). Cryst. Growth Des. 9, 1066–1071.  Web of Science CSD CrossRef CAS Google Scholar
First citationNewkome, G. R., Gupta, V. K., Fronczek, F. R. & Pappalardo, S. (1984). Inorg. Chem. 23, 2400–2408.  CSD CrossRef CAS Web of Science Google Scholar
First citationPark, K.-M., Yoon, I., Seo, J., Lee, Y. H. & Lee, S. S. (2001). Acta Cryst. E57, m154–m156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPoulsen, R. D., Bentien, A., Chevalier, M. & Iversen, B. B. (2005). J. Am. Chem. Soc. 127, 9156–9166.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRajput, L. & Biradha, K. (2007). Cryst. Growth Des. 7, 2376–2379.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationXie, Y.-B., Li, J.-R. & Bu, X.-H. (2005). J. Mol. Struct. 741, 249–253.  Web of Science CrossRef CAS Google Scholar
First citationZhang, W. & Chen, Y.-T. (2009). Acta Cryst. E65, m1548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, X. Y., Liang, D. D., Liu, S. X., Sun, C. Y., Cao, R. G., Gao, C. Y., Ren, Y. H. & Su, Z. M. (2008). Inorg. Chem. 47, 7133–7138.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m372-m373
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds