metal-organic compounds
Bis[diamminesilver(I)] 5-nitroisophthalate monohydrate
aDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: rbhuang@xmu.edu.cn
In the title compound, [Ag(NH3)2]2(C8H3NO6)·H2O, the cations have an almost linear coordination geometry with two ammine ligands and interact with the water molecules [Ag⋯Owater = 2.725 (4) and 2.985 (4) Å]. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds, combined with weak (lone pair)⋯π [O⋯centroid distance = 3.401 (4) Å] and π–π stacking [centroid–centroid distance = 3.975 (3) Å] interactions, stabilize the three-dimensional supramolecular network.
Related literature
For general background to crystal engineering and supramolecular chemistry, see: Batten & Robson (1998); Blake et al. (1999); Yaghi et al. (2003). For general background to non-covalent interactions, see: Biswas et al. (2009); Egli & Arkhel (2007); Jeffrey et al. (1985); Mooibroek et al. (2006); Nishio et al. (1998); Rahman et al. (2003). For related structures, see: Sun, Luo, Huang et al. (2009); Sun, Luo, Xu et al. (2009); Sun, Luo, Zhang et al. (2009); You & Zhu (2004); You et al. (2004); Zheng et al. (2002, 2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810007725/hy2282sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007725/hy2282Isup2.hkl
All reagents and solvents were used as obtained commercially without further purification. A mixture of Ag2O (116 mg, 0.5 mmol), 2-aminopyrazine (95 mg, 1 mmol) and H2nipa (211 mg, 1 mmol) were stirred in CH3CN/H2O mixed solvent (8 ml, v/v = 1:1). Then aqueous NH3 solution (25%) was dropped into the mixture to give a clear solution under ultrasonic treatment. The resultant solution was allowed to evaporate slowly in darkness at room temperature for several days to give colorless crystals of the title compound (yield 61%). They were washed with a small volume of cold CH3CN and diethyl ether. Analysis calculated for C8H17Ag2N5O7: C 18.80, H 3.35, N 13.71%; found: C 18.86, H 3.39, N 13.64%.
C- and N-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93 and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C,N). H atoms of water molecule were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).Fig. 1. Molecular structure of the title compound, showing the coordination environment around the AgI center. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. A ball-stick perspective view of the lp(O)···π (green dashed lines) and π–π (blue dashed lines) interactions in the title compound. H atoms and [Ag(NH3)2]+ cations have been omitted for clarity. | |
Fig. 3. Perspective views of the three-dimensional supramolecular network incorporating N—H···O and O—H···O hydrogen bonds (dashed lines) viewed along two different directions. |
[Ag(NH3)2]2(C8H3NO6)·H2O | F(000) = 1000 |
Mr = 511.01 | Dx = 2.253 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4729 reflections |
a = 7.692 (2) Å | θ = 5.1–57.2° |
b = 12.229 (3) Å | µ = 2.64 mm−1 |
c = 16.379 (4) Å | T = 298 K |
β = 102.100 (4)° | Block, colorless |
V = 1506.5 (7) Å3 | 0.11 × 0.10 × 0.08 mm |
Z = 4 |
Oxford Diffraction Gemini S Ultra diffractometer | 2627 independent reflections |
Radiation source: sealed tube | 2500 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.1903 pixels mm-1 | θmax = 25.0°, θmin = 2.1° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −8→14 |
Tmin = 0.760, Tmax = 0.817 | l = −17→19 |
7118 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0451P)2 + 2.1461P] where P = (Fo2 + 2Fc2)/3 |
S = 1.22 | (Δ/σ)max < 0.001 |
2627 reflections | Δρmax = 0.97 e Å−3 |
204 parameters | Δρmin = −0.98 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0264 (13) |
[Ag(NH3)2]2(C8H3NO6)·H2O | V = 1506.5 (7) Å3 |
Mr = 511.01 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.692 (2) Å | µ = 2.64 mm−1 |
b = 12.229 (3) Å | T = 298 K |
c = 16.379 (4) Å | 0.11 × 0.10 × 0.08 mm |
β = 102.100 (4)° |
Oxford Diffraction Gemini S Ultra diffractometer | 2627 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 2500 reflections with I > 2σ(I) |
Tmin = 0.760, Tmax = 0.817 | Rint = 0.036 |
7118 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.22 | Δρmax = 0.97 e Å−3 |
2627 reflections | Δρmin = −0.98 e Å−3 |
204 parameters |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.01233 (6) | 0.87015 (4) | 0.39354 (3) | 0.0561 (2) | |
Ag2 | 0.56988 (5) | 0.37352 (3) | 0.78293 (3) | 0.0444 (2) | |
C1 | 0.1106 (5) | 0.4687 (4) | 0.4096 (3) | 0.0272 (9) | |
C2 | 0.1513 (6) | 0.3606 (4) | 0.4283 (3) | 0.0277 (9) | |
H2 | 0.0955 | 0.3065 | 0.3922 | 0.033* | |
C3 | 0.2729 (5) | 0.3307 (4) | 0.4993 (3) | 0.0273 (9) | |
C4 | 0.3475 (6) | 0.4110 (4) | 0.5543 (3) | 0.0294 (10) | |
H4 | 0.4278 | 0.3929 | 0.6032 | 0.035* | |
C5 | 0.3022 (6) | 0.5176 (4) | 0.5362 (3) | 0.0281 (9) | |
C6 | 0.1878 (6) | 0.5481 (4) | 0.4639 (3) | 0.0294 (10) | |
H6 | 0.1631 | 0.6216 | 0.4521 | 0.035* | |
C7 | −0.0153 (6) | 0.4982 (4) | 0.3292 (3) | 0.0308 (10) | |
C8 | 0.3273 (6) | 0.2131 (4) | 0.5152 (3) | 0.0293 (10) | |
N1 | −0.1928 (7) | 0.8046 (4) | 0.3002 (3) | 0.0544 (12) | |
H1A | −0.1867 | 0.8333 | 0.2509 | 0.065* | |
H1B | −0.2977 | 0.8205 | 0.3120 | 0.065* | |
H1C | −0.1805 | 0.7323 | 0.2983 | 0.065* | |
N2 | 0.2262 (6) | 0.9066 (4) | 0.4929 (3) | 0.0499 (11) | |
H2A | 0.2441 | 0.9786 | 0.4954 | 0.060* | |
H2B | 0.3239 | 0.8733 | 0.4846 | 0.060* | |
H2C | 0.2011 | 0.8835 | 0.5406 | 0.060* | |
N3 | 0.7101 (6) | 0.2725 (4) | 0.7167 (3) | 0.0411 (10) | |
H3A | 0.7576 | 0.2171 | 0.7490 | 0.049* | |
H3B | 0.7962 | 0.3108 | 0.7012 | 0.049* | |
H3C | 0.6364 | 0.2466 | 0.6716 | 0.049* | |
N4 | 0.4096 (5) | 0.4767 (4) | 0.8378 (2) | 0.0395 (10) | |
H4A | 0.4737 | 0.5333 | 0.8615 | 0.047* | |
H4B | 0.3677 | 0.4399 | 0.8764 | 0.047* | |
H4C | 0.3192 | 0.5008 | 0.7988 | 0.047* | |
N5 | 0.3862 (6) | 0.6021 (4) | 0.5942 (2) | 0.0358 (9) | |
O1 | −0.0137 (5) | 0.5948 (3) | 0.3058 (2) | 0.0405 (8) | |
O1W | −0.0469 (5) | 0.0861 (3) | 0.3572 (2) | 0.0502 (9) | |
H1WA | −0.0315 | 0.0871 | 0.3073 | 0.060* | |
H1WB | 0.0474 | 0.1189 | 0.3813 | 0.060* | |
O2 | −0.1083 (5) | 0.4259 (3) | 0.2916 (2) | 0.0502 (10) | |
O3 | 0.2508 (5) | 0.1444 (3) | 0.4657 (3) | 0.0494 (10) | |
O4 | 0.4452 (5) | 0.1927 (3) | 0.5764 (2) | 0.0412 (8) | |
O5 | 0.4957 (5) | 0.5735 (3) | 0.6553 (2) | 0.0509 (10) | |
O6 | 0.3436 (6) | 0.6952 (3) | 0.5786 (2) | 0.0567 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0498 (3) | 0.0475 (3) | 0.0734 (4) | −0.00206 (19) | 0.0184 (2) | −0.0061 (2) |
Ag2 | 0.0446 (3) | 0.0460 (3) | 0.0402 (3) | 0.00187 (17) | 0.00340 (18) | −0.00385 (17) |
C1 | 0.027 (2) | 0.030 (2) | 0.025 (2) | 0.0008 (18) | 0.0062 (16) | 0.0021 (18) |
C2 | 0.032 (2) | 0.026 (2) | 0.024 (2) | −0.0037 (18) | 0.0049 (17) | −0.0045 (17) |
C3 | 0.024 (2) | 0.028 (2) | 0.030 (2) | 0.0005 (18) | 0.0057 (17) | 0.0014 (19) |
C4 | 0.030 (2) | 0.031 (2) | 0.027 (2) | 0.0013 (19) | 0.0049 (17) | 0.0026 (19) |
C5 | 0.030 (2) | 0.028 (2) | 0.027 (2) | −0.0044 (19) | 0.0088 (17) | −0.0030 (18) |
C6 | 0.028 (2) | 0.029 (2) | 0.032 (2) | 0.0017 (19) | 0.0104 (18) | 0.0025 (19) |
C7 | 0.030 (2) | 0.028 (3) | 0.034 (2) | 0.005 (2) | 0.0069 (18) | 0.006 (2) |
C8 | 0.031 (2) | 0.027 (2) | 0.031 (2) | 0.0054 (19) | 0.0082 (19) | 0.0019 (19) |
N1 | 0.061 (3) | 0.048 (3) | 0.055 (3) | 0.006 (2) | 0.016 (2) | 0.001 (2) |
N2 | 0.052 (3) | 0.038 (3) | 0.062 (3) | 0.006 (2) | 0.015 (2) | 0.009 (2) |
N3 | 0.038 (2) | 0.038 (2) | 0.043 (2) | −0.0028 (19) | −0.0014 (18) | −0.0036 (19) |
N4 | 0.039 (2) | 0.039 (2) | 0.039 (2) | −0.0006 (19) | 0.0032 (17) | 0.0000 (19) |
N5 | 0.042 (2) | 0.035 (2) | 0.031 (2) | −0.0080 (19) | 0.0082 (18) | −0.0020 (18) |
O1 | 0.044 (2) | 0.0333 (19) | 0.0391 (19) | 0.0038 (16) | −0.0021 (15) | 0.0113 (16) |
O1W | 0.045 (2) | 0.059 (3) | 0.043 (2) | 0.0005 (19) | 0.0004 (16) | −0.0007 (19) |
O2 | 0.054 (2) | 0.037 (2) | 0.047 (2) | −0.0080 (18) | −0.0167 (17) | 0.0017 (18) |
O3 | 0.060 (2) | 0.0287 (19) | 0.049 (2) | 0.0045 (17) | −0.0119 (18) | −0.0091 (17) |
O4 | 0.0412 (18) | 0.0344 (19) | 0.0393 (18) | 0.0044 (15) | −0.0112 (15) | 0.0000 (15) |
O5 | 0.060 (2) | 0.046 (2) | 0.039 (2) | −0.0077 (19) | −0.0089 (17) | −0.0042 (17) |
O6 | 0.088 (3) | 0.027 (2) | 0.049 (2) | 0.002 (2) | −0.001 (2) | −0.0022 (17) |
Ag1—N1 | 2.112 (5) | C7—O1 | 1.243 (6) |
Ag1—N2 | 2.105 (5) | C8—O3 | 1.228 (6) |
Ag2—N3 | 2.088 (4) | C8—O4 | 1.229 (5) |
Ag2—N4 | 2.094 (4) | N1—H1A | 0.8900 |
Ag1—O1Wi | 2.725 (4) | N1—H1B | 0.8900 |
Ag2—O1Wii | 2.985 (4) | N1—H1C | 0.8900 |
C1—C6 | 1.367 (6) | N2—H2A | 0.8900 |
C1—C2 | 1.378 (6) | N2—H2B | 0.8900 |
C1—C7 | 1.505 (6) | N2—H2C | 0.8900 |
C2—C3 | 1.380 (6) | N3—H3A | 0.8900 |
C2—H2 | 0.9300 | N3—H3B | 0.8900 |
C3—C4 | 1.374 (6) | N3—H3C | 0.8900 |
C3—C8 | 1.505 (6) | N4—H4A | 0.8900 |
C4—C5 | 1.366 (6) | N4—H4B | 0.8900 |
C4—H4 | 0.9300 | N4—H4C | 0.8900 |
C5—C6 | 1.370 (6) | N5—O6 | 1.198 (6) |
C5—N5 | 1.460 (6) | N5—O5 | 1.217 (5) |
C6—H6 | 0.9300 | O1W—H1WA | 0.8501 |
C7—O2 | 1.220 (6) | O1W—H1WB | 0.8500 |
N2—Ag1—N1 | 169.90 (19) | O4—C8—C3 | 117.8 (4) |
N3—Ag2—N4 | 174.05 (16) | Ag1—N1—H1A | 109.5 |
N2—Ag1—O1Wi | 91.79 (15) | Ag1—N1—H1B | 109.5 |
N1—Ag1—O1Wi | 98.31 (16) | H1A—N1—H1B | 109.5 |
N3—Ag2—O1Wii | 74.69 (14) | Ag1—N1—H1C | 109.5 |
N4—Ag2—O1Wii | 110.21 (14) | H1A—N1—H1C | 109.5 |
C6—C1—C2 | 119.3 (4) | H1B—N1—H1C | 109.5 |
C6—C1—C7 | 120.7 (4) | Ag1—N2—H2A | 109.5 |
C2—C1—C7 | 119.9 (4) | Ag1—N2—H2B | 109.5 |
C1—C2—C3 | 121.6 (4) | H2A—N2—H2B | 109.5 |
C1—C2—H2 | 119.2 | Ag1—N2—H2C | 109.5 |
C3—C2—H2 | 119.2 | H2A—N2—H2C | 109.5 |
C4—C3—C2 | 118.7 (4) | H2B—N2—H2C | 109.5 |
C4—C3—C8 | 120.4 (4) | Ag2—N3—H3A | 109.5 |
C2—C3—C8 | 120.9 (4) | Ag2—N3—H3B | 109.5 |
C5—C4—C3 | 119.1 (4) | H3A—N3—H3B | 109.5 |
C5—C4—H4 | 120.4 | Ag2—N3—H3C | 109.5 |
C3—C4—H4 | 120.4 | H3A—N3—H3C | 109.5 |
C4—C5—C6 | 122.4 (4) | H3B—N3—H3C | 109.5 |
C4—C5—N5 | 118.5 (4) | Ag2—N4—H4A | 109.5 |
C6—C5—N5 | 119.0 (4) | Ag2—N4—H4B | 109.5 |
C1—C6—C5 | 118.8 (4) | H4A—N4—H4B | 109.5 |
C1—C6—H6 | 120.6 | Ag2—N4—H4C | 109.5 |
C5—C6—H6 | 120.6 | H4A—N4—H4C | 109.5 |
O2—C7—O1 | 125.1 (4) | H4B—N4—H4C | 109.5 |
O2—C7—C1 | 118.0 (4) | O6—N5—O5 | 124.1 (4) |
O1—C7—C1 | 116.8 (4) | O6—N5—C5 | 118.1 (4) |
O3—C8—O4 | 124.7 (4) | O5—N5—C5 | 117.8 (4) |
O3—C8—C3 | 117.5 (4) | H1WA—O1W—H1WB | 99.3 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1iii | 0.85 | 1.96 | 2.807 (5) | 177 |
O1W—H1WB···O3 | 0.85 | 1.88 | 2.684 (5) | 156 |
N1—H1B···O4iv | 0.89 | 2.35 | 3.082 (6) | 140 |
N1—H1C···O1 | 0.89 | 2.10 | 2.905 (6) | 149 |
N2—H2A···O3i | 0.89 | 2.09 | 2.954 (6) | 164 |
N2—H2B···O4v | 0.89 | 2.36 | 3.218 (6) | 163 |
N2—H2C···O1Wiv | 0.89 | 2.28 | 3.059 (6) | 147 |
N2—H2C···O6 | 0.89 | 2.57 | 2.990 (6) | 110 |
N3—H3A···O2ii | 0.89 | 2.08 | 2.937 (6) | 163 |
N3—H3B···O1v | 0.89 | 2.06 | 2.930 (6) | 167 |
N3—H3C···O4 | 0.89 | 2.02 | 2.901 (5) | 173 |
N4—H4A···O4vi | 0.89 | 2.23 | 3.088 (6) | 163 |
N4—H4B···O3vii | 0.89 | 2.14 | 3.024 (6) | 176 |
N4—H4C···O2iv | 0.89 | 2.15 | 3.036 (5) | 175 |
Symmetry codes: (i) x, y+1, z; (ii) x+1, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z+1; (vi) −x+1, y+1/2, −z+3/2; (vii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Ag(NH3)2]2(C8H3NO6)·H2O |
Mr | 511.01 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 7.692 (2), 12.229 (3), 16.379 (4) |
β (°) | 102.100 (4) |
V (Å3) | 1506.5 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.64 |
Crystal size (mm) | 0.11 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini S Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.760, 0.817 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7118, 2627, 2500 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.114, 1.22 |
No. of reflections | 2627 |
No. of parameters | 204 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.97, −0.98 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999) and SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1i | 0.85 | 1.96 | 2.807 (5) | 177 |
O1W—H1WB···O3 | 0.85 | 1.88 | 2.684 (5) | 156 |
N1—H1B···O4ii | 0.89 | 2.35 | 3.082 (6) | 140 |
N1—H1C···O1 | 0.89 | 2.10 | 2.905 (6) | 149 |
N2—H2A···O3iii | 0.89 | 2.09 | 2.954 (6) | 164 |
N2—H2B···O4iv | 0.89 | 2.36 | 3.218 (6) | 163 |
N2—H2C···O1Wii | 0.89 | 2.28 | 3.059 (6) | 147 |
N2—H2C···O6 | 0.89 | 2.57 | 2.990 (6) | 110 |
N3—H3A···O2v | 0.89 | 2.08 | 2.937 (6) | 163 |
N3—H3B···O1iv | 0.89 | 2.06 | 2.930 (6) | 167 |
N3—H3C···O4 | 0.89 | 2.02 | 2.901 (5) | 173 |
N4—H4A···O4vi | 0.89 | 2.23 | 3.088 (6) | 163 |
N4—H4B···O3vii | 0.89 | 2.14 | 3.024 (6) | 176 |
N4—H4C···O2ii | 0.89 | 2.15 | 3.036 (5) | 175 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+1; (v) x+1, −y+1/2, z+1/2; (vi) −x+1, y+1/2, −z+3/2; (vii) x, −y+1/2, z+1/2. |
References
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Biswas, C., Drew, M. G. B., Escudero, D., Frontera, A. & Ghosh, A. (2009). Eur. J. Inorg. Chem. pp. 2238–2246. Web of Science CSD CrossRef Google Scholar
Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Egli, M. & Arkhel, S. (2007). Acc. Chem. Res. 40, 197–205. Web of Science CrossRef PubMed CAS Google Scholar
Jeffrey, G. A., Maluszynska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336–348. CrossRef CAS Web of Science Google Scholar
Mooibroek, T. J., Teat, S. J., Massera, C., Gamez, P. & Reedijk, J. (2006). Cryst. Growth Des. 6, 1569–1574. Web of Science CSD CrossRef CAS Google Scholar
Nishio, M., Hirota, M. & Umezawa, Y. (1998). The C—H⋯π Interactions (Evidence, Nature and Consequences). New York: Wiley-VCH. Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rahman, A. N. M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422–428. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, D., Luo, G.-G., Huang, R.-B., Zhang, N. & Zheng, L.-S. (2009). Acta Cryst. C65, m305–m307. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sun, D., Luo, G.-G., Xu, Q.-J., Zhang, N., Jin, Y.-C., Zhao, H.-X., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2009). Inorg. Chem. Commun. 12, 782–784. Web of Science CSD CrossRef CAS Google Scholar
Sun, D., Luo, G.-G., Zhang, N., Chen, J.-H., Huang, R.-B., Lin, L.-R. & Zheng, L.-S. (2009). Polyhedron, 28, 2983–2988. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. Web of Science CrossRef PubMed CAS Google Scholar
You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. C60, m517–m519. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1624–m1626. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, S.-L., Tong, M.-L., Chen, X.-M. & Ng, S. W. (2002). J. Chem. Soc. Dalton Trans. pp. 360–364. Web of Science CSD CrossRef Google Scholar
Zheng, S.-L., Volkov, A. C., Nygren, L. & Coppens, P. (2007). Chem. Eur. J. 13, 8583–8590. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Renaissance in crystal engineering and supramolecular chemistry is due to the diverse and aesthetic structural topologies and potential use in optical, electrical, catalytic, gas storage and even drug delivery as functional solid materials (Batten & Robson, 1998; Blake et al., 1999; Yaghi et al., 2003). In addition to coordination bonds, noncovalent interactions such as hydrogen bond, π–π stacking, C—H···π, anion···π, cation···π and lone-pair(lp)···π interactions between molecules also play a pivotal role in the stability of molecule packing and govern the physicochemical properties of molecular systems in the condensed phase (Mooibroek et al., 2006; Nishio et al., 1998). Although AgI ion under ammoniacal conditions can form {[Ag(NH3)2]+}n (n = 1 or 2) (Zheng et al., 2007), which can be stabilized by supramolecular interactions, only limited [Ag(NH3)2]-containing compounds were documented due to the weak Ag—Nammine coordination bond (You et al., 2004; Zheng et al., 2002). Recently, we have pursued systematic investigations about the self-assembly of AgI ion with different bipodal N-donor ligands and multicarboxylates under ammoniacal conditions (Sun, Luo, Huang et al., 2009; Sun, Luo, Xu et al., 2009; Sun, Luo, Zhang et al., 2009). In an attempt to exploit the AgI/aminopyrazine/H2nipa system (H2nipa = 5-nitroisophthalic acid), we surprisingly obtained the title compound.
The title compound comprises two [Ag(NH3)2]+ cations, one nipa anion and one uncoordinated water molecule in the asymmetric unit (Fig. 1). Each AgI ion is in an almost linear coordination environment, coordinated by two ammonia molecules, forming a cationic [Ag(NH3)2]+ monomer. The Ag—N bond lengths range from 2.088 (4) to 2.112 (5) Å (Table 1), which are comparable to the corresponding values observed in other silver(I) compounds (You & Zhu, 2004). The N1—Ag1—N2 [169.90 (19)°] and N3—Ag2—N4 [174.05 (16)°] angles deviate from the ideal 180°, as a result of weak interactions between the AgI ions and water molecules. The Ag1···O1Wiii and Ag2···O1Wv distances are 2.725 (4) and 2.985 (4) Å, respectively, which suggest anything other than a secondary interaction [symmetry codes: (iii) x, y+1, z; (v) x+1, -y+1/2, z+1/2]. The shortest centroid–centroid distance between neighboring phenyl rings of nipa anions is 3.975 (3) Å, with a large slippage of 2.129 Å, which suggests the existence of a weak offset π–π stacking interaction. On the other hand, one striking feature of the title compound is an lp···π interaction (Biswas et al., 2009; Egli & Arkhel, 2007). A weak lp···π interaction is observed between the nitro O5 atom and phenyl ring of the nipa anion. The distance between the ring centroid and O5 atom is 3.401 (4) Å. This lp(O)···π interaction distance falls in the range of few experimental examples so far reported (Rahman et al., 2003). The angle θ (which corresponds to the angle between the O atom, the ring centroid and the aromatic plane) is 83.7 (3)°, reflecting a significant lp···π interaction. Every two nipa anions arrange in a parallel manner, forming a dimer through lp(O)···π interactions, and the neighboring dimers pack togther through weak π–π stacking interactions into columns running along the a axis (Fig. 2).
One of the ammonia molecules forms a bifurcated hydrogen bond (Jeffrey et al., 1985) [N2–H2C···O1Wii and N2–H2C···O6, symmetry code: (ii) -x, -y+1, -z+1]. In addition, the [Ag(NH3)2]+ cations, nipa anions and water molecules interact via N—H···O and O—H···O hydrogen bonds (Table 2) [average N···O = 3.010 (6), O···O = 2.746 (5) Å] to consolidate the three-dimensional supramolecular network (Fig. 3).