organic compounds
4-Chloroanilinium (4-chlorophenyl)guanidinium dichloride hemihydrate
aChemistry and Chemical Engineering Department, Henan University of Urban Construction, Pingdingshan 467044, People's Republic of China
*Correspondence e-mail: dongthc2009@163.com
In the title hydrated molecular salt, C6H7ClN+·C7H9ClN3+·2Cl−·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, intermolecular N—H⋯Cl and O—H⋯Cl hydrogen bonds form layers perpendicular to the ac plane in which both the water molecule and the chloride anion are involved in connecting the layers into a three-dimensional structure.
Related literature
For applications of guanidine-containing compounds, see: Yonehara & Otake (1966); Berlinck (1995); Gobbi & Frenking (1993). For related structures, see: Ploug-Sørenson & Andersen 1985; Kolev et al. (1997); Glidewell et al. (2005); Smith et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810007774/hg2652sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007774/hg2652Isup2.hkl
The 4-chlorophenylguanidine (0.01 mol) was added to a solution of 4-chlorobenzenamine (0.01 mol) in ethanol (20 ml) and stirred half hour at room temperature. The mixture was adjusted to pH 2-3 with concentrated hydrochloric acid, and the desired products then precipitated, which was collected by filtration. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol and water (v/v 1:1) at room temperature for one week.
Hydrogen atoms bonded to O and 4-chloroanilinium N were located by difference methods and their positional and isotropic displacement parameters were refined but these were constrained in the final
cycles. H atoms bonded to C and 4-chlorophenylguanidinium N atoms were treated as riding atoms, with C—H distances of 0.93 Å and N—H distances of 0.86 Å and Uiso(H) values of 1.2Ueq(C,N).Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level. |
C6H7ClN+·C7H9ClN3+·2Cl−·0.5H2O | F(000) = 1560 |
Mr = 379.11 | Dx = 1.414 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2794 reflections |
a = 41.297 (8) Å | θ = 2.6–24.3° |
b = 4.2089 (8) Å | µ = 0.67 mm−1 |
c = 23.695 (5) Å | T = 298 K |
β = 120.164 (2)° | Block, colorless |
V = 3560.8 (12) Å3 | 0.51 × 0.50 × 0.34 mm |
Z = 8 |
Bruker SMART CCD area-detector diffractometer | 3078 independent reflections |
Radiation source: fine-focus sealed tube | 2495 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −45→48 |
Tmin = 0.727, Tmax = 0.805 | k = −5→4 |
8167 measured reflections | l = −27→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0657P)2 + 0.9195P] where P = (Fo2 + 2Fc2)/3 |
3078 reflections | (Δ/σ)max = 0.001 |
211 parameters | Δρmax = 0.33 e Å−3 |
1 restraint | Δρmin = −0.22 e Å−3 |
C6H7ClN+·C7H9ClN3+·2Cl−·0.5H2O | V = 3560.8 (12) Å3 |
Mr = 379.11 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 41.297 (8) Å | µ = 0.67 mm−1 |
b = 4.2089 (8) Å | T = 298 K |
c = 23.695 (5) Å | 0.51 × 0.50 × 0.34 mm |
β = 120.164 (2)° |
Bruker SMART CCD area-detector diffractometer | 3078 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2495 reflections with I > 2σ(I) |
Tmin = 0.727, Tmax = 0.805 | Rint = 0.046 |
8167 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 1 restraint |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.33 e Å−3 |
3078 reflections | Δρmin = −0.22 e Å−3 |
211 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.073762 (19) | 0.49131 (14) | 0.32708 (3) | 0.0542 (2) | |
Cl2 | 0.062005 (17) | −0.51049 (14) | 0.49527 (3) | 0.0496 (2) | |
Cl3 | 0.20900 (2) | 0.7771 (2) | 0.72411 (4) | 0.0787 (3) | |
Cl4 | 0.26245 (2) | 0.1128 (3) | 0.59514 (5) | 0.0943 (3) | |
O1 | 0.0000 | 0.9261 (7) | 0.7500 | 0.0535 (6) | |
H14A | −0.0188 (6) | 0.815 (7) | 0.7317 (14) | 0.074 (10)* | |
N1 | 0.06411 (5) | 1.1656 (6) | 0.69506 (9) | 0.0560 (6) | |
H1A | 0.0648 | 1.1745 | 0.7319 | 0.067* | |
N2 | 0.02658 (6) | 1.2676 (6) | 0.58408 (9) | 0.0583 (6) | |
H2A | 0.0051 | 1.3206 | 0.5519 | 0.070* | |
H2B | 0.0450 | 1.2324 | 0.5777 | 0.070* | |
N3 | 0.00277 (6) | 1.2948 (6) | 0.65192 (10) | 0.0614 (6) | |
H3A | −0.0186 | 1.3477 | 0.6193 | 0.074* | |
H3B | 0.0055 | 1.2777 | 0.6902 | 0.074* | |
N4 | 0.09760 (8) | −0.0049 (7) | 0.43996 (17) | 0.0644 (7) | |
C1 | 0.19749 (9) | −0.0652 (8) | 0.48977 (15) | 0.0711 (8) | |
H1B | 0.2122 | −0.1407 | 0.4731 | 0.085* | |
C2 | 0.15937 (8) | −0.0937 (7) | 0.45442 (14) | 0.0649 (7) | |
H2C | 0.1480 | −0.1909 | 0.4137 | 0.078* | |
C3 | 0.13796 (7) | 0.0206 (5) | 0.47893 (13) | 0.0473 (6) | |
C4 | 0.15458 (8) | 0.1594 (7) | 0.53908 (13) | 0.0604 (7) | |
H4C | 0.1399 | 0.2353 | 0.5557 | 0.073* | |
C5 | 0.19272 (8) | 0.1877 (7) | 0.57510 (13) | 0.0649 (7) | |
H5A | 0.2040 | 0.2820 | 0.6161 | 0.078* | |
C6 | 0.21393 (8) | 0.0766 (6) | 0.55030 (13) | 0.0569 (7) | |
C7 | 0.16604 (7) | 0.8951 (6) | 0.71382 (12) | 0.0500 (6) | |
C8 | 0.16519 (8) | 1.0740 (6) | 0.76169 (13) | 0.0572 (7) | |
H8A | 0.1873 | 1.1340 | 0.7988 | 0.069* | |
C9 | 0.13103 (7) | 1.1630 (7) | 0.75378 (12) | 0.0567 (7) | |
H9A | 0.1301 | 1.2838 | 0.7858 | 0.068* | |
C10 | 0.09795 (6) | 1.0742 (6) | 0.69845 (11) | 0.0429 (5) | |
C11 | 0.09949 (7) | 0.8967 (6) | 0.65113 (11) | 0.0482 (6) | |
H11A | 0.0775 | 0.8364 | 0.6137 | 0.058* | |
C12 | 0.13380 (7) | 0.8084 (6) | 0.65932 (13) | 0.0522 (6) | |
H12A | 0.1348 | 0.6886 | 0.6273 | 0.063* | |
C13 | 0.03129 (7) | 1.2401 (6) | 0.64323 (11) | 0.0455 (6) | |
H4D | 0.0856 (16) | 0.130 (14) | 0.446 (3) | 0.17 (2)* | |
H4B | 0.0890 (13) | −0.130 (12) | 0.457 (2) | 0.14 (2)* | |
H4A | 0.0872 (15) | −0.110 (14) | 0.400 (3) | 0.18 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0552 (4) | 0.0610 (4) | 0.0393 (4) | −0.0094 (3) | 0.0185 (3) | 0.0031 (3) |
Cl2 | 0.0461 (4) | 0.0655 (4) | 0.0406 (3) | 0.0053 (3) | 0.0243 (3) | 0.0064 (3) |
Cl3 | 0.0503 (4) | 0.1045 (6) | 0.0858 (6) | 0.0173 (4) | 0.0377 (4) | 0.0099 (5) |
Cl4 | 0.0518 (5) | 0.1166 (7) | 0.0872 (6) | −0.0050 (5) | 0.0146 (4) | −0.0111 (5) |
O1 | 0.0472 (16) | 0.0582 (16) | 0.0483 (15) | 0.000 | 0.0191 (13) | 0.000 |
N1 | 0.0399 (12) | 0.0949 (17) | 0.0320 (10) | 0.0124 (12) | 0.0172 (9) | 0.0028 (11) |
N2 | 0.0430 (12) | 0.0954 (17) | 0.0388 (11) | 0.0095 (11) | 0.0223 (10) | 0.0160 (11) |
N3 | 0.0434 (12) | 0.1009 (18) | 0.0432 (11) | 0.0155 (12) | 0.0241 (10) | 0.0109 (12) |
N4 | 0.0506 (15) | 0.0518 (14) | 0.081 (2) | −0.0028 (12) | 0.0254 (15) | 0.0001 (14) |
C1 | 0.0595 (19) | 0.093 (2) | 0.0647 (18) | −0.0002 (17) | 0.0344 (16) | −0.0173 (17) |
C2 | 0.0610 (18) | 0.0809 (19) | 0.0507 (16) | −0.0073 (16) | 0.0266 (14) | −0.0191 (15) |
C3 | 0.0495 (15) | 0.0382 (12) | 0.0510 (14) | −0.0007 (10) | 0.0230 (12) | 0.0069 (11) |
C4 | 0.0640 (18) | 0.0716 (18) | 0.0497 (15) | 0.0065 (15) | 0.0315 (14) | −0.0041 (14) |
C5 | 0.0687 (19) | 0.0749 (19) | 0.0416 (14) | 0.0009 (16) | 0.0207 (14) | −0.0103 (13) |
C6 | 0.0506 (15) | 0.0593 (16) | 0.0502 (15) | −0.0015 (13) | 0.0174 (13) | 0.0017 (13) |
C7 | 0.0422 (14) | 0.0550 (14) | 0.0540 (15) | 0.0063 (12) | 0.0251 (12) | 0.0086 (13) |
C8 | 0.0439 (15) | 0.0668 (17) | 0.0461 (15) | 0.0004 (13) | 0.0116 (12) | −0.0033 (13) |
C9 | 0.0479 (15) | 0.0759 (18) | 0.0364 (13) | 0.0103 (14) | 0.0137 (12) | −0.0065 (13) |
C10 | 0.0394 (13) | 0.0513 (13) | 0.0351 (12) | 0.0064 (11) | 0.0167 (11) | 0.0063 (10) |
C11 | 0.0423 (14) | 0.0536 (13) | 0.0414 (13) | −0.0010 (12) | 0.0155 (11) | −0.0049 (11) |
C12 | 0.0545 (16) | 0.0547 (15) | 0.0514 (15) | 0.0049 (12) | 0.0295 (13) | −0.0057 (12) |
C13 | 0.0404 (13) | 0.0579 (14) | 0.0382 (12) | 0.0012 (11) | 0.0197 (11) | 0.0034 (11) |
Cl3—C7 | 1.738 (2) | C1—H1B | 0.9300 |
Cl4—C6 | 1.740 (3) | C2—C3 | 1.366 (4) |
O1—H14A | 0.820 (17) | C2—H2C | 0.9300 |
N1—C13 | 1.331 (3) | C3—C4 | 1.364 (4) |
N1—C10 | 1.412 (3) | C4—C5 | 1.369 (4) |
N1—H1A | 0.8600 | C4—H4C | 0.9300 |
N2—C13 | 1.320 (3) | C5—C6 | 1.359 (4) |
N2—H2A | 0.8600 | C5—H5A | 0.9300 |
N2—H2B | 0.8600 | C7—C12 | 1.359 (4) |
N3—C13 | 1.314 (3) | C7—C8 | 1.377 (4) |
N3—H3A | 0.8600 | C8—C9 | 1.379 (4) |
N3—H3B | 0.8600 | C8—H8A | 0.9300 |
N4—C3 | 1.448 (4) | C9—C10 | 1.387 (3) |
N4—H4D | 0.82 (6) | C9—H9A | 0.9300 |
N4—H4B | 0.84 (5) | C10—C11 | 1.375 (3) |
N4—H4A | 0.93 (6) | C11—C12 | 1.381 (3) |
C1—C2 | 1.367 (4) | C11—H11A | 0.9300 |
C1—C6 | 1.377 (4) | C12—H12A | 0.9300 |
C13—N1—C10 | 129.5 (2) | C6—C5—C4 | 119.4 (3) |
C13—N1—H1A | 115.2 | C6—C5—H5A | 120.3 |
C10—N1—H1A | 115.2 | C4—C5—H5A | 120.3 |
C13—N2—H2A | 120.0 | C5—C6—C1 | 120.8 (3) |
C13—N2—H2B | 120.0 | C5—C6—Cl4 | 120.0 (2) |
H2A—N2—H2B | 120.0 | C1—C6—Cl4 | 119.2 (2) |
C13—N3—H3A | 120.0 | C12—C7—C8 | 120.8 (2) |
C13—N3—H3B | 120.0 | C12—C7—Cl3 | 120.0 (2) |
H3A—N3—H3B | 120.0 | C8—C7—Cl3 | 119.2 (2) |
C3—N4—H4D | 116 (4) | C7—C8—C9 | 119.0 (2) |
C3—N4—H4B | 112 (3) | C7—C8—H8A | 120.5 |
H4D—N4—H4B | 85 (5) | C9—C8—H8A | 120.5 |
C3—N4—H4A | 119 (3) | C8—C9—C10 | 120.6 (2) |
H4D—N4—H4A | 120 (5) | C8—C9—H9A | 119.7 |
H4B—N4—H4A | 95 (4) | C10—C9—H9A | 119.7 |
C2—C1—C6 | 119.3 (3) | C11—C10—C9 | 119.3 (2) |
C2—C1—H1B | 120.3 | C11—C10—N1 | 123.5 (2) |
C6—C1—H1B | 120.3 | C9—C10—N1 | 117.2 (2) |
C3—C2—C1 | 120.0 (3) | C10—C11—C12 | 119.8 (2) |
C3—C2—H2C | 120.0 | C10—C11—H11A | 120.1 |
C1—C2—H2C | 120.0 | C12—C11—H11A | 120.1 |
C4—C3—C2 | 120.1 (3) | C7—C12—C11 | 120.5 (2) |
C4—C3—N4 | 120.8 (3) | C7—C12—H12A | 119.7 |
C2—C3—N4 | 119.1 (3) | C11—C12—H12A | 119.7 |
C3—C4—C5 | 120.4 (2) | N3—C13—N2 | 119.1 (2) |
C3—C4—H4C | 119.8 | N3—C13—N1 | 118.3 (2) |
C5—C4—H4C | 119.8 | N2—C13—N1 | 122.6 (2) |
C6—C1—C2—C3 | 0.6 (5) | C7—C8—C9—C10 | −0.1 (4) |
C1—C2—C3—C4 | −0.9 (4) | C8—C9—C10—C11 | −0.3 (4) |
C1—C2—C3—N4 | 178.4 (3) | C8—C9—C10—N1 | 177.9 (2) |
C2—C3—C4—C5 | 0.5 (4) | C13—N1—C10—C11 | −34.1 (4) |
N4—C3—C4—C5 | −178.8 (3) | C13—N1—C10—C9 | 147.8 (3) |
C3—C4—C5—C6 | 0.1 (4) | C9—C10—C11—C12 | 0.2 (4) |
C4—C5—C6—C1 | −0.4 (4) | N1—C10—C11—C12 | −177.8 (2) |
C4—C5—C6—Cl4 | 179.6 (2) | C8—C7—C12—C11 | −0.4 (4) |
C2—C1—C6—C5 | 0.0 (5) | Cl3—C7—C12—C11 | 179.0 (2) |
C2—C1—C6—Cl4 | −180.0 (2) | C10—C11—C12—C7 | 0.1 (4) |
C12—C7—C8—C9 | 0.4 (4) | C10—N1—C13—N3 | 174.8 (3) |
Cl3—C7—C8—C9 | −179.0 (2) | C10—N1—C13—N2 | −6.7 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H14A···Cl1i | 0.82 (2) | 2.36 (2) | 3.1797 (17) | 177 (3) |
N2—H2A···Cl2i | 0.86 | 2.54 | 3.324 (2) | 152 |
N3—H3A···Cl2i | 0.86 | 2.48 | 3.281 (2) | 155 |
N4—H4D···Cl2ii | 0.82 (6) | 2.39 (5) | 3.185 (3) | 164 (5) |
N2—H2B···Cl2iii | 0.86 | 2.62 | 3.2457 (19) | 131 |
N4—H4A···Cl1iv | 0.93 (6) | 2.27 (6) | 3.158 (3) | 160 (5) |
N1—H1A···Cl1v | 0.86 | 2.52 | 3.283 (2) | 148 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y−1, z; (v) x, −y+2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H7ClN+·C7H9ClN3+·2Cl−·0.5H2O |
Mr | 379.11 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 41.297 (8), 4.2089 (8), 23.695 (5) |
β (°) | 120.164 (2) |
V (Å3) | 3560.8 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.51 × 0.50 × 0.34 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.727, 0.805 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8167, 3078, 2495 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.122, 1.03 |
No. of reflections | 3078 |
No. of parameters | 211 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.33, −0.22 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H14A···Cl1i | 0.820 (17) | 2.361 (17) | 3.1797 (17) | 177 (3) |
N2—H2A···Cl2i | 0.86 | 2.54 | 3.324 (2) | 152.1 |
N3—H3A···Cl2i | 0.86 | 2.48 | 3.281 (2) | 154.8 |
N4—H4D···Cl2ii | 0.82 (6) | 2.39 (5) | 3.185 (3) | 164 (5) |
N2—H2B···Cl2iii | 0.86 | 2.62 | 3.2457 (19) | 130.7 |
N4—H4A···Cl1iv | 0.93 (6) | 2.27 (6) | 3.158 (3) | 160 (5) |
N1—H1A···Cl1v | 0.86 | 2.52 | 3.283 (2) | 147.9 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y−1, z; (v) x, −y+2, z+1/2. |
References
Berlinck, R. G. S. (1995). Prog. Chem. Org. Nat. Prod. 66, 119–295. CAS Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o276–o280. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gobbi, M. & Frenking, G. (1993). J. Am. Chem. Soc. 115, 2362–2372. CrossRef CAS Web of Science Google Scholar
Kolev, Ts., Stahl, R., Preut, H., Bleckmann, P. & Radomirska, V. (1997). Z. Kristallogr. New Cryst. Struct. 212, 415–416. CAS Google Scholar
Ploug-Sørenson, G. & Andersen, E. K. (1985). Acta Cryst. C41, 613–615. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2005). Acta Cryst. C61, o105–o109. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yonehara, H. & Otake, N. (1966). Tetrahedron Lett. 32, 3785–3791. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The guanidine-containing compounds have been employed as anti-microbials and fungicides on a considerable scale(Yonehara & Otake, 1966). The drugs containing guanidine framework are not only easy to transport(Berlinck, 1995), but also make the functions of absorption and osmosis more selective due to the good solubility of their various acid salts in aqueous solution(Gobbi & Frenking, 1993). We report here the cocrystal structure of title compound.
Title compound crystallizes with one 4-chloropenylguanidinium cation , one 4-chloroanilinium cation, two chloride anion and half water molecular in the asymmetric unit (Fig. 1). All bond lengths and angles are normal (Ploug-Sørenson & Andersen, 1985; Kolev et al., 1997; Glidewell et al., 2005; Smith et al., 2005). The forces between cations and anions consist of hydrogen bonding and ion-pairing. Intermolecular N—H···Cl and O—H···Cl hydrogen bonds form layers perpendicular to the ac plane in which both the water molecule and the chloride anion are involved in structure extension (Table 1).