metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m467-m468

4,4′-Bipyridinium bis­­(μ-4-oxo-1,4-di­hydro­pyridine-2,6-di­carboxyl­ato)bis­­[aqua­hydroxido­anti­monate(III)] dihydrate

aDepartment of Chemistry, Ilam University, Ilam, Iran, bYoung Researchers Club, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 24 February 2010; accepted 22 March 2010; online 31 March 2010)

The title compound, (C10H10N2)[Sb2(C7H2NO5)2(OH)2(H2O)2]·2H2O, consists of a binuclear anion, a diprotonated 4,4′-bipyridinium cation and two uncoordinated water mol­ecules. Each SbIII atom is six-coordinated by one chelating 4-oxidopyridine-2,6-dicarboxyl­ate ligand, one water mol­ecule, one OH group and one bridging O atom from a neighboring carboxyl­ate group in a distorted penta­gonal-pyramidal geometry, with the OH group at the apical position. The two pyridine rings in the bipyridinium cation are twisted with respect to each other, making a dihedral angle of 22.7 (1)°. The cations are connected to the anions by N—H⋯O hydrogen bonds, forming a chain. The coordinated water mol­ecules form hydrogen bonds with the oxido O atoms of the anion, building a two-dimensional sheet, which is further connected into a three-dimensional structure by O—H⋯O and C—H⋯O hydrogen bonds and C=O⋯π inter­actions [O⋯centroid distances = 3.1785 (17), 3.4737 (19) and 3.5685 (19) Å].

Related literature

For the use of 4,4′-bipyridine in the construction of supra­molecular architectures, see: Jia et al. (2009[Jia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.]); Meng et al. (2009[Meng, Q.-H., Han, L., Hou, J.-D., Luo, Y.-F. & Zeng, R.-H. (2009). Acta Cryst. E65, o132-o133.]); Zhang et al. (2009[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m975-m976.]). For binuclear complexes of SbIII/SbV with pyridine-2,6-dicarboxylic acid, see: Aghabozorg et al. (2005[Aghabozorg, H., Dalir Kheirollahi, P., Moghimi, A. & Sadr-Khanlou, E. (2005). Anal. Sci. 21, x79-x80.]); Soleimannejad et al. (2008[Soleimannejad, J., Aghabozorg, H., Golenji, Y. M. A., Attar Gharamaleki, J. & Adams, H. (2008). Acta Cryst. E64, m387-m388.]). For proton transfer compounds and their metal complexes, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For environmental studies of anti­mony, see: Filella et al. (2002[Filella, M., Belzile, N. & Chen, Y. W. (2002). Earth Sci. Rev. 59, 265-285.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10N2)[Sb2(C7H2NO5)2(OH)2(H2O)2]·2H2O

  • Mr = 867.97

  • Triclinic, [P \overline 1]

  • a = 7.7774 (9) Å

  • b = 10.2465 (12) Å

  • c = 17.773 (2) Å

  • α = 80.255 (5)°

  • β = 81.760 (5)°

  • γ = 82.547 (5)°

  • V = 1373.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 150 K

  • 0.32 × 0.32 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.559, Tmax = 0.776

  • 29846 measured reflections

  • 6323 independent reflections

  • 5762 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.054

  • S = 1.05

  • 6323 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2i 0.85 1.88 2.725 (2) 177
O1W—H1B⋯O11ii 0.85 1.87 2.704 (2) 167
O2W—H2A⋯O7iii 0.86 1.85 2.703 (2) 171
O2W—H2B⋯O16iv 0.85 1.86 2.669 (2) 157
O11—H11A⋯O2W 0.85 1.90 2.688 (2) 154
O16—H16A⋯O1W 0.85 1.88 2.684 (2) 155
O13—H13A⋯O9 0.85 1.83 2.672 (2) 173
O13—H13B⋯O3v 0.85 1.92 2.764 (2) 173
O15—H15A⋯O4 0.85 1.88 2.709 (2) 166
O15—H15B⋯O8vi 0.85 1.98 2.823 (2) 171
N3—H3A⋯O3vii 0.85 1.78 2.624 (2) 171
N4—H4A⋯O8vi 0.85 1.80 2.648 (2) 173
C3—H3⋯O1Wi 0.93 2.60 3.460 (3) 154
C5—H5⋯O9vi 0.93 2.53 3.434 (3) 164
C12—H12⋯O4v 0.93 2.55 3.470 (3) 172
C15—H15⋯O6 0.93 2.59 3.415 (3) 149
C19—H19⋯O2Wiii 0.93 2.60 3.484 (3) 160
C20—H20⋯O1Wviii 0.93 2.25 3.172 (3) 172
C21—H21⋯O1ix 0.93 2.44 3.358 (3) 170
C22—H22⋯O2ix 0.93 2.45 3.107 (3) 128
C24—H24⋯O16x 0.93 2.57 3.261 (3) 131
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x+1, -y+2, -z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x, y-1, z; (vii) x-1, y+1, z-1; (viii) -x, -y+2, -z; (ix) x-1, y, z-1; (x) -x, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that 4,4'-bipyridine is an excellent candidate for the construction of three-dimensional network motifs. It can act as coordinating or bridging ligand or as proton acceptor agent (Jia et al., 2009; Meng et al., 2009; Zhang et al., 2009). The binuclear mixed ligand SbIII/SbV compounds have been recently reported, in which pyridinedicarboxylic acid has been used as chelating ligand (Soleimannejad et al., 2008). For more details regarding proton transfer compounds and their metal complexes see our review article (Aghabozorg et al., 2008).

The title compound is composed of a binuclear [Sb(hypydc)(OH)(H2O)]22- (H3hypydc = 4-hydroxypyridine-2,6-dicarboxylic acid) anion, a diprotonated 4,4'-bipyridinium cation and two uncoordinated water molecules (Fig. 1). In the binuclear complex anion, each SbIII atom is six-coordinated by one chelating (hypydc)3- ligand through its one N and two O atoms, one O atom from a terminal OH group, one O atom from a water molecule and one O atom from a neighboring carboxylate group as bridging ligand in a distorted pentagonal pyramidal geometry (Fig. 2). The relatively weaker Sb1—O10 [2.7617 (14) Å] and Sb2—O5 [2.7959 (14) Å] interactions connect the two anionic units into a binuclear complex through sharing O atoms of the carboxylate groups. The OH group is located at the apical position [Sb1—O11 = 1.9300 (15) and Sb2—O16 = 1.9304 (14) Å] and the rest O4N set forms the basal plane. It is supposed that this OH group is formed during the partial hydrolysis of SbCl3 to SbOCl, which is further hydrolyzed to Sb(OH)3, because free SbIII ion is stable in solution only at very high acidities (Filella et al., 2002). The Sb1—N1 and Sb2—N2 bond distances are 2.197 (3) and 2.191 (3) Å, respectively, which are comparable with the bond distances of SbIII binuclear complex with pyridine-2,6-dicarboxylic acid (Aghabozorg et al., 2005). The SbIII atoms deviate by 0.272 (5) and 0.249 (2) Å from the mean basal planes. The bond angles indicate that the lone-pairs on SbIII atoms are stereochemically active and stand at the trans positions to the OH groups. In the 4,4'-bipyridinium cation, the two pyridine rings are twisted with respect to each other, making a dihedral angle of 22.7 (1)°, which indicates the flexibility of the central C—C bond.

The intramolecular hydrogen bonds O13—H13A···O9 and O15—H15A···O4 are present in the anionic complex (Table 1). The 4,4'-bipyridinium cations are hydrogen bonded to these anions by two distinct N3—H3A···O3vii and N4—H4A···O8vi hydrogen bonds [symmetry codes: (vi) x, y-1, z; (vii) x-1, y+1, z-1], forming one-dimensional chains. The coordinated water molecules act as donors with respect to oxido O atoms of the (hypydc)3- ligands from neighboring chains, building a two-dimensional sheet (Fig. 3). These sheets are further connected into a three-dimensional structure by O—H···O and C—H···O hydrogen-bonding interactions involving coordinated terminal OH group as well as uncoordinated water molecules. A noticeable feature of the title compound is the presence of CO···π interactions between CO groups and pyridyl rings of 4,4'-bipyridinium cations. The O···π distances are 3.4737 (19) Å for C4O3···Cg1 (1-x, 1-y, -z), 3.1785 (17) Å for C11O8···Cg2 (-x, 2-y, -z) and 3.5685 (19) Å for C14O9···Cg1 (-x, 2-y,-z) [Cg1 and Cg2 are the centroids of N3, C18—C22 ring and N4, C15, C16, C17, C23, C24 ring]. The crystal packing diagram of the title compound is shown in Fig. 4.

Related literature top

For the use of 4,4'-bipyridine in the construction of supramolecular architectures, see: Jia et al. (2009); Meng et al. (2009); Zhang et al. (2009). For binuclear complexes of SbIII/SbV with pyridine-2,6-dicarboxylic acid, see: Aghabozorg et al. (2005); Soleimannejad et al. (2008). For proton transfer compounds and their metal complexes, see: Aghabozorg et al. (2008). For environmental studies of antimony, see: Filella et al. (2002).

Experimental top

The title compound was prepared by the refluxing of 4,4'-bipyridine (312 mg, 2 mmol), 4-hydroxypyridine-2,6-dicarboxylic acid (183 mg, 1 mmol) and SbCl3 (228 mg, 1 mmol) in water (50 ml) in a 2:1:1 molar ratio for several hours. Colorless crystals were obtained by slow evaporation of the solvent at room temperature. The highest residual electron density was found 0.92 Å from O13 and the deepest hole 0.79 Å from Sb2.

Refinement top

C- and N-bound H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93 and N—H = 0.85 Å and with Uiso(H) = 1.2Ueq(C, N). H atoms on water molecules and hydroxy groups were observed on a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. Two uncoordinated water molecules are omitted for clarity.
[Figure 2] Fig. 2. Distorted pentagonal pyramidal geometries around the SbIII atoms in the anionic complex.
[Figure 3] Fig. 3. Hydrogen bonding (dashed lines) between 4,4'-bipyridinium cations, [Sb(hypydc)(OH)(H2O)]22- anions and uncoordinated water molecules.
[Figure 4] Fig. 4. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
4,4'-Bipyridinium bis(µ-4-oxo-1,4-dihydropyridine-2,6- dicarboxylato)bis[aquahydroxidoantimonate(III)] dihydrate top
Crystal data top
(C10H10N2)[Sb2(C7H2NO5)2(OH)2(H2O)2]·2H2OZ = 2
Mr = 867.97F(000) = 852
Triclinic, P1Dx = 2.099 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7774 (9) ÅCell parameters from 16661 reflections
b = 10.2465 (12) Åθ = 2.5–27.5°
c = 17.773 (2) ŵ = 2.06 mm1
α = 80.255 (5)°T = 150 K
β = 81.760 (5)°Block, colourless
γ = 82.547 (5)°0.32 × 0.32 × 0.13 mm
V = 1373.4 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
6323 independent reflections
Radiation source: fine-focus sealed tube5762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.6°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.559, Tmax = 0.776k = 1313
29846 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0291P)2 + 1.1343P]
where P = (Fo2 + 2Fc2)/3
6323 reflections(Δ/σ)max = 0.002
415 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
(C10H10N2)[Sb2(C7H2NO5)2(OH)2(H2O)2]·2H2Oγ = 82.547 (5)°
Mr = 867.97V = 1373.4 (3) Å3
Triclinic, P1Z = 2
a = 7.7774 (9) ÅMo Kα radiation
b = 10.2465 (12) ŵ = 2.06 mm1
c = 17.773 (2) ÅT = 150 K
α = 80.255 (5)°0.32 × 0.32 × 0.13 mm
β = 81.760 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
6323 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5762 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.776Rint = 0.027
29846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.05Δρmax = 1.03 e Å3
6323 reflectionsΔρmin = 0.61 e Å3
415 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.580591 (16)0.703688 (13)0.358013 (7)0.01090 (4)
Sb20.438680 (16)0.752017 (12)0.129483 (7)0.01011 (4)
O1W0.11728 (19)0.69329 (15)0.33900 (9)0.0163 (3)
H1A0.14200.62430.37120.020*
H1B0.01150.69490.33140.020*
O10.72456 (19)0.67130 (15)0.45745 (8)0.0150 (3)
O2W0.9042 (2)0.8814 (2)0.17638 (12)0.0439 (6)
H2A0.88780.94600.13960.053*
H2B1.01230.85200.17100.053*
O20.8151 (2)0.52864 (15)0.55669 (9)0.0170 (3)
O30.7165 (2)0.08698 (15)0.46954 (9)0.0189 (3)
O40.4341 (2)0.39130 (15)0.24797 (9)0.0172 (3)
O50.49471 (19)0.58946 (14)0.26877 (8)0.0141 (3)
O60.30385 (19)0.77857 (14)0.02920 (8)0.0145 (3)
O70.1851 (2)0.91893 (15)0.06395 (9)0.0186 (3)
O80.23816 (19)1.36547 (14)0.03077 (8)0.0144 (3)
O90.5309 (2)1.06860 (15)0.25055 (9)0.0221 (4)
O100.49467 (19)0.86694 (14)0.22539 (8)0.0137 (3)
O110.80104 (18)0.69280 (15)0.29264 (8)0.0155 (3)
H11A0.79850.75790.25600.019*
O130.6824 (3)0.92019 (17)0.36682 (10)0.0296 (4)
H13B0.68560.96890.40070.035*
H13A0.63560.97340.33150.035*
O150.4245 (2)0.51911 (15)0.10194 (9)0.0172 (3)
H15B0.36150.48040.07920.021*
H15A0.41270.47290.14650.021*
O160.21023 (18)0.73191 (15)0.18620 (8)0.0146 (3)
H16A0.21200.70880.23460.018*
N10.6307 (2)0.48763 (17)0.39380 (10)0.0111 (3)
N20.3608 (2)0.96575 (17)0.09960 (9)0.0109 (3)
N30.1645 (2)0.95121 (18)0.40617 (10)0.0148 (4)
H3A0.20431.00240.44400.018*
N40.1423 (2)0.50965 (18)0.09767 (10)0.0141 (3)
H4A0.18020.46080.05860.017*
C10.7559 (3)0.5527 (2)0.49466 (12)0.0128 (4)
C20.7105 (3)0.4426 (2)0.45717 (11)0.0111 (4)
C30.7429 (3)0.3094 (2)0.48443 (12)0.0128 (4)
H30.79970.28210.52790.015*
C40.6890 (3)0.2126 (2)0.44593 (11)0.0131 (4)
C50.6039 (3)0.2645 (2)0.37913 (12)0.0132 (4)
H50.56540.20680.35160.016*
C60.5793 (3)0.3989 (2)0.35577 (11)0.0113 (4)
C70.4945 (3)0.4624 (2)0.28500 (11)0.0117 (4)
C80.2517 (3)0.8969 (2)0.00416 (12)0.0128 (4)
C90.2806 (3)1.0087 (2)0.03616 (11)0.0116 (4)
C100.2339 (3)1.1418 (2)0.01168 (11)0.0117 (4)
H100.17681.16760.03190.014*
C110.2727 (3)1.2403 (2)0.05286 (11)0.0114 (4)
C120.3553 (3)1.1902 (2)0.12072 (12)0.0129 (4)
H120.38181.24910.15080.016*
C130.3953 (3)1.0562 (2)0.14123 (11)0.0117 (4)
C140.4814 (3)0.9955 (2)0.21167 (12)0.0133 (4)
C150.1954 (3)0.6317 (2)0.11368 (12)0.0146 (4)
H150.26850.65690.08290.017*
C160.1420 (3)0.7203 (2)0.17571 (12)0.0142 (4)
H160.18060.80440.18730.017*
C170.0292 (3)0.6824 (2)0.22106 (11)0.0118 (4)
C180.0372 (3)0.7772 (2)0.28624 (11)0.0118 (4)
C190.0412 (3)0.9149 (2)0.28961 (12)0.0155 (4)
H190.00040.94900.25100.019*
C200.1056 (3)1.0000 (2)0.35033 (12)0.0170 (4)
H200.10821.09160.35260.020*
C210.1612 (3)0.8204 (2)0.40566 (12)0.0153 (4)
H210.20140.78960.44550.018*
C220.0982 (3)0.7308 (2)0.34594 (12)0.0139 (4)
H220.09640.63970.34550.017*
C230.0233 (3)0.5547 (2)0.20217 (12)0.0148 (4)
H230.09770.52700.23140.018*
C240.0355 (3)0.4695 (2)0.14003 (12)0.0154 (4)
H240.00100.38410.12750.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.01408 (7)0.00955 (7)0.00914 (7)0.00086 (5)0.00371 (5)0.00003 (5)
Sb20.01203 (7)0.00898 (7)0.00915 (7)0.00093 (5)0.00270 (5)0.00010 (5)
O1W0.0153 (7)0.0179 (8)0.0148 (7)0.0018 (6)0.0057 (6)0.0032 (6)
O10.0225 (8)0.0107 (7)0.0125 (7)0.0030 (6)0.0072 (6)0.0011 (6)
O2W0.0242 (9)0.0498 (13)0.0392 (12)0.0090 (9)0.0027 (8)0.0303 (10)
O20.0273 (8)0.0135 (7)0.0117 (7)0.0020 (6)0.0095 (6)0.0005 (6)
O30.0331 (9)0.0092 (7)0.0156 (7)0.0017 (6)0.0117 (6)0.0016 (6)
O40.0273 (8)0.0122 (7)0.0145 (7)0.0043 (6)0.0110 (6)0.0000 (6)
O50.0191 (7)0.0102 (7)0.0139 (7)0.0020 (6)0.0069 (6)0.0003 (6)
O60.0214 (7)0.0097 (7)0.0134 (7)0.0017 (6)0.0070 (6)0.0001 (6)
O70.0302 (8)0.0138 (7)0.0139 (7)0.0005 (6)0.0122 (6)0.0013 (6)
O80.0220 (7)0.0084 (7)0.0128 (7)0.0002 (6)0.0066 (6)0.0011 (5)
O90.0396 (10)0.0115 (7)0.0190 (8)0.0024 (7)0.0175 (7)0.0012 (6)
O100.0197 (7)0.0086 (7)0.0135 (7)0.0017 (6)0.0063 (6)0.0001 (6)
O110.0145 (7)0.0172 (8)0.0131 (7)0.0020 (6)0.0030 (6)0.0035 (6)
O130.0574 (12)0.0132 (8)0.0231 (9)0.0055 (8)0.0228 (8)0.0006 (7)
O150.0258 (8)0.0110 (7)0.0162 (7)0.0043 (6)0.0087 (6)0.0006 (6)
O160.0139 (7)0.0180 (8)0.0112 (7)0.0031 (6)0.0021 (5)0.0012 (6)
N10.0140 (8)0.0104 (8)0.0089 (8)0.0012 (6)0.0033 (6)0.0001 (6)
N20.0131 (8)0.0098 (8)0.0096 (8)0.0008 (6)0.0028 (6)0.0000 (6)
N30.0184 (8)0.0148 (9)0.0105 (8)0.0016 (7)0.0050 (7)0.0030 (7)
N40.0177 (8)0.0129 (8)0.0106 (8)0.0020 (7)0.0042 (7)0.0003 (7)
C10.0151 (9)0.0120 (9)0.0110 (9)0.0006 (7)0.0016 (7)0.0018 (8)
C20.0124 (9)0.0135 (10)0.0079 (9)0.0028 (7)0.0020 (7)0.0012 (7)
C30.0160 (9)0.0126 (10)0.0094 (9)0.0013 (7)0.0041 (7)0.0015 (7)
C40.0170 (9)0.0115 (9)0.0103 (9)0.0012 (8)0.0024 (7)0.0000 (7)
C50.0161 (9)0.0129 (10)0.0113 (9)0.0022 (7)0.0034 (7)0.0014 (8)
C60.0122 (9)0.0127 (9)0.0090 (9)0.0013 (7)0.0025 (7)0.0011 (7)
C70.0129 (9)0.0110 (9)0.0100 (9)0.0005 (7)0.0022 (7)0.0010 (7)
C80.0155 (9)0.0111 (9)0.0114 (9)0.0024 (7)0.0016 (7)0.0003 (8)
C90.0127 (9)0.0123 (10)0.0097 (9)0.0014 (7)0.0012 (7)0.0012 (7)
C100.0130 (9)0.0130 (10)0.0090 (9)0.0018 (7)0.0038 (7)0.0005 (7)
C110.0132 (9)0.0104 (9)0.0095 (9)0.0004 (7)0.0002 (7)0.0002 (7)
C120.0161 (9)0.0112 (10)0.0113 (9)0.0014 (7)0.0032 (7)0.0003 (8)
C130.0137 (9)0.0114 (9)0.0099 (9)0.0011 (7)0.0023 (7)0.0010 (7)
C140.0167 (9)0.0117 (10)0.0111 (9)0.0010 (7)0.0041 (7)0.0005 (8)
C150.0153 (9)0.0144 (10)0.0157 (10)0.0015 (8)0.0054 (8)0.0045 (8)
C160.0166 (9)0.0115 (10)0.0153 (10)0.0033 (8)0.0035 (8)0.0012 (8)
C170.0121 (9)0.0118 (9)0.0105 (9)0.0002 (7)0.0001 (7)0.0016 (8)
C180.0121 (9)0.0115 (9)0.0112 (9)0.0021 (7)0.0017 (7)0.0007 (8)
C190.0215 (10)0.0133 (10)0.0129 (10)0.0029 (8)0.0054 (8)0.0019 (8)
C200.0224 (10)0.0133 (10)0.0158 (10)0.0026 (8)0.0053 (8)0.0007 (8)
C210.0179 (10)0.0169 (10)0.0120 (10)0.0035 (8)0.0051 (8)0.0010 (8)
C220.0177 (10)0.0118 (10)0.0128 (10)0.0031 (8)0.0040 (8)0.0011 (8)
C230.0171 (10)0.0147 (10)0.0140 (10)0.0035 (8)0.0061 (8)0.0012 (8)
C240.0195 (10)0.0120 (10)0.0152 (10)0.0032 (8)0.0048 (8)0.0004 (8)
Geometric parameters (Å, º) top
Sb1—O111.9300 (15)N3—H3A0.8500
Sb1—O12.1816 (14)N4—C151.340 (3)
Sb1—N12.1972 (17)N4—C241.341 (3)
Sb1—O52.3381 (15)N4—H4A0.8500
Sb1—O132.4861 (17)C1—C21.505 (3)
Sb1—O102.7617 (14)C2—C31.372 (3)
Sb2—O161.9304 (14)C3—C41.431 (3)
Sb2—O62.1559 (14)C3—H30.9300
Sb2—N22.1908 (17)C4—C51.432 (3)
Sb2—O102.3468 (15)C5—C61.366 (3)
Sb2—O152.5350 (15)C5—H50.9300
Sb2—O52.7959 (14)C6—C71.513 (3)
O1W—H1A0.8500C8—C91.506 (3)
O1W—H1B0.8500C9—C101.378 (3)
O1—C11.293 (2)C10—C111.428 (3)
O2W—H2A0.8589C10—H100.9300
O2W—H2B0.8529C11—C121.435 (3)
O2—C11.230 (2)C12—C131.366 (3)
O3—C41.284 (3)C12—H120.9300
O4—C71.235 (3)C13—C141.507 (3)
O5—C71.285 (3)C15—C161.380 (3)
O6—C81.297 (2)C15—H150.9300
O7—C81.223 (2)C16—C171.402 (3)
O8—C111.281 (2)C16—H160.9300
O9—C141.230 (3)C17—C231.393 (3)
O10—C141.291 (3)C17—C181.487 (3)
O11—H11A0.8500C18—C221.397 (3)
O13—H13B0.8499C18—C191.399 (3)
O13—H13A0.8500C19—C201.378 (3)
O15—H15B0.8500C19—H190.9300
O15—H15A0.8501C20—H200.9300
O16—H16A0.8549C21—C221.383 (3)
N1—C21.348 (2)C21—H210.9300
N1—C61.350 (3)C22—H220.9300
N2—C91.347 (3)C23—C241.381 (3)
N2—C131.353 (3)C23—H230.9300
N3—C211.336 (3)C24—H240.9300
N3—C201.342 (3)
O11—Sb1—O188.73 (6)C2—C3—C4120.02 (18)
O11—Sb1—N187.40 (6)C2—C3—H3120.0
O1—Sb1—N172.28 (6)C4—C3—H3120.0
O11—Sb1—O582.88 (6)O3—C4—C3122.05 (18)
O1—Sb1—O5141.44 (5)O3—C4—C5122.18 (19)
N1—Sb1—O569.80 (6)C3—C4—C5115.77 (18)
O11—Sb1—O1379.47 (7)C6—C5—C4120.04 (19)
O1—Sb1—O1372.89 (5)C6—C5—H5120.0
N1—Sb1—O13142.91 (6)C4—C5—H5120.0
O5—Sb1—O13140.84 (5)N1—C6—C5122.63 (18)
O11—Sb1—O1078.80 (5)N1—C6—C7113.70 (17)
O1—Sb1—O10148.04 (5)C5—C6—C7123.67 (18)
N1—Sb1—O10135.33 (5)O4—C7—O5125.85 (18)
O5—Sb1—O1066.46 (5)O4—C7—C6119.32 (18)
O13—Sb1—O1075.93 (5)O5—C7—C6114.82 (17)
O16—Sb2—O684.67 (6)O7—C8—O6123.94 (19)
O16—Sb2—N289.44 (6)O7—C8—C9121.27 (18)
O6—Sb2—N272.66 (6)O6—C8—C9114.78 (17)
O16—Sb2—O1087.61 (6)N2—C9—C10122.26 (19)
O6—Sb2—O10141.57 (5)N2—C9—C8112.91 (17)
N2—Sb2—O1069.67 (6)C10—C9—C8124.82 (18)
O16—Sb2—O1584.54 (6)C9—C10—C11120.29 (18)
O6—Sb2—O1574.52 (5)C9—C10—H10119.9
N2—Sb2—O15147.04 (6)C11—C10—H10119.9
O10—Sb2—O15142.00 (5)O8—C11—C10122.67 (18)
O16—Sb2—O573.88 (5)O8—C11—C12121.74 (18)
O6—Sb2—O5145.16 (5)C10—C11—C12115.58 (18)
N2—Sb2—O5132.68 (5)C13—C12—C11120.15 (19)
O10—Sb2—O565.76 (5)C13—C12—H12119.9
O15—Sb2—O576.35 (5)C11—C12—H12119.9
H1A—O1W—H1B108.1N2—C13—C12122.65 (18)
C1—O1—Sb1120.34 (13)N2—C13—C14113.87 (17)
H2A—O2W—H2B107.6C12—C13—C14123.48 (18)
C7—O5—Sb1118.75 (12)O9—C14—O10125.98 (19)
C7—O5—Sb2127.75 (12)O9—C14—C13119.46 (18)
Sb1—O5—Sb2113.14 (6)O10—C14—C13114.56 (17)
C8—O6—Sb2120.80 (13)N4—C15—C16120.29 (19)
C14—O10—Sb2118.36 (12)N4—C15—H15119.9
C14—O10—Sb1127.57 (12)C16—C15—H15119.9
Sb2—O10—Sb1114.08 (5)C15—C16—C17119.5 (2)
Sb1—O11—H11A108.5C15—C16—H16120.2
Sb1—O13—H13B138.7C17—C16—H16120.2
Sb1—O13—H13A103.0C23—C17—C16118.27 (18)
H13B—O13—H13A103.5C23—C17—C18120.70 (19)
Sb2—O15—H15B137.7C16—C17—C18121.00 (19)
Sb2—O15—H15A103.5C22—C18—C19118.02 (18)
H15B—O15—H15A99.8C22—C18—C17120.69 (19)
Sb2—O16—H16A113.5C19—C18—C17121.29 (19)
C2—N1—C6119.08 (17)C20—C19—C18119.8 (2)
C2—N1—Sb1118.77 (13)C20—C19—H19120.1
C6—N1—Sb1122.11 (13)C18—C19—H19120.1
C9—N2—C13119.02 (17)N3—C20—C19120.3 (2)
C9—N2—Sb2118.66 (13)N3—C20—H20119.9
C13—N2—Sb2122.29 (13)C19—C20—H20119.9
C21—N3—C20121.90 (18)N3—C21—C22120.11 (19)
C21—N3—H3A116.7N3—C21—H21119.9
C20—N3—H3A121.4C22—C21—H21119.9
C15—N4—C24121.93 (18)C21—C22—C18119.90 (19)
C15—N4—H4A115.0C21—C22—H22120.0
C24—N4—H4A123.1C18—C22—H22120.0
O2—C1—O1123.94 (19)C24—C23—C17119.90 (19)
O2—C1—C2121.16 (19)C24—C23—H23120.0
O1—C1—C2114.88 (17)C17—C23—H23120.0
N1—C2—C3122.44 (19)N4—C24—C23120.1 (2)
N1—C2—C1113.16 (17)N4—C24—H24120.0
C3—C2—C1124.39 (18)C23—C24—H24120.0
O11—Sb1—O1—C194.49 (15)Sb1—N1—C2—C10.4 (2)
N1—Sb1—O1—C16.82 (14)O2—C1—C2—N1173.49 (19)
O5—Sb1—O1—C117.6 (2)O1—C1—C2—N15.3 (3)
O13—Sb1—O1—C1173.86 (16)O2—C1—C2—C35.3 (3)
O10—Sb1—O1—C1160.75 (13)O1—C1—C2—C3175.91 (19)
O11—Sb1—O5—C798.21 (15)N1—C2—C3—C40.9 (3)
O1—Sb1—O5—C719.31 (19)C1—C2—C3—C4177.82 (19)
N1—Sb1—O5—C78.37 (14)C2—C3—C4—O3179.9 (2)
O13—Sb1—O5—C7161.79 (14)C2—C3—C4—C50.5 (3)
O10—Sb1—O5—C7179.06 (16)O3—C4—C5—C6179.3 (2)
O11—Sb1—O5—Sb275.41 (7)C3—C4—C5—C60.2 (3)
O1—Sb1—O5—Sb2154.31 (7)C2—N1—C6—C50.4 (3)
N1—Sb1—O5—Sb2165.25 (8)Sb1—N1—C6—C5177.52 (15)
O13—Sb1—O5—Sb211.83 (12)C2—N1—C6—C7178.94 (17)
O10—Sb1—O5—Sb25.44 (4)Sb1—N1—C6—C73.1 (2)
O16—Sb2—O5—C785.91 (16)C4—C5—C6—N10.7 (3)
O6—Sb2—O5—C731.7 (2)C4—C5—C6—C7178.54 (18)
N2—Sb2—O5—C7159.63 (15)Sb1—O5—C7—O4171.21 (16)
O10—Sb2—O5—C7179.36 (17)Sb2—O5—C7—O416.2 (3)
O15—Sb2—O5—C72.28 (15)Sb1—O5—C7—C69.6 (2)
O16—Sb2—O5—Sb1101.17 (7)Sb2—O5—C7—C6163.02 (12)
O6—Sb2—O5—Sb1155.40 (7)N1—C6—C7—O4176.23 (18)
N2—Sb2—O5—Sb127.44 (10)C5—C6—C7—O44.4 (3)
O10—Sb2—O5—Sb16.43 (5)N1—C6—C7—O54.5 (3)
O15—Sb2—O5—Sb1170.65 (7)C5—C6—C7—O5174.85 (19)
O16—Sb2—O6—C895.22 (15)Sb2—O6—C8—O7174.97 (16)
N2—Sb2—O6—C84.14 (15)Sb2—O6—C8—C94.5 (2)
O10—Sb2—O6—C815.9 (2)C13—N2—C9—C100.6 (3)
O15—Sb2—O6—C8178.98 (16)Sb2—N2—C9—C10177.32 (15)
O5—Sb2—O6—C8146.75 (13)C13—N2—C9—C8179.79 (17)
O16—Sb2—O10—C14100.59 (15)Sb2—N2—C9—C81.8 (2)
O6—Sb2—O10—C1422.27 (19)O7—C8—C9—N2177.86 (19)
N2—Sb2—O10—C1410.30 (14)O6—C8—C9—N21.6 (3)
O15—Sb2—O10—C14178.59 (13)O7—C8—C9—C101.3 (3)
O5—Sb2—O10—C14173.98 (16)O6—C8—C9—C10179.23 (19)
O16—Sb2—O10—Sb178.87 (7)N2—C9—C10—C111.2 (3)
O6—Sb2—O10—Sb1157.19 (7)C8—C9—C10—C11177.87 (18)
N2—Sb2—O10—Sb1169.16 (8)C9—C10—C11—O8177.21 (19)
O15—Sb2—O10—Sb10.88 (11)C9—C10—C11—C122.1 (3)
O5—Sb2—O10—Sb15.48 (5)O8—C11—C12—C13177.93 (19)
O11—Sb1—O10—C14100.08 (17)C10—C11—C12—C131.4 (3)
O1—Sb1—O10—C1431.2 (2)C9—N2—C13—C121.4 (3)
N1—Sb1—O10—C14174.64 (15)Sb2—N2—C13—C12176.48 (15)
O5—Sb1—O10—C14172.88 (17)C9—N2—C13—C14178.68 (17)
O13—Sb1—O10—C1418.26 (16)Sb2—N2—C13—C143.4 (2)
O11—Sb1—O10—Sb280.52 (7)C11—C12—C13—N20.3 (3)
O1—Sb1—O10—Sb2149.42 (8)C11—C12—C13—C14179.77 (18)
N1—Sb1—O10—Sb25.96 (11)Sb2—O10—C14—O9168.47 (18)
O5—Sb1—O10—Sb26.53 (5)Sb1—O10—C14—O912.2 (3)
O13—Sb1—O10—Sb2162.33 (8)Sb2—O10—C14—C1312.0 (2)
O11—Sb1—N1—C292.96 (15)Sb1—O10—C14—C13167.43 (12)
O1—Sb1—N1—C23.46 (14)N2—C13—C14—O9174.43 (19)
O5—Sb1—N1—C2176.33 (16)C12—C13—C14—O95.5 (3)
O13—Sb1—N1—C224.3 (2)N2—C13—C14—O106.0 (3)
O10—Sb1—N1—C2164.14 (12)C12—C13—C14—O10174.13 (19)
O11—Sb1—N1—C689.12 (16)C24—N4—C15—C160.7 (3)
O1—Sb1—N1—C6178.62 (17)N4—C15—C16—C171.2 (3)
O5—Sb1—N1—C65.75 (14)C15—C16—C17—C230.9 (3)
O13—Sb1—N1—C6157.80 (14)C15—C16—C17—C18177.29 (19)
O10—Sb1—N1—C617.93 (19)C23—C17—C18—C2223.5 (3)
O16—Sb2—N2—C987.61 (15)C16—C17—C18—C22158.33 (19)
O6—Sb2—N2—C93.03 (14)C23—C17—C18—C19156.3 (2)
O10—Sb2—N2—C9175.27 (16)C16—C17—C18—C1921.9 (3)
O15—Sb2—N2—C98.6 (2)C22—C18—C19—C200.6 (3)
O5—Sb2—N2—C9154.87 (13)C17—C18—C19—C20179.2 (2)
O16—Sb2—N2—C1394.50 (16)C21—N3—C20—C190.8 (3)
O6—Sb2—N2—C13179.08 (17)C18—C19—C20—N30.0 (3)
O10—Sb2—N2—C136.84 (14)C20—N3—C21—C220.9 (3)
O15—Sb2—N2—C13173.56 (13)N3—C21—C22—C180.2 (3)
O5—Sb2—N2—C1327.24 (18)C19—C18—C22—C210.5 (3)
Sb1—O1—C1—O2169.95 (16)C17—C18—C22—C21179.29 (19)
Sb1—O1—C1—C28.8 (2)C16—C17—C23—C240.2 (3)
C6—N1—C2—C30.4 (3)C18—C17—C23—C24178.03 (19)
Sb1—N1—C2—C3178.41 (15)C15—N4—C24—C230.1 (3)
C6—N1—C2—C1178.42 (17)C17—C23—C24—N40.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.851.882.725 (2)177
O1W—H1B···O11ii0.851.872.704 (2)167
O2W—H2A···O7iii0.861.852.703 (2)171
O2W—H2B···O16iv0.851.862.669 (2)157
O11—H11A···O2W0.851.902.688 (2)154
O16—H16A···O1W0.851.882.684 (2)155
O13—H13A···O90.851.832.672 (2)173
O13—H13B···O3v0.851.922.764 (2)173
O15—H15A···O40.851.882.709 (2)166
O15—H15B···O8vi0.851.982.823 (2)171
N3—H3A···O3vii0.851.782.624 (2)171
N4—H4A···O8vi0.851.802.648 (2)173
C3—H3···O1Wi0.932.603.460 (3)154
C5—H5···O9vi0.932.533.434 (3)164
C12—H12···O4v0.932.553.470 (3)172
C15—H15···O60.932.593.415 (3)149
C19—H19···O2Wiii0.932.603.484 (3)160
C20—H20···O1Wviii0.932.253.172 (3)172
C21—H21···O1ix0.932.443.358 (3)170
C22—H22···O2ix0.932.453.107 (3)128
C24—H24···O16x0.932.573.261 (3)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x, y1, z; (vii) x1, y+1, z1; (viii) x, y+2, z; (ix) x1, y, z1; (x) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C10H10N2)[Sb2(C7H2NO5)2(OH)2(H2O)2]·2H2O
Mr867.97
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)7.7774 (9), 10.2465 (12), 17.773 (2)
α, β, γ (°)80.255 (5), 81.760 (5), 82.547 (5)
V3)1373.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.32 × 0.32 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.559, 0.776
No. of measured, independent and
observed [I > 2σ(I)] reflections
29846, 6323, 5762
Rint0.027
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.054, 1.05
No. of reflections6323
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.61

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O2i0.851.882.725 (2)177
O1W—H1B···O11ii0.851.872.704 (2)167
O2W—H2A···O7iii0.861.852.703 (2)171
O2W—H2B···O16iv0.851.862.669 (2)157
O11—H11A···O2W0.851.902.688 (2)154
O16—H16A···O1W0.851.882.684 (2)155
O13—H13A···O90.851.832.672 (2)173
O13—H13B···O3v0.851.922.764 (2)173
O15—H15A···O40.851.882.709 (2)166
O15—H15B···O8vi0.851.982.823 (2)171
N3—H3A···O3vii0.851.782.624 (2)171
N4—H4A···O8vi0.851.802.648 (2)173
C3—H3···O1Wi0.932.603.460 (3)154
C5—H5···O9vi0.932.533.434 (3)164
C12—H12···O4v0.932.553.470 (3)172
C15—H15···O60.932.593.415 (3)149
C19—H19···O2Wiii0.932.603.484 (3)160
C20—H20···O1Wviii0.932.253.172 (3)172
C21—H21···O1ix0.932.443.358 (3)170
C22—H22···O2ix0.932.453.107 (3)128
C24—H24···O16x0.932.573.261 (3)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+2, z; (iv) x+1, y, z; (v) x, y+1, z; (vi) x, y1, z; (vii) x1, y+1, z1; (viii) x, y+2, z; (ix) x1, y, z1; (x) x, y+1, z.
 

Acknowledgements

Financial support from Ilam University is gratefully acknowledged.

References

First citationAghabozorg, H., Dalir Kheirollahi, P., Moghimi, A. & Sadr-Khanlou, E. (2005). Anal. Sci. 21, x79–x80.  CSD CrossRef CAS Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFilella, M., Belzile, N. & Chen, Y. W. (2002). Earth Sci. Rev. 59, 265–285.  Web of Science CrossRef CAS Google Scholar
First citationJia, M., Liu, X., Miao, J., Xiong, W. & Chen, Z. (2009). Acta Cryst. E65, o2490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, Q.-H., Han, L., Hou, J.-D., Luo, Y.-F. & Zeng, R.-H. (2009). Acta Cryst. E65, o132–o133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoleimannejad, J., Aghabozorg, H., Golenji, Y. M. A., Attar Gharamaleki, J. & Adams, H. (2008). Acta Cryst. E64, m387–m388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, m975–m976.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m467-m468
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds