metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[aqua­copper(II)]-bis­­[μ-bis­­(3,5-di­methyl-1H-pyrazol-4-yl) selenide-κ2N2:N2′]] dichloride monohydrate]

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: mcs@univ.kiev.ua

(Received 18 February 2010; accepted 26 February 2010; online 3 March 2010)

In the title compound, {[Cu(C10H14N4Se)2(H2O)]Cl2·H2O}n, the CuII ion, lying on a twofold rotation axis, has a square-pyramidal geometry constituted by four N atoms of pyrazolyl groups in the basal plane and an apical O atom of a water mol­ecule. A pair of bis­(3,5-dimethyl-1H-pyrazol-4-yl) selenide ligands bridge the Cu centers into a polymeric double-chain extending along [001]. The chloride anions are involved in inter­molecular N—H⋯Cl and O—H⋯Cl hydrogen bonds, which link the chains into a three-dimensional network.

Related literature

For general background to the applications of coordination polymers, see: Farha et al. (2009[Farha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727-1731.]); Shibahara et al. (2007[Shibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun. 10, 860-862.]); Zhang et al. (2009[Zhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. 48, 5287-5290.]). For our studies of similar complexes, see: Seredyuk et al. (2007[Seredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183-3194.], 2009[Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H14N4Se)2(H2O)]Cl2·H2O

  • Mr = 708.90

  • Monoclinic, C 2/c

  • a = 11.332 (1) Å

  • b = 13.229 (2) Å

  • c = 18.786 (1) Å

  • β = 92.45 (3)°

  • V = 2813.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.59 mm−1

  • T = 100 K

  • 0.10 × 0.05 × 0.01 mm

Data collection
  • Kuma KM-4 CCD diffractometer

  • 6625 measured reflections

  • 2377 independent reflections

  • 2217 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.072

  • S = 1.10

  • 2377 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1 0.93 2.43 3.354 (2) 169
O1—H1O1⋯Cl1 0.88 2.25 3.0702 (10) 156
N2—H2N⋯Cl1i 0.88 2.33 3.117 (2) 148
N4—H4N⋯Cl1ii 0.88 2.27 3.144 (2) 176
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].

Data collection: KM-4 CCD Software. (Kuma Diffraction, 1998[Kuma Diffraction (1998). KM-4 CCD Software. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM-4 CCD Software.; data reduction: KM-4 CCD Software.; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Study of metal-organic polymers is a well elaborated research area in coordination chemistry. Infinite molecular polymeric arrays are potentially applicable as specifically ordered crystalline substances with reversible selective sorption (Farha et al., 2009; Zhang et al., 2009), electrical conductivity (Zhang et al., 2009) and molecular magnetism functionality (Shibahara et al., 2007).

The title compound was prepared in a water–methanolic medium by mixing solutions of CuCl2.2H2O and the bis(3,5-dimethyl-1H-pyrazolyl)selenide (L) ligand. It is similar to the copper compounds reported recently (Seredyuk et al., 2007, 2009). A square pyramidal environment of the CuII ion is constituted by four non-coplanar N atoms of pyrazolyl rings [the Cu—N distances are 1.988 (2) and 2.017 (2) Å, the Cu—O distance is 2.208 (3) Å]. Adjacent CuII ions are linked by symmetrically equivalent ligands in a double-stranded bridge fashion (Fig. 1). Formed one-dimensional linear chain is running along the c axis, where the Cu atom deviates from the average basal plane by a value of 0.392 (1) Å (Fig. 2). The NH group of a pyrazole ring is involved in hydrogen bonding with chloride anion (Table 1), which further forms hydrogen bonds with both free and coordinated water molecules and additionally with a pyrazole ring of a neighbouring polymeric chain (Table 1). As a result, a dense network of hydrogen bonds is formed.

Related literature top

For general background to the applications of coordination polymers, see: Farha et al. (2009); Shibahara et al. (2007); Zhang et al. (2009). For our studies of similar complexes, see: Seredyuk et al. (2007, 2009).

Experimental top

The ligand L was prepared according to a previously reported method (Seredyuk et al., 2007). Copper(II) chloride dihydrate (0.034 g, 0.19 mmol) in water (5 ml) was added to 5 ml of hot methanol solution of L (0.100 g, 0.37 mmol). The solution was left for slow cooling at room temperature. After several days plate-like blue-violet crystals of the title compound suitable for X-ray analysis were isolated. Analysis, calculated for C20H32Cl2CuN8O2Se2: C 33.89, H 4.55, N 15.81%; found: C 33.67, H 4.51, N 15.60%.

Refinement top

C- and N-bound H atoms were placed at calculated positions and treated as riding on their parent atoms [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C); N—H = 0.88 Å and Uiso(H) = 1.2Ueq(N)]. The H atoms of water molecules were located from a difference Fourier map and were refined as riding, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: KM-4 CCD Software (Kuma Diffraction, 1998); cell refinement: KM-4 CCD Software (Kuma Diffraction, 1998); data reduction: KM-4 CCD Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A portion of the double-chain structure of the title compound, showing the 50% probability displacement ellipsoids. H atoms are omitted for clarity. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) -x, y, 1/2-z; (ii) -x, -y, 1-z.]
[Figure 2] Fig. 2. A packing diagram of the title compound. H atoms are omitted for clarity.
catena-Poly[[[aquacopper(II)]-bis[µ-bis(3,5-dimethyl-1H- pyrazol-4-yl) selenide-κ2N2:N2']] dichloride monohydrate] top
Crystal data top
[Cu(C10H14N4Se)2(H2O)]Cl2·H2OF(000) = 1420
Mr = 708.90Dx = 1.673 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6625 reflections
a = 11.332 (1) Åθ = 3.2–28.4°
b = 13.229 (2) ŵ = 3.59 mm1
c = 18.786 (1) ÅT = 100 K
β = 92.45 (3)°Plates, blue
V = 2813.7 (5) Å30.10 × 0.05 × 0.01 mm
Z = 4
Data collection top
Kuma KM-4 CCD
diffractometer
2217 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
ω scansh = 137
6625 measured reflectionsk = 1515
2377 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.7165P]
where P = (Fo2 + 2Fc2)/3
2377 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Cu(C10H14N4Se)2(H2O)]Cl2·H2OV = 2813.7 (5) Å3
Mr = 708.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.332 (1) ŵ = 3.59 mm1
b = 13.229 (2) ÅT = 100 K
c = 18.786 (1) Å0.10 × 0.05 × 0.01 mm
β = 92.45 (3)°
Data collection top
Kuma KM-4 CCD
diffractometer
2217 reflections with I > 2σ(I)
6625 measured reflectionsRint = 0.061
2377 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.10Δρmax = 0.57 e Å3
2377 reflectionsΔρmin = 0.44 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0470 (2)0.1461 (2)0.41623 (14)0.0171 (6)
H22A0.01110.11050.44710.026*
H22B0.00680.17900.37730.026*
H22C0.08730.19740.44400.026*
C20.1350 (2)0.07273 (19)0.38631 (13)0.0112 (5)
C30.2414 (2)0.04235 (18)0.58358 (13)0.0106 (5)
C40.2939 (2)0.02624 (19)0.36872 (14)0.0137 (5)
C50.4086 (2)0.0822 (2)0.36926 (16)0.0232 (7)
H9A0.46370.05380.33300.035*
H9B0.39500.15380.35890.035*
H9C0.44210.07580.41630.035*
C60.0587 (2)0.14112 (19)0.38756 (14)0.0124 (5)
H5A0.02360.15930.34070.019*
H5B0.10330.19880.40740.019*
H5C0.00400.12300.41960.019*
C70.1401 (2)0.05297 (19)0.37995 (13)0.0106 (5)
C80.2365 (2)0.02232 (19)0.42508 (13)0.0115 (5)
C90.2796 (2)0.0650 (2)0.39493 (13)0.0129 (5)
C100.3787 (2)0.1344 (2)0.41780 (15)0.0205 (6)
H14A0.34630.19550.43920.031*
H14B0.43110.10010.45290.031*
H14C0.42340.15320.37630.031*
N10.12324 (17)0.02426 (15)0.32427 (11)0.0112 (4)
N20.22165 (18)0.03492 (15)0.31502 (11)0.0128 (4)
H2N0.23560.07420.27780.015*
N30.12555 (17)0.01244 (16)0.32624 (11)0.0113 (4)
N40.21226 (19)0.08360 (16)0.33652 (12)0.0123 (5)
H4N0.22230.13540.30800.015*
O10.00000.19654 (18)0.25000.0154 (5)
H1O10.06250.23170.26060.023*
O1W0.50000.1193 (3)0.25000.0387 (8)
H1W0.43380.15890.26190.058*
Cl10.25642 (5)0.26253 (5)0.26925 (3)0.01824 (17)
Cu10.00000.02962 (3)0.25000.00888 (13)
Se10.30884 (2)0.097275 (18)0.501388 (12)0.01122 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0139 (12)0.0217 (15)0.0161 (14)0.0071 (11)0.0043 (11)0.0059 (10)
C20.0097 (11)0.0122 (12)0.0116 (13)0.0016 (10)0.0015 (10)0.0020 (10)
C30.0099 (11)0.0106 (12)0.0114 (13)0.0014 (9)0.0035 (10)0.0007 (9)
C40.0112 (12)0.0169 (14)0.0134 (14)0.0001 (10)0.0038 (11)0.0019 (10)
C50.0174 (14)0.0321 (17)0.0204 (15)0.0133 (12)0.0048 (12)0.0067 (12)
C60.0120 (12)0.0111 (13)0.0139 (13)0.0018 (10)0.0005 (10)0.0001 (9)
C70.0087 (11)0.0117 (12)0.0113 (13)0.0023 (10)0.0020 (10)0.0011 (9)
C80.0077 (11)0.0162 (13)0.0105 (13)0.0012 (10)0.0007 (10)0.0004 (9)
C90.0091 (12)0.0158 (13)0.0138 (14)0.0009 (10)0.0004 (11)0.0009 (10)
C100.0153 (13)0.0217 (15)0.0242 (15)0.0091 (11)0.0030 (12)0.0013 (11)
N10.0090 (10)0.0106 (11)0.0139 (11)0.0019 (8)0.0005 (9)0.0001 (8)
N20.0118 (10)0.0162 (11)0.0103 (11)0.0042 (9)0.0009 (9)0.0022 (8)
N30.0069 (10)0.0116 (11)0.0154 (11)0.0024 (8)0.0013 (9)0.0009 (8)
N40.0108 (10)0.0126 (11)0.0134 (11)0.0041 (8)0.0004 (9)0.0020 (8)
O10.0122 (12)0.0104 (13)0.0241 (14)0.0000.0053 (11)0.000
O1W0.0318 (17)0.0365 (19)0.048 (2)0.0000.0058 (16)0.000
Cl10.0215 (3)0.0131 (3)0.0206 (4)0.0055 (2)0.0061 (3)0.0008 (2)
Cu10.0069 (2)0.0108 (2)0.0089 (2)0.0000.00069 (17)0.000
Se10.00924 (16)0.01421 (17)0.01027 (17)0.00342 (9)0.00104 (11)0.00041 (8)
Geometric parameters (Å, º) top
C1—C21.485 (3)C7—N31.334 (3)
C1—H22A0.9800C7—C81.413 (4)
C1—H22B0.9800C8—C91.385 (4)
C1—H22C0.9800C8—Se11.900 (2)
C2—N11.342 (3)C9—N41.332 (3)
C2—C3i1.412 (3)C9—C101.499 (3)
C3—C4i1.391 (4)C10—H14A0.9800
C3—C2i1.412 (3)C10—H14B0.9800
C3—Se11.896 (2)C10—H14C0.9800
C4—N21.331 (3)N1—N21.368 (3)
C4—C3i1.391 (4)N2—H2N0.8800
C4—C51.496 (4)N3—N41.368 (3)
C5—H9A0.9800N4—H4N0.8800
C5—H9B0.9800O1—H1O10.8771
C5—H9C0.9800O1W—H1W0.9337
C6—C71.497 (3)Cu1—N1ii2.017 (2)
C6—H5A0.9800Cu1—N3ii1.988 (2)
C6—H5B0.9800Cu1—O12.208 (3)
C6—H5C0.9800
C2—C1—H22A109.5N4—C9—C8106.9 (2)
C2—C1—H22B109.5N4—C9—C10121.2 (2)
H22A—C1—H22B109.5C8—C9—C10131.8 (2)
C2—C1—H22C109.5C9—C10—H14A109.5
H22A—C1—H22C109.5C9—C10—H14B109.5
H22B—C1—H22C109.5H14A—C10—H14B109.5
N1—C2—C3i109.3 (2)C9—C10—H14C109.5
N1—C2—C1123.4 (2)H14A—C10—H14C109.5
C3i—C2—C1127.3 (2)H14B—C10—H14C109.5
C4i—C3—C2i106.1 (2)C2—N1—N2105.85 (19)
C4i—C3—Se1126.76 (19)C2—N1—Cu1132.97 (17)
C2i—C3—Se1126.70 (19)N2—N1—Cu1121.14 (15)
N2—C4—C3i106.5 (2)C4—N2—N1112.3 (2)
N2—C4—C5121.7 (2)C4—N2—H2N123.9
C3i—C4—C5131.8 (2)N1—N2—H2N123.9
C4—C5—H9A109.5C7—N3—N4105.95 (19)
C4—C5—H9B109.5C7—N3—Cu1132.87 (17)
H9A—C5—H9B109.5N4—N3—Cu1120.69 (16)
C4—C5—H9C109.5C9—N4—N3111.8 (2)
H9A—C5—H9C109.5C9—N4—H4N124.1
H9B—C5—H9C109.5N3—N4—H4N124.1
C7—C6—H5A109.5Cu1—O1—H1O1122.0
C7—C6—H5B109.5N3ii—Cu1—N3166.88 (12)
H5A—C6—H5B109.5N3ii—Cu1—N1ii89.60 (8)
C7—C6—H5C109.5N3—Cu1—N1ii89.94 (8)
H5A—C6—H5C109.5N3ii—Cu1—N189.94 (8)
H5B—C6—H5C109.5N3—Cu1—N189.60 (8)
N3—C7—C8109.6 (2)N1ii—Cu1—N1175.97 (11)
N3—C7—C6121.4 (2)N3ii—Cu1—O196.56 (6)
C8—C7—C6129.0 (2)N3—Cu1—O196.56 (6)
C9—C8—C7105.7 (2)N1ii—Cu1—O192.01 (6)
C9—C8—Se1126.54 (19)N1—Cu1—O192.01 (6)
C7—C8—Se1126.90 (19)C3—Se1—C8103.80 (10)
N3—C7—C8—C90.5 (3)C10—C9—N4—N3178.6 (2)
C6—C7—C8—C9178.4 (2)C7—N3—N4—C90.4 (3)
N3—C7—C8—Se1170.61 (17)Cu1—N3—N4—C9172.60 (17)
C6—C7—C8—Se111.5 (4)C7—N3—Cu1—N3ii38.4 (2)
C7—C8—C9—N40.2 (3)N4—N3—Cu1—N3ii150.87 (17)
Se1—C8—C9—N4170.41 (18)C7—N3—Cu1—N1ii126.3 (2)
C7—C8—C9—C10178.7 (3)N4—N3—Cu1—N1ii62.89 (17)
Se1—C8—C9—C1011.1 (4)C7—N3—Cu1—N149.7 (2)
C3i—C2—N1—N20.7 (3)N4—N3—Cu1—N1121.11 (17)
C1—C2—N1—N2179.3 (2)C7—N3—Cu1—O1141.6 (2)
C3i—C2—N1—Cu1178.10 (17)N4—N3—Cu1—O129.13 (17)
C1—C2—N1—Cu12.0 (4)C2—N1—Cu1—N3ii143.2 (2)
C3i—C4—N2—N10.1 (3)N2—N1—Cu1—N3ii33.83 (17)
C5—C4—N2—N1178.6 (2)C2—N1—Cu1—N349.9 (2)
C2—N1—N2—C40.5 (3)N2—N1—Cu1—N3133.06 (17)
Cu1—N1—N2—C4178.26 (17)C2—N1—Cu1—O146.7 (2)
C8—C7—N3—N40.5 (3)N2—N1—Cu1—O1130.39 (16)
C6—C7—N3—N4178.6 (2)C4i—C3—Se1—C8102.0 (2)
C8—C7—N3—Cu1171.23 (17)C2i—C3—Se1—C887.0 (2)
C6—C7—N3—Cu16.9 (4)C9—C8—Se1—C392.4 (2)
C8—C9—N4—N30.1 (3)C7—C8—Se1—C399.4 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl10.932.433.354 (2)169
O1—H1O1···Cl10.882.253.0702 (10)156
N2—H2N···Cl1iii0.882.333.117 (2)148
N4—H4N···Cl1ii0.882.273.144 (2)176
Symmetry codes: (ii) x, y, z+1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H14N4Se)2(H2O)]Cl2·H2O
Mr708.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)11.332 (1), 13.229 (2), 18.786 (1)
β (°) 92.45 (3)
V3)2813.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.59
Crystal size (mm)0.10 × 0.05 × 0.01
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6625, 2377, 2217
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.10
No. of reflections2377
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.44

Computer programs: KM-4 CCD Software (Kuma Diffraction, 1998), KM-4 CCD Software, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl10.932.433.354 (2)169
O1—H1O1···Cl10.882.253.0702 (10)156
N2—H2N···Cl1i0.882.333.117 (2)148
N4—H4N···Cl1ii0.882.273.144 (2)176
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x, y, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. M/263-2008).

References

First citationFarha, O. K., Spokoyny, A. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727–1731.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKuma Diffraction (1998). KM-4 CCD Software. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationSeredyuk, M., Haukka, M., Fritsky, I. O., Kozlowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). Dalton Trans. pp. 3183–3194.  Web of Science CSD CrossRef Google Scholar
First citationSeredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). Acta Cryst. E65, m1396.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibahara, S., Kitagawa, H., Kubo, T. & Nakasuji, K. (2007). Inorg. Chem. Commun. 10, 860–862.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y.-B., Zhang, W.-X., Feng, F.-Y., Zhang, J.-P. & Chen, X.-M. (2009). Angew. Chem. Int. Ed. 48, 5287–5290.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds