metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Ethyl N-phenyl­thio­carbamato-κS](tri­cyclo­hexyl­phosphine-κP)gold(I): a monoclinic polymorph

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 8 March 2010; accepted 10 March 2010; online 13 March 2010)

The title compound, [Au(C9H10NOS)(C18H33P)], represents a monoclinic polymorph to complement a previously reported triclinic (P[\overline{1}]) polymorph [Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]). Aust. J. Chem. 46, 561–570 (unit-cell data only)]. The AuI atom is coordinated within an S,P-donor set that defines a slightly distorted linear geometry [S—Au—P = = 175.43 (3)°], with the distortion due in part to a close intra­molecular Au⋯O contact [3.036 (2) Å]. In the crystal structure, mol­ecules are arranged into supra­molecular chains along the b axis mediated by C—H⋯π inter­actions.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis and for unit-cell data for the triclinic polymorph, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H10NOS)(C18H33P)]

  • Mr = 657.62

  • Monoclinic, P 21 /n

  • a = 16.1587 (7) Å

  • b = 9.1138 (4) Å

  • c = 18.7246 (9) Å

  • β = 90.448 (1)°

  • V = 2757.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.49 mm−1

  • T = 223 K

  • 0.39 × 0.10 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.328, Tmax = 1

  • 18648 measured reflections

  • 6309 independent reflections

  • 5468 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.01

  • 6309 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—P1 2.2687 (8)
Au—S1 2.3114 (8)
P1—Au—S1 175.43 (3)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20b⋯Cgi 0.98 2.98 3.689 (4) 130
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Systematic structural studies of molecules with the general formula R3PAu[SC(OR')NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), led to the investigation of the title compound, (I).

In keeping with expectation, the gold atom in (I) exists within an SP donor set defined by the phosphine-P and thiolate-S atoms, Table 1 and Fig. 1. Confirmation that the carbonimidothioate ligand is functioning as a thiolate is found in the magnitudes of the C1—S1 and C1N1 distances of 1.749 (3) and 1.257 (4) Å, respectively. The coordination geometry is distorted from the ideal linear [S—Au—P = 175.43 (3) °] owing to the close approach of the O1 atom, 3.036 (2) Å. The most prominent interactions in the crystal structure are of the type C–H···π, Table 2, and these lead to the formation of supramolecular chains along the b axis, Fig. 2.

Unit cell data for a triclinic (P1) of (I) have been reported but no structural details were reported owing to the highly disordered nature of the molecule (Hall et al., 1993).

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis and for unit-cell data for the triclinic polymorph, see: Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and EtOC(S)N(H)Ph in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CH2Cl2/hexane (3/1) solution held at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.94-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 0.69 and 1.03 e Å-3, respectively, were located 0.78 Å and 0.92 Å from the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of a supramolecular chain in (I) aligned along the b axis with the C–H···π interactions shown as purple dashed lines. Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[(Z)-O-ethyl N-phenylthiocarbamato-κS](tricyclohexylphosphine- κP)gold(I) top
Crystal data top
[Au(C9H10NOS)(C18H33P)]F(000) = 1320
Mr = 657.62Dx = 1.584 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 6662 reflections
a = 16.1587 (7) Åθ = 2.5–29.9°
b = 9.1138 (4) ŵ = 5.49 mm1
c = 18.7246 (9) ÅT = 223 K
β = 90.448 (1)°Prism, colourless
V = 2757.4 (2) Å30.39 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
6309 independent reflections
Radiation source: fine-focus sealed tube5468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1820
Tmin = 0.328, Tmax = 1k = 911
18648 measured reflectionsl = 2423
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0174P)2]
where P = (Fo2 + 2Fc2)/3
6309 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[Au(C9H10NOS)(C18H33P)]V = 2757.4 (2) Å3
Mr = 657.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.1587 (7) ŵ = 5.49 mm1
b = 9.1138 (4) ÅT = 223 K
c = 18.7246 (9) Å0.39 × 0.10 × 0.07 mm
β = 90.448 (1)°
Data collection top
Bruker SMART CCD
diffractometer
6309 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5468 reflections with I > 2σ(I)
Tmin = 0.328, Tmax = 1Rint = 0.045
18648 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.01Δρmax = 0.69 e Å3
6309 reflectionsΔρmin = 1.03 e Å3
290 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.117624 (6)0.111622 (12)0.183207 (6)0.01601 (4)
S10.03607 (5)0.02561 (9)0.27503 (5)0.02352 (18)
P10.20646 (4)0.19446 (8)0.09908 (4)0.01485 (16)
O10.04247 (12)0.2578 (2)0.22844 (12)0.0247 (5)
N10.11098 (15)0.1371 (3)0.31544 (15)0.0275 (7)
C10.04832 (18)0.1457 (4)0.27632 (17)0.0202 (7)
C20.12197 (18)0.0201 (4)0.36357 (19)0.0271 (8)
C30.1686 (2)0.0999 (5)0.3430 (3)0.0497 (12)
H30.18760.10850.29560.060*
C40.1874 (2)0.2076 (6)0.3926 (3)0.0658 (16)
H40.21810.29000.37820.079*
C50.1621 (3)0.1962 (6)0.4617 (3)0.0577 (14)
H50.17650.26890.49500.069*
C60.1157 (3)0.0787 (5)0.4826 (2)0.0533 (13)
H60.09740.07090.53020.064*
C70.0953 (2)0.0294 (5)0.4335 (2)0.0424 (10)
H70.06300.10990.44820.051*
C80.1138 (2)0.3525 (4)0.2245 (2)0.0387 (10)
H8A0.12280.40060.27060.046*
H8B0.16330.29570.21210.046*
C90.0966 (3)0.4645 (5)0.1680 (3)0.0651 (16)
H9A0.04930.52340.18210.098*
H9B0.14460.52740.16190.098*
H9C0.08490.41530.12320.098*
C100.1927 (2)0.1200 (3)0.00840 (17)0.0206 (7)
H100.23180.03660.00560.025*
C110.2174 (2)0.2222 (4)0.05252 (17)0.0252 (7)
H11A0.27370.25870.04390.030*
H11B0.18000.30680.05370.030*
C120.2141 (2)0.1444 (4)0.12399 (19)0.0378 (9)
H12A0.22560.21510.16210.045*
H12B0.25700.06860.12520.045*
C130.1312 (3)0.0750 (5)0.1373 (2)0.0545 (13)
H13A0.13310.01930.18200.065*
H13B0.08950.15240.14300.065*
C140.1053 (2)0.0270 (4)0.0771 (2)0.0386 (10)
H14A0.04910.06310.08640.046*
H14B0.14260.11180.07540.046*
C150.1079 (2)0.0531 (4)0.00506 (19)0.0301 (8)
H15A0.06590.13070.00480.036*
H15B0.09500.01610.03330.036*
C160.31353 (18)0.1463 (3)0.12613 (17)0.0186 (7)
H160.32370.19250.17320.022*
C170.32012 (19)0.0192 (3)0.13699 (18)0.0239 (7)
H17A0.30660.06910.09200.029*
H17B0.27960.05010.17260.029*
C180.4071 (2)0.0660 (4)0.1619 (2)0.0357 (9)
H18A0.41790.02750.20990.043*
H18B0.41010.17330.16400.043*
C190.4719 (2)0.0092 (4)0.1113 (2)0.0407 (10)
H19A0.52700.03530.12960.049*
H19B0.46460.05580.06460.049*
C200.46621 (19)0.1550 (4)0.1030 (2)0.0407 (10)
H20A0.47790.20210.14910.049*
H20B0.50800.18830.06900.049*
C210.38063 (19)0.2009 (4)0.0767 (2)0.0309 (8)
H21A0.37800.30820.07370.037*
H21B0.37110.16130.02870.037*
C220.20142 (18)0.3951 (3)0.09267 (17)0.0173 (6)
H220.23790.42750.05350.021*
C230.2312 (2)0.4662 (3)0.16227 (17)0.0226 (7)
H23A0.28900.43860.17130.027*
H23B0.19790.42970.20200.027*
C240.2244 (2)0.6331 (3)0.1587 (2)0.0300 (8)
H24A0.24130.67490.20480.036*
H24B0.26220.67030.12230.036*
C250.1374 (2)0.6827 (4)0.1411 (2)0.0346 (9)
H25A0.13630.78970.13610.041*
H25B0.10040.65570.18020.041*
C260.1068 (2)0.6113 (3)0.0713 (2)0.0356 (9)
H26A0.04920.64000.06220.043*
H26B0.14030.64650.03140.043*
C270.11259 (19)0.4447 (4)0.0756 (2)0.0288 (8)
H27A0.09470.40200.03000.035*
H27B0.07540.40890.11280.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.01606 (7)0.01665 (7)0.01538 (7)0.00120 (5)0.00363 (4)0.00123 (5)
S10.0197 (4)0.0271 (4)0.0238 (4)0.0031 (3)0.0081 (3)0.0092 (4)
P10.0161 (4)0.0142 (4)0.0143 (4)0.0029 (3)0.0035 (3)0.0005 (3)
O10.0172 (11)0.0253 (12)0.0317 (14)0.0033 (10)0.0014 (9)0.0071 (11)
N10.0210 (14)0.0333 (18)0.0284 (17)0.0005 (12)0.0071 (12)0.0008 (13)
C10.0176 (15)0.0240 (17)0.0188 (17)0.0008 (13)0.0011 (12)0.0015 (13)
C20.0142 (15)0.038 (2)0.029 (2)0.0067 (15)0.0108 (13)0.0069 (16)
C30.039 (2)0.066 (3)0.044 (3)0.024 (2)0.0044 (19)0.021 (2)
C40.037 (2)0.081 (4)0.079 (4)0.026 (2)0.003 (2)0.044 (3)
C50.039 (2)0.081 (4)0.053 (3)0.017 (2)0.028 (2)0.040 (3)
C60.063 (3)0.069 (3)0.028 (2)0.039 (3)0.010 (2)0.005 (2)
C70.049 (2)0.046 (3)0.032 (2)0.021 (2)0.0047 (18)0.0040 (19)
C80.0250 (18)0.035 (2)0.056 (3)0.0094 (17)0.0031 (17)0.015 (2)
C90.038 (2)0.059 (3)0.098 (4)0.019 (2)0.013 (2)0.045 (3)
C100.0273 (17)0.0185 (16)0.0161 (17)0.0043 (13)0.0036 (13)0.0021 (13)
C110.0290 (17)0.0302 (19)0.0165 (17)0.0132 (15)0.0018 (13)0.0030 (14)
C120.048 (2)0.049 (2)0.0159 (19)0.020 (2)0.0082 (16)0.0027 (17)
C130.060 (3)0.086 (3)0.018 (2)0.036 (3)0.0020 (19)0.009 (2)
C140.035 (2)0.050 (2)0.031 (2)0.0275 (19)0.0014 (16)0.0104 (19)
C150.0273 (18)0.040 (2)0.0228 (19)0.0099 (17)0.0040 (14)0.0038 (17)
C160.0201 (15)0.0162 (16)0.0196 (17)0.0033 (13)0.0024 (12)0.0012 (13)
C170.0241 (16)0.0191 (17)0.0284 (19)0.0005 (14)0.0006 (14)0.0052 (14)
C180.033 (2)0.032 (2)0.042 (2)0.0083 (17)0.0012 (17)0.0108 (18)
C190.0258 (19)0.044 (2)0.052 (3)0.0144 (17)0.0063 (17)0.009 (2)
C200.0159 (17)0.046 (2)0.060 (3)0.0023 (17)0.0051 (17)0.017 (2)
C210.0236 (17)0.0274 (19)0.042 (2)0.0009 (15)0.0054 (15)0.0130 (17)
C220.0203 (15)0.0151 (15)0.0164 (16)0.0017 (12)0.0002 (12)0.0005 (12)
C230.0288 (17)0.0185 (17)0.0204 (18)0.0021 (14)0.0002 (13)0.0027 (14)
C240.048 (2)0.0155 (17)0.027 (2)0.0046 (16)0.0011 (16)0.0041 (14)
C250.042 (2)0.0171 (18)0.044 (2)0.0057 (16)0.0068 (18)0.0020 (17)
C260.039 (2)0.0241 (19)0.043 (2)0.0098 (16)0.0061 (18)0.0016 (17)
C270.0243 (17)0.0246 (18)0.037 (2)0.0051 (15)0.0049 (15)0.0035 (16)
Geometric parameters (Å, º) top
Au—P12.2687 (8)C14—C151.534 (5)
Au—S12.3114 (8)C14—H14A0.9800
S1—C11.749 (3)C14—H14B0.9800
P1—C221.834 (3)C15—H15A0.9800
P1—C161.852 (3)C15—H15B0.9800
P1—C101.840 (3)C16—C211.515 (4)
O1—C11.363 (4)C16—C171.526 (4)
O1—C81.441 (4)C16—H160.9900
N1—C11.257 (4)C17—C181.538 (4)
N1—C21.408 (4)C17—H17A0.9800
C2—C31.382 (5)C17—H17B0.9800
C2—C71.378 (5)C18—C191.508 (5)
C3—C41.387 (5)C18—H18A0.9800
C3—H30.9400C18—H18B0.9800
C4—C51.358 (7)C19—C201.507 (5)
C4—H40.9400C19—H19A0.9800
C5—C61.362 (7)C19—H19B0.9800
C5—H50.9400C20—C211.523 (4)
C6—C71.389 (6)C20—H20A0.9800
C6—H60.9400C20—H20B0.9800
C7—H70.9400C21—H21A0.9800
C8—C91.498 (5)C21—H21B0.9800
C8—H8A0.9800C22—C231.530 (4)
C8—H8B0.9800C22—C271.536 (4)
C9—H9A0.9700C22—H220.9900
C9—H9B0.9700C23—C241.527 (4)
C9—H9C0.9700C23—H23A0.9800
C10—C151.520 (4)C23—H23B0.9800
C10—C111.528 (4)C24—C251.511 (5)
C10—H100.9900C24—H24A0.9800
C11—C121.515 (5)C24—H24B0.9800
C11—H11A0.9800C25—C261.538 (5)
C11—H11B0.9800C25—H25A0.9800
C12—C131.500 (5)C25—H25B0.9800
C12—H12A0.9800C26—C271.523 (4)
C12—H12B0.9800C26—H26A0.9800
C13—C141.523 (5)C26—H26B0.9800
C13—H13A0.9800C27—H27A0.9800
C13—H13B0.9800C27—H27B0.9800
P1—Au—S1175.43 (3)C10—C15—H15B109.5
C1—S1—Au104.30 (11)C14—C15—H15B109.5
C22—P1—C16107.15 (14)H15A—C15—H15B108.1
C22—P1—C10107.59 (14)C21—C16—C17110.9 (3)
C16—P1—C10105.70 (15)C21—C16—P1115.3 (2)
C22—P1—Au110.44 (11)C17—C16—P1109.6 (2)
C16—P1—Au109.04 (10)C21—C16—H16106.9
C10—P1—Au116.46 (10)C17—C16—H16106.9
C1—O1—C8115.0 (2)P1—C16—H16106.9
C1—N1—C2121.8 (3)C16—C17—C18112.1 (3)
N1—C1—O1119.4 (3)C16—C17—H17A109.2
N1—C1—S1126.9 (3)C18—C17—H17A109.2
O1—C1—S1113.7 (2)C16—C17—H17B109.2
C3—C2—C7118.6 (4)C18—C17—H17B109.2
C3—C2—N1119.5 (3)H17A—C17—H17B107.9
C7—C2—N1121.4 (4)C19—C18—C17110.7 (3)
C2—C3—C4119.7 (4)C19—C18—H18A109.5
C2—C3—H3120.2C17—C18—H18A109.5
C4—C3—H3120.2C19—C18—H18B109.5
C5—C4—C3121.3 (5)C17—C18—H18B109.5
C5—C4—H4119.4H18A—C18—H18B108.1
C3—C4—H4119.4C20—C19—C18111.3 (3)
C4—C5—C6119.6 (4)C20—C19—H19A109.4
C4—C5—H5120.2C18—C19—H19A109.4
C6—C5—H5120.2C20—C19—H19B109.4
C7—C6—C5120.1 (4)C18—C19—H19B109.4
C7—C6—H6120.0H19A—C19—H19B108.0
C5—C6—H6120.0C21—C20—C19111.2 (3)
C2—C7—C6120.7 (4)C21—C20—H20A109.4
C2—C7—H7119.6C19—C20—H20A109.4
C6—C7—H7119.6C21—C20—H20B109.4
O1—C8—C9107.0 (3)C19—C20—H20B109.4
O1—C8—H8A110.3H20A—C20—H20B108.0
C9—C8—H8A110.3C16—C21—C20111.4 (3)
O1—C8—H8B110.3C16—C21—H21A109.4
C9—C8—H8B110.3C20—C21—H21A109.4
H8A—C8—H8B108.6C16—C21—H21B109.4
C8—C9—H9A109.5C20—C21—H21B109.4
C8—C9—H9B109.5H21A—C21—H21B108.0
H9A—C9—H9B109.5C23—C22—C27109.9 (3)
C8—C9—H9C109.5C23—C22—P1110.7 (2)
H9A—C9—H9C109.5C27—C22—P1110.4 (2)
H9B—C9—H9C109.5C23—C22—H22108.6
C15—C10—C11111.2 (3)C27—C22—H22108.6
C15—C10—P1113.8 (2)P1—C22—H22108.6
C11—C10—P1115.7 (2)C22—C23—C24111.3 (3)
C15—C10—H10105.0C22—C23—H23A109.4
C11—C10—H10105.0C24—C23—H23A109.4
P1—C10—H10105.0C22—C23—H23B109.4
C10—C11—C12111.5 (3)C24—C23—H23B109.4
C10—C11—H11A109.3H23A—C23—H23B108.0
C12—C11—H11A109.3C25—C24—C23112.0 (3)
C10—C11—H11B109.3C25—C24—H24A109.2
C12—C11—H11B109.3C23—C24—H24A109.2
H11A—C11—H11B108.0C25—C24—H24B109.2
C13—C12—C11111.7 (3)C23—C24—H24B109.2
C13—C12—H12A109.3H24A—C24—H24B107.9
C11—C12—H12A109.3C24—C25—C26110.6 (3)
C13—C12—H12B109.3C24—C25—H25A109.5
C11—C12—H12B109.3C26—C25—H25A109.5
H12A—C12—H12B107.9C24—C25—H25B109.5
C12—C13—C14112.6 (3)C26—C25—H25B109.5
C12—C13—H13A109.1H25A—C25—H25B108.1
C14—C13—H13A109.1C27—C26—C25110.9 (3)
C12—C13—H13B109.1C27—C26—H26A109.5
C14—C13—H13B109.1C25—C26—H26A109.5
H13A—C13—H13B107.8C27—C26—H26B109.5
C15—C14—C13110.8 (3)C25—C26—H26B109.5
C15—C14—H14A109.5H26A—C26—H26B108.0
C13—C14—H14A109.5C26—C27—C22111.2 (3)
C15—C14—H14B109.5C26—C27—H27A109.4
C13—C14—H14B109.5C22—C27—H27A109.4
H14A—C14—H14B108.1C26—C27—H27B109.4
C10—C15—C14110.8 (3)C22—C27—H27B109.4
C10—C15—H15A109.5H27A—C27—H27B108.0
C14—C15—H15A109.5
P1—Au—S1—C1132.9 (4)C11—C10—C15—C1455.9 (4)
S1—Au—P1—C22100.4 (4)P1—C10—C15—C14171.4 (3)
S1—Au—P1—C1617.1 (4)C13—C14—C15—C1055.1 (4)
S1—Au—P1—C10136.6 (4)C22—P1—C16—C2157.7 (3)
C2—N1—C1—O1177.1 (3)C10—P1—C16—C2156.8 (3)
C2—N1—C1—S12.4 (5)Au—P1—C16—C21177.2 (2)
C8—O1—C1—N13.9 (4)C22—P1—C16—C17176.4 (2)
C8—O1—C1—S1175.6 (2)C10—P1—C16—C1769.1 (2)
Au—S1—C1—N1176.1 (3)Au—P1—C16—C1756.9 (2)
Au—S1—C1—O13.4 (2)C21—C16—C17—C1853.4 (4)
C1—N1—C2—C395.3 (4)P1—C16—C17—C18178.2 (2)
C1—N1—C2—C792.2 (4)C16—C17—C18—C1954.1 (4)
C7—C2—C3—C40.1 (6)C17—C18—C19—C2055.9 (4)
N1—C2—C3—C4172.8 (4)C18—C19—C20—C2157.5 (5)
C2—C3—C4—C51.3 (7)C17—C16—C21—C2054.4 (4)
C3—C4—C5—C61.7 (7)P1—C16—C21—C20179.6 (3)
C4—C5—C6—C70.8 (6)C19—C20—C21—C1656.7 (4)
C3—C2—C7—C60.7 (5)C16—P1—C22—C2354.1 (3)
N1—C2—C7—C6171.9 (3)C10—P1—C22—C23167.4 (2)
C5—C6—C7—C20.4 (6)Au—P1—C22—C2364.5 (2)
C1—O1—C8—C9178.3 (3)C16—P1—C22—C27175.9 (2)
C22—P1—C10—C15105.1 (2)C10—P1—C22—C2770.8 (3)
C16—P1—C10—C15140.6 (2)Au—P1—C22—C2757.3 (2)
Au—P1—C10—C1519.4 (3)C27—C22—C23—C2455.8 (3)
C22—P1—C10—C1125.4 (3)P1—C22—C23—C24177.9 (2)
C16—P1—C10—C1188.8 (3)C22—C23—C24—C2556.1 (4)
Au—P1—C10—C11150.0 (2)C23—C24—C25—C2655.4 (4)
C15—C10—C11—C1255.4 (4)C24—C25—C26—C2755.8 (4)
P1—C10—C11—C12172.8 (2)C25—C26—C27—C2257.0 (4)
C10—C11—C12—C1354.1 (4)C23—C22—C27—C2656.7 (4)
C11—C12—C13—C1454.2 (5)P1—C22—C27—C26179.1 (3)
C12—C13—C14—C1554.5 (5)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20b···Cgi0.982.983.689 (4)130
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Au(C9H10NOS)(C18H33P)]
Mr657.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)223
a, b, c (Å)16.1587 (7), 9.1138 (4), 18.7246 (9)
β (°) 90.448 (1)
V3)2757.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.49
Crystal size (mm)0.39 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.328, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
18648, 6309, 5468
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.01
No. of reflections6309
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 1.03

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Au—P12.2687 (8)Au—S12.3114 (8)
P1—Au—S1175.43 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C20—H20b···Cgi0.982.983.689 (4)130
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds