metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Iso­propyl N-(4-chloro­phen­yl)thio­carbamato-κS](tri­cyclo­hexyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 14 March 2010; accepted 15 March 2010; online 20 March 2010)

The Au atom in the title compound, [Au(C10H11ClNOS)(C18H33P)], is coordinated within an S,P-donor set that defines a slightly distorted linear geometry [S—Au—P = 172.45 (5)°], with the distortion due in part to a close intra­molecular Au⋯O contact [3.134 (3) Å].

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C10H11ClNOS)(C18H33P)]

  • Mr = 706.09

  • Monoclinic, P 21 /c

  • a = 9.4547 (15) Å

  • b = 26.137 (4) Å

  • c = 12.326 (2) Å

  • β = 100.162 (3)°

  • V = 2998.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.14 mm−1

  • T = 223 K

  • 0.32 × 0.07 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.466, Tmax = 1.000

  • 20961 measured reflections

  • 6886 independent reflections

  • 5416 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.087

  • S = 1.06

  • 6886 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 3.49 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Selected bond lengths (Å)

Au—P1 2.2646 (12)
Au—S1 2.3027 (13)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Crystal engineering and luminescence imperatives motivated systematic studies of R3PAu[SC(OR')NR''], for R, R' and R'' = alkyl and aryl, derivatives (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008). The synthesis and characterisation of the title compound, (I), was investigated in this context.

The gold atom in (I) exists within an SP donor set defined by the phosphine-P and thiolate-S atoms, Table 1 and Fig. 1. The carbonimidothioate ligand is functioning as a thiolate as seen by the magnitudes of the C1—S1 [1.750 (5) Å] and C1N1 [1.257 (6) Å] bond distances. The coordination geometry is distorted from the ideal linear [S—Au—P = 172.45 (5) °] owing to the close approach of the O1 atom [3.134 (3) Å]. No specific intermolecular interactions are noted in the crystal packing.

Related literature top

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and (i-Pr)OC(S)N(H)(C6H4Cl-4) in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CH2Cl2/hexane (3/1) solution held at room temperature.

Refinement top

The H atoms were geometrically placed (C—H = 0.94-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 3.49 and 1.06 e Å-3, respectively, were located 0.85 Å and 0.70 Å from the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[(Z)-O-Isopropyl N-(4-chlorophenyl)thiocarbamato-κS](tricyclohexylphosphine- κP)gold(I) top
Crystal data top
[Au(C10H11ClNOS)(C18H33P)]F(000) = 1416
Mr = 706.09Dx = 1.564 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 879 reflections
a = 9.4547 (15) Åθ = 2.6–27.4°
b = 26.137 (4) ŵ = 5.14 mm1
c = 12.326 (2) ÅT = 223 K
β = 100.162 (3)°Prism, colourless
V = 2998.0 (8) Å30.32 × 0.07 × 0.07 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
6886 independent reflections
Radiation source: fine-focus sealed tube5416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 129
Tmin = 0.466, Tmax = 1.000k = 3333
20961 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0354P)2 + 3.2652P]
where P = (Fo2 + 2Fc2)/3
6886 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 3.49 e Å3
0 restraintsΔρmin = 1.06 e Å3
Crystal data top
[Au(C10H11ClNOS)(C18H33P)]V = 2998.0 (8) Å3
Mr = 706.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4547 (15) ŵ = 5.14 mm1
b = 26.137 (4) ÅT = 223 K
c = 12.326 (2) Å0.32 × 0.07 × 0.07 mm
β = 100.162 (3)°
Data collection top
Bruker SMART CCD
diffractometer
6886 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5416 reflections with I > 2σ(I)
Tmin = 0.466, Tmax = 1.000Rint = 0.037
20961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.06Δρmax = 3.49 e Å3
6886 reflectionsΔρmin = 1.06 e Å3
307 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.11172 (2)0.032224 (6)0.326336 (15)0.03900 (7)
Cl10.41157 (16)0.29686 (6)0.41611 (13)0.0629 (4)
S10.04148 (19)0.11519 (5)0.35057 (11)0.0547 (4)
P10.16119 (15)0.05231 (5)0.31795 (10)0.0361 (3)
O10.1788 (4)0.12683 (12)0.1876 (3)0.0391 (8)
N10.0218 (5)0.19166 (14)0.2031 (3)0.0398 (9)
C10.0788 (5)0.14992 (17)0.2375 (4)0.0360 (10)
C20.0798 (5)0.21535 (17)0.2577 (4)0.0365 (11)
C30.0419 (6)0.23739 (19)0.3612 (4)0.0445 (12)
H30.05370.23510.39820.053*
C40.1416 (6)0.26265 (19)0.4109 (4)0.0431 (12)
H40.11490.27710.48130.052*
C50.2805 (5)0.26620 (17)0.3554 (4)0.0396 (11)
C60.3205 (6)0.2456 (2)0.2522 (4)0.0478 (13)
H60.41570.24870.21470.057*
C70.2198 (6)0.2204 (2)0.2044 (4)0.0468 (12)
H70.24700.20630.13360.056*
C80.2135 (6)0.1506 (2)0.0885 (4)0.0443 (12)
H80.12400.16100.03900.053*
C90.3096 (7)0.1964 (2)0.1161 (6)0.0720 (19)
H9A0.25810.22290.14830.108*
H9B0.33820.20930.04940.108*
H9C0.39430.18650.16830.108*
C100.2859 (7)0.1079 (2)0.0358 (5)0.0570 (15)
H10A0.21910.07980.01770.085*
H10B0.36960.09620.08690.085*
H10C0.31530.12050.03090.085*
C110.2157 (5)0.07089 (17)0.1873 (4)0.0357 (10)
H110.23730.10800.18980.043*
C120.3503 (6)0.0418 (2)0.1728 (4)0.0467 (13)
H12A0.42780.04960.23460.056*
H12B0.33130.00490.17390.056*
C130.3983 (7)0.0558 (2)0.0650 (5)0.0594 (16)
H13A0.48130.03470.05620.071*
H13B0.42860.09170.06780.071*
C140.2799 (8)0.0479 (2)0.0335 (5)0.0689 (19)
H14A0.31160.06100.09980.083*
H14B0.26100.01120.04380.083*
C150.1423 (7)0.0750 (2)0.0190 (5)0.0618 (16)
H15A0.06550.06600.08040.074*
H15B0.15690.11210.02060.074*
C160.0970 (6)0.0603 (2)0.0886 (4)0.0496 (13)
H16A0.01080.07970.09700.059*
H16B0.07250.02390.08700.059*
C170.3117 (6)0.07052 (19)0.4301 (4)0.0465 (12)
H170.39890.05540.40900.056*
C180.2971 (7)0.0452 (2)0.5377 (5)0.0554 (14)
H18A0.29070.00810.52710.066*
H18B0.20800.05680.56020.066*
C190.4528 (8)0.1131 (3)0.6415 (7)0.083 (2)
H19A0.54140.11800.69530.100*
H19B0.37440.12980.67060.100*
C200.4219 (8)0.0573 (3)0.6277 (5)0.0724 (19)
H20A0.50770.04000.61140.087*
H20B0.40200.04350.69740.087*
C210.4688 (8)0.1377 (3)0.5361 (6)0.079 (2)
H21A0.47880.17470.54750.095*
H21B0.55730.12520.51410.095*
C220.3425 (6)0.1274 (2)0.4425 (5)0.0572 (15)
H22A0.36490.14100.37330.069*
H22B0.25690.14520.45790.069*
C230.0073 (6)0.09140 (18)0.3403 (5)0.0458 (12)
H230.01990.09580.42120.055*
C240.0029 (6)0.14566 (19)0.2938 (5)0.0493 (13)
H24A0.02030.14420.21310.059*
H24B0.08830.16350.31820.059*
C250.1236 (7)0.1750 (2)0.3320 (6)0.0714 (19)
H25A0.13050.20900.29800.086*
H25B0.09970.17970.41200.086*
C260.2653 (7)0.1494 (2)0.3048 (6)0.0650 (17)
H26A0.33510.16800.34010.078*
H26B0.29850.15060.22490.078*
C270.2580 (6)0.0941 (2)0.3430 (5)0.0571 (15)
H27A0.34900.07720.31290.068*
H27B0.24700.09330.42360.068*
C280.1359 (6)0.0642 (2)0.3087 (5)0.0548 (14)
H28A0.12990.03040.34370.066*
H28B0.15610.05910.22870.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.05318 (13)0.02822 (10)0.03867 (11)0.00624 (9)0.01655 (8)0.00351 (8)
Cl10.0515 (9)0.0689 (9)0.0713 (10)0.0156 (7)0.0188 (7)0.0129 (8)
S10.0946 (12)0.0329 (6)0.0458 (7)0.0167 (7)0.0377 (8)0.0081 (5)
P10.0430 (7)0.0294 (6)0.0383 (7)0.0035 (5)0.0137 (6)0.0014 (5)
O10.046 (2)0.0363 (17)0.0385 (18)0.0048 (15)0.0171 (16)0.0017 (14)
N10.048 (3)0.036 (2)0.039 (2)0.0080 (18)0.0156 (19)0.0063 (17)
C10.044 (3)0.032 (2)0.034 (2)0.003 (2)0.012 (2)0.0011 (19)
C20.045 (3)0.030 (2)0.038 (3)0.003 (2)0.017 (2)0.0041 (19)
C30.040 (3)0.046 (3)0.046 (3)0.006 (2)0.002 (2)0.001 (2)
C40.046 (3)0.043 (3)0.040 (3)0.005 (2)0.008 (2)0.005 (2)
C50.038 (3)0.035 (2)0.047 (3)0.006 (2)0.013 (2)0.001 (2)
C60.040 (3)0.052 (3)0.050 (3)0.003 (2)0.006 (2)0.000 (2)
C70.048 (3)0.051 (3)0.041 (3)0.002 (2)0.008 (2)0.006 (2)
C80.046 (3)0.051 (3)0.039 (3)0.008 (2)0.017 (2)0.009 (2)
C90.069 (4)0.053 (4)0.105 (6)0.006 (3)0.044 (4)0.005 (4)
C100.058 (4)0.068 (4)0.049 (3)0.015 (3)0.022 (3)0.003 (3)
C110.038 (3)0.031 (2)0.040 (3)0.000 (2)0.015 (2)0.0033 (19)
C120.044 (3)0.050 (3)0.047 (3)0.004 (2)0.013 (3)0.004 (2)
C130.065 (4)0.052 (3)0.072 (4)0.002 (3)0.040 (4)0.005 (3)
C140.108 (6)0.057 (3)0.052 (4)0.001 (4)0.043 (4)0.003 (3)
C150.085 (5)0.062 (4)0.039 (3)0.014 (3)0.011 (3)0.009 (3)
C160.045 (3)0.063 (3)0.039 (3)0.005 (3)0.001 (2)0.004 (2)
C170.052 (3)0.042 (3)0.045 (3)0.006 (2)0.006 (2)0.007 (2)
C180.059 (4)0.052 (3)0.052 (3)0.003 (3)0.002 (3)0.003 (3)
C190.067 (5)0.096 (6)0.079 (5)0.004 (4)0.009 (4)0.029 (4)
C200.079 (5)0.088 (5)0.044 (3)0.014 (4)0.007 (3)0.010 (3)
C210.073 (5)0.076 (5)0.087 (5)0.027 (4)0.011 (4)0.035 (4)
C220.053 (4)0.040 (3)0.076 (4)0.004 (3)0.006 (3)0.002 (3)
C230.050 (3)0.036 (2)0.055 (3)0.001 (2)0.018 (3)0.000 (2)
C240.049 (3)0.039 (3)0.063 (4)0.005 (2)0.018 (3)0.009 (2)
C250.075 (5)0.046 (3)0.103 (6)0.011 (3)0.042 (4)0.004 (3)
C260.051 (4)0.076 (4)0.068 (4)0.020 (3)0.010 (3)0.010 (3)
C270.047 (3)0.059 (3)0.070 (4)0.010 (3)0.024 (3)0.009 (3)
C280.037 (3)0.049 (3)0.077 (4)0.000 (2)0.005 (3)0.004 (3)
Geometric parameters (Å, º) top
Au—P12.2646 (12)C14—H14B0.9800
Au—S12.3027 (13)C15—C161.514 (7)
Cl1—C51.751 (5)C15—H15A0.9800
S1—C11.750 (5)C15—H15B0.9800
P1—C231.838 (5)C16—H16A0.9800
P1—C111.840 (4)C16—H16B0.9800
P1—C171.862 (5)C17—C181.511 (8)
O1—C11.356 (5)C17—C221.518 (7)
O1—C81.459 (5)C17—H170.9900
N1—C11.257 (6)C18—C201.503 (8)
N1—C21.410 (6)C18—H18A0.9800
C2—C71.376 (7)C18—H18B0.9800
C2—C31.388 (7)C19—C211.481 (10)
C3—C41.380 (7)C19—C201.492 (10)
C3—H30.9400C19—H19A0.9800
C4—C51.373 (7)C19—H19B0.9800
C4—H40.9400C20—H20A0.9800
C5—C61.371 (7)C20—H20B0.9800
C6—C71.374 (7)C21—C221.531 (9)
C6—H60.9400C21—H21A0.9800
C7—H70.9400C21—H21B0.9800
C8—C91.505 (8)C22—H22A0.9800
C8—C101.514 (7)C22—H22B0.9800
C8—H80.9900C23—C281.518 (7)
C9—H9A0.9700C23—C241.526 (7)
C9—H9B0.9700C23—H230.9900
C9—H9C0.9700C24—C251.516 (7)
C10—H10A0.9700C24—H24A0.9800
C10—H10B0.9700C24—H24B0.9800
C10—H10C0.9700C25—C261.481 (9)
C11—C121.520 (7)C25—H25A0.9800
C11—C161.528 (7)C25—H25B0.9800
C11—H110.9900C26—C271.519 (8)
C12—C131.524 (7)C26—H26A0.9800
C12—H12A0.9800C26—H26B0.9800
C12—H12B0.9800C27—C281.514 (7)
C13—C141.513 (9)C27—H27A0.9800
C13—H13A0.9800C27—H27B0.9800
C13—H13B0.9800C28—H28A0.9800
C14—C151.519 (9)C28—H28B0.9800
C14—H14A0.9800
P1—Au—S1172.45 (5)C15—C16—C11111.7 (5)
C1—S1—Au106.36 (16)C15—C16—H16A109.3
C23—P1—C11109.6 (2)C11—C16—H16A109.3
C23—P1—C17105.6 (2)C15—C16—H16B109.3
C11—P1—C17106.7 (2)C11—C16—H16B109.3
C23—P1—Au111.10 (16)H16A—C16—H16B107.9
C11—P1—Au112.92 (15)C18—C17—C22112.7 (5)
C17—P1—Au110.63 (17)C18—C17—P1111.3 (4)
C1—O1—C8117.9 (4)C22—C17—P1115.7 (4)
C1—N1—C2120.5 (4)C18—C17—H17105.4
N1—C1—O1121.7 (4)C22—C17—H17105.4
N1—C1—S1125.7 (4)P1—C17—H17105.4
O1—C1—S1112.6 (3)C20—C18—C17112.0 (5)
C7—C2—C3118.0 (4)C20—C18—H18A109.2
C7—C2—N1119.6 (4)C17—C18—H18A109.2
C3—C2—N1122.2 (5)C20—C18—H18B109.2
C4—C3—C2121.4 (5)C17—C18—H18B109.2
C4—C3—H3119.3H18A—C18—H18B107.9
C2—C3—H3119.3C21—C19—C20111.8 (6)
C5—C4—C3118.7 (5)C21—C19—H19A109.3
C5—C4—H4120.7C20—C19—H19A109.3
C3—C4—H4120.7C21—C19—H19B109.3
C6—C5—C4121.3 (5)C20—C19—H19B109.3
C6—C5—Cl1118.4 (4)H19A—C19—H19B107.9
C4—C5—Cl1120.4 (4)C19—C20—C18113.7 (6)
C5—C6—C7119.2 (5)C19—C20—H20A108.8
C5—C6—H6120.4C18—C20—H20A108.8
C7—C6—H6120.4C19—C20—H20B108.8
C6—C7—C2121.5 (5)C18—C20—H20B108.8
C6—C7—H7119.3H20A—C20—H20B107.7
C2—C7—H7119.3C19—C21—C22113.5 (6)
O1—C8—C9111.5 (5)C19—C21—H21A108.9
O1—C8—C10103.3 (4)C22—C21—H21A108.9
C9—C8—C10112.5 (5)C19—C21—H21B108.9
O1—C8—H8109.8C22—C21—H21B108.9
C9—C8—H8109.8H21A—C21—H21B107.7
C10—C8—H8109.8C17—C22—C21111.0 (5)
C8—C9—H9A109.5C17—C22—H22A109.4
C8—C9—H9B109.5C21—C22—H22A109.4
H9A—C9—H9B109.5C17—C22—H22B109.4
C8—C9—H9C109.5C21—C22—H22B109.4
H9A—C9—H9C109.5H22A—C22—H22B108.0
H9B—C9—H9C109.5C28—C23—C24110.1 (5)
C8—C10—H10A109.5C28—C23—P1113.3 (4)
C8—C10—H10B109.5C24—C23—P1117.3 (4)
H10A—C10—H10B109.5C28—C23—H23104.9
C8—C10—H10C109.5C24—C23—H23104.9
H10A—C10—H10C109.5P1—C23—H23104.9
H10B—C10—H10C109.5C25—C24—C23110.8 (4)
C12—C11—C16109.2 (4)C25—C24—H24A109.5
C12—C11—P1109.9 (3)C23—C24—H24A109.5
C16—C11—P1111.7 (3)C25—C24—H24B109.5
C12—C11—H11108.7C23—C24—H24B109.5
C16—C11—H11108.7H24A—C24—H24B108.1
P1—C11—H11108.7C26—C25—C24113.7 (5)
C11—C12—C13111.5 (4)C26—C25—H25A108.8
C11—C12—H12A109.3C24—C25—H25A108.8
C13—C12—H12A109.3C26—C25—H25B108.8
C11—C12—H12B109.3C24—C25—H25B108.8
C13—C12—H12B109.3H25A—C25—H25B107.7
H12A—C12—H12B108.0C25—C26—C27111.7 (5)
C14—C13—C12112.0 (5)C25—C26—H26A109.3
C14—C13—H13A109.2C27—C26—H26A109.3
C12—C13—H13A109.2C25—C26—H26B109.3
C14—C13—H13B109.2C27—C26—H26B109.3
C12—C13—H13B109.2H26A—C26—H26B107.9
H13A—C13—H13B107.9C28—C27—C26113.6 (5)
C13—C14—C15111.8 (5)C28—C27—H27A108.9
C13—C14—H14A109.3C26—C27—H27A108.9
C15—C14—H14A109.3C28—C27—H27B108.9
C13—C14—H14B109.3C26—C27—H27B108.9
C15—C14—H14B109.3H27A—C27—H27B107.7
H14A—C14—H14B107.9C27—C28—C23112.1 (5)
C16—C15—C14111.5 (5)C27—C28—H28A109.2
C16—C15—H15A109.3C23—C28—H28A109.2
C14—C15—H15A109.3C27—C28—H28B109.2
C16—C15—H15B109.3C23—C28—H28B109.2
C14—C15—H15B109.3H28A—C28—H28B107.9
H15A—C15—H15B108.0
P1—Au—S1—C1159.3 (4)C12—C13—C14—C1552.6 (7)
S1—Au—P1—C2329.2 (5)C13—C14—C15—C1653.0 (7)
S1—Au—P1—C11152.8 (4)C14—C15—C16—C1156.1 (7)
S1—Au—P1—C1787.8 (5)C12—C11—C16—C1557.6 (6)
C2—N1—C1—O1178.8 (4)P1—C11—C16—C15179.3 (4)
C2—N1—C1—S11.4 (7)C23—P1—C17—C1878.2 (4)
C8—O1—C1—N13.1 (7)C11—P1—C17—C18165.2 (4)
C8—O1—C1—S1176.7 (3)Au—P1—C17—C1842.1 (4)
Au—S1—C1—N1158.6 (4)C23—P1—C17—C2252.1 (5)
Au—S1—C1—O121.1 (4)C11—P1—C17—C2264.4 (5)
C1—N1—C2—C7114.7 (6)Au—P1—C17—C22172.4 (4)
C1—N1—C2—C370.2 (6)C22—C17—C18—C2051.2 (7)
C7—C2—C3—C41.5 (7)P1—C17—C18—C20177.0 (4)
N1—C2—C3—C4176.7 (4)C21—C19—C20—C1852.5 (9)
C2—C3—C4—C50.7 (8)C17—C18—C20—C1951.8 (8)
C3—C4—C5—C60.6 (8)C20—C19—C21—C2252.7 (8)
C3—C4—C5—Cl1178.8 (4)C18—C17—C22—C2150.9 (7)
C4—C5—C6—C70.9 (8)P1—C17—C22—C21179.4 (4)
Cl1—C5—C6—C7178.6 (4)C19—C21—C22—C1752.1 (8)
C5—C6—C7—C20.1 (8)C11—P1—C23—C2899.4 (4)
C3—C2—C7—C61.2 (7)C17—P1—C23—C28146.1 (4)
N1—C2—C7—C6176.5 (5)Au—P1—C23—C2826.1 (5)
C1—O1—C8—C976.9 (6)C11—P1—C23—C2430.7 (5)
C1—O1—C8—C10162.0 (4)C17—P1—C23—C2483.8 (5)
C23—P1—C11—C12175.4 (3)Au—P1—C23—C24156.2 (4)
C17—P1—C11—C1261.6 (4)C28—C23—C24—C2556.0 (7)
Au—P1—C11—C1260.1 (4)P1—C23—C24—C25172.5 (4)
C23—P1—C11—C1663.3 (4)C23—C24—C25—C2655.8 (8)
C17—P1—C11—C16177.1 (4)C24—C25—C26—C2751.6 (8)
Au—P1—C11—C1661.2 (4)C25—C26—C27—C2849.3 (8)
C16—C11—C12—C1356.7 (6)C26—C27—C28—C2351.7 (7)
P1—C11—C12—C13179.5 (4)C24—C23—C28—C2754.6 (6)
C11—C12—C13—C1455.2 (6)P1—C23—C28—C27171.8 (4)

Experimental details

Crystal data
Chemical formula[Au(C10H11ClNOS)(C18H33P)]
Mr706.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)9.4547 (15), 26.137 (4), 12.326 (2)
β (°) 100.162 (3)
V3)2998.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)5.14
Crystal size (mm)0.32 × 0.07 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.466, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20961, 6886, 5416
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.06
No. of reflections6886
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.49, 1.06

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Au—P12.2646 (12)Au—S12.3027 (13)
P1—Au—S1172.45 (5)
 

Acknowledgements

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds