metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­[N-(5-nitro-2-oxido­benzyl­­idene)glycinato]copper(II) dihydrate

aChemistry Department, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: zouyang@zstu.edu.cn

(Received 9 March 2010; accepted 22 March 2010; online 27 March 2010)

In the title complex, [Cu(C9H6N2O5)(H2O)2]·2H2O, the CuII atom has a square-pyramidal coordination environment with a tridentate N-(5-nitro-2-oxidobenzyl­idene)glycinate Schiff base ligand and a water mol­ecule in the basal plane. The apical site is occupied by an O atom from another coordinated water mol­ecule. The crystal structure is stabilized by O—H⋯O hydrogen bonds, building a two-dimensional network parallel to (100).

Related literature

For general background to metabolic reactions requiring pyridoxal-5′-phosphate as a cofactor, see: Bkouche-Waksman et al. (1988[Bkouche-Waksman, I., Barbe, J. M. & Kvick, Å. (1988). Acta Cryst. B44, 595-601.]); Wetmore et al. (2001[Wetmore, S. D., Smith, D. M. & Radom, L. (2001). J. Am. Chem. Soc. 123, 8678-8689.]); Zabinski & Toney (2001[Zabinski, R. F. & Toney, M. D. (2001). J. Am. Chem. Soc. 123, 193-198.]). For related Schiff base complexes, see: Ganguly et al. (2008[Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027-1050.]); Jammi et al. (2008[Jammi, S., Rout, L., Saha, P., Akkilagunta, V. K., Sanyasi, S. & Punniyamurthy, T. (2008). Inorg. Chem. 47, 5093-5098.]). For a related structure, see: Ueki et al. (1967[Ueki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Acta Cryst. 22, 870-878.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H6N2O5)(H2O)2]·2H2O

  • Mr = 357.76

  • Monoclinic, P 21 /c

  • a = 17.306 (4) Å

  • b = 10.837 (2) Å

  • c = 7.185 (2) Å

  • β = 91.63 (1)°

  • V = 1347.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.68, Tmax = 0.78

  • 6554 measured reflections

  • 2369 independent reflections

  • 1107 reflections with I > 2σ(I)

  • Rint = 0.122

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.074

  • S = 0.62

  • 2369 reflections

  • 214 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O7 0.80 (4) 1.90 (4) 2.666 (5) 162 (5)
O6—H6B⋯O9i 0.80 (3) 1.96 (3) 2.726 (5) 162 (5)
O7—H7A⋯O3ii 0.85 (3) 1.90 (3) 2.749 (4) 178 (4)
O7—H7B⋯O9iii 0.85 (3) 2.03 (4) 2.814 (5) 154 (4)
O8—H8D⋯O1iv 0.82 (3) 2.05 (3) 2.860 (4) 167 (5)
O8—H8E⋯O7 0.85 (4) 1.96 (4) 2.792 (5) 166 (4)
O9—H9B⋯O8v 0.84 (3) 2.04 (2) 2.827 (5) 156 (5)
O9—H9D⋯O2iv 0.78 (3) 1.99 (3) 2.764 (5) 173 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) -x+1, -y+2, -z+2; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Metal Schiff-base complexes derived from amino acids (or peptides) play an important role as key compounds for modeling more complicated PLP-amino acid Schiff bases (PLP = pyridoxal-5'-phosphate), as these are key intermediates in a variety of metabolic reactions involving amino acids, such as decarboxylation, transamination, racemization and C—C bond cleavage, which are catalyzed by enzymes that require PLP as a cofactor (Bkouche-Waksman et al., 1988; Wetmore et al., 2001; Zabinski & Toney, 2001). Considerable effort has been devoted to the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids and reduced salicylidene amino acid (Ganguly et al., 2008), but little attention has been given to Schiff bases derived from nitro-substituted salicylaldehyde, and few structurally characterized complexes have been reported (Jammi et al., 2008). Herein, we report the synthesis and structural study of a copper(II) complex with the Schiff base derived from glycine and 5-nitrosalicylaldehyde.

The title complex is characterized by a square-pyramidal CuII coordination with a deprotonated tridentate Schiff base, 5-nitrosalicylideneglycinate, and a water molecule in the basal plane (Fig. 1). The Cu—N bond distance is 1.897 (4) Å. The two Cu—O bonds are 1.916 (3) and 1.930 (3) Å. The apical Cu1—O8 bond length is 2.447 (4) Å, which is little longer than that in the parent compound of this structure type, aqua(N-salicylideneglycinato)copper(II) hemihydrate [2.334 (6) Å] (Ueki et al., 1967). The phenyl ring (C1–C6) and the C1, C6, C7, N1, O1, Cu1 chelating ring are almost coplanar, with a small dihedral angle of 4.3 (4)°. Hydrogen bonds between the coordinated water molecules and the phenol O atoms of symmetry-related complex molecules lead to the formation of zigzag chains along the c axis (Table 1). Hydrogen bonds between the uncoordinated water molecules and carbonylate O atoms link the chains into a two-dimensional layer (Fig. 2).

Related literature top

For general background to metabolic reactions requiring pyridoxal-5'-phosphate as a cofactor, see: Bkouche-Waksman et al. (1988); Wetmore et al. (2001); Zabinski & Toney (2001). For related Schiff base complexes, see: Ganguly et al. (2008); Jammi et al. (2008). For a related structure, see: Ueki et al. (1967).

Experimental top

The title compound was prepared as follows: Glycine (10 mmol), 5-nitrosalicylaldehyde (10 mmol) and LiOH (20 mmol) were dissolved and refluxed in MeOH/H2O (v/v 1:1). CuCl2.2H2O (10 mmol) was then added to the solution and the resulting solution was adjusted to pH = 9–11. The mixture was stirred at room temperature for 24 h. Violet-blue precipitate that formed was filtered. The filtrate was allowed to evaporate slowly at room temperature. After several days, blue crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms of water molecules were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) Å, and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (CH) and 0.97 (CH2) Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view of the hydrogen-bonded (dashed lines) two-dimensional network.
Diaqua[N-(5-nitro-2-oxidobenzylidene)glycinato]copper(II) dihydrate top
Crystal data top
[Cu(C9H6N2O5)(H2O)2]·2H2OF(000) = 732
Mr = 357.76Dx = 1.764 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1107 reflections
a = 17.306 (4) Åθ = 2.2–25.0°
b = 10.837 (2) ŵ = 1.67 mm1
c = 7.185 (2) ÅT = 293 K
β = 91.63 (1)°Block, blue
V = 1347.0 (5) Å30.25 × 0.2 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2369 independent reflections
Radiation source: fine-focus sealed tube1107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.122
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2020
Tmin = 0.68, Tmax = 0.78k = 812
6554 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.62 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
2369 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.53 e Å3
8 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cu(C9H6N2O5)(H2O)2]·2H2OV = 1347.0 (5) Å3
Mr = 357.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.306 (4) ŵ = 1.67 mm1
b = 10.837 (2) ÅT = 293 K
c = 7.185 (2) Å0.25 × 0.2 × 0.15 mm
β = 91.63 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2369 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1107 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.78Rint = 0.122
6554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0458 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.62Δρmax = 0.53 e Å3
2369 reflectionsΔρmin = 0.41 e Å3
214 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.68418 (3)0.93382 (5)1.05603 (9)0.0332 (2)
N10.7825 (2)0.9810 (4)0.9699 (6)0.0313 (11)
N20.9642 (3)0.5241 (5)0.7898 (7)0.0533 (15)
C10.7707 (3)0.7116 (5)1.0012 (7)0.0262 (13)
C20.7740 (3)0.5812 (4)0.9948 (7)0.0342 (14)
H20.73240.53521.03570.041*
C30.8371 (3)0.5222 (5)0.9296 (7)0.0384 (15)
H30.83810.43640.92840.046*
C40.8991 (3)0.5861 (5)0.8659 (7)0.0362 (14)
C50.8984 (3)0.7134 (5)0.8696 (7)0.0326 (14)
H50.94090.75720.82850.039*
C60.8343 (2)0.7767 (4)0.9347 (7)0.0241 (12)
C70.8375 (2)0.9109 (4)0.9286 (6)0.0319 (14)
H70.88320.94730.89170.038*
C80.7918 (3)1.1165 (4)0.9543 (8)0.0452 (16)
H8A0.80511.13800.82810.054*
H8B0.83341.14401.03770.054*
C90.7174 (3)1.1797 (5)1.0040 (8)0.0404 (15)
O10.70921 (17)0.7616 (3)1.0634 (5)0.0314 (9)
O20.71569 (18)1.2917 (3)0.9976 (5)0.0533 (12)
O30.66318 (17)1.1087 (3)1.0507 (5)0.0405 (10)
O40.9629 (2)0.4122 (3)0.7780 (6)0.0807 (16)
O51.0193 (2)0.5843 (4)0.7388 (6)0.0828 (16)
O60.59324 (19)0.9035 (4)1.2066 (5)0.0389 (10)
H6A0.559 (3)0.890 (5)1.134 (5)0.053*
H6B0.583 (3)0.942 (4)1.297 (5)0.047*
O70.48642 (17)0.8064 (3)0.9756 (6)0.0466 (11)
H7A0.4407 (11)0.834 (3)0.966 (7)0.053*
H7B0.481 (2)0.729 (3)0.982 (7)0.053*
O80.6090 (2)0.8942 (3)0.7687 (6)0.0403 (10)
H8E0.5724 (19)0.857 (3)0.821 (6)0.053*
H8D0.631 (2)0.844 (4)0.703 (6)0.048*
O90.58080 (19)0.0716 (3)0.4864 (5)0.0438 (10)
H9D0.621 (2)0.105 (4)0.486 (7)0.053*
H9B0.576 (2)0.026 (4)0.580 (4)0.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0270 (3)0.0226 (3)0.0505 (4)0.0012 (3)0.0084 (3)0.0002 (4)
N10.028 (2)0.023 (3)0.044 (3)0.006 (2)0.005 (2)0.004 (2)
N20.039 (3)0.058 (4)0.064 (4)0.024 (3)0.009 (3)0.000 (3)
C10.022 (3)0.029 (3)0.028 (3)0.001 (3)0.003 (3)0.006 (3)
C20.027 (3)0.027 (3)0.049 (4)0.001 (3)0.011 (3)0.007 (3)
C30.045 (4)0.035 (3)0.036 (4)0.004 (3)0.008 (3)0.003 (3)
C40.038 (3)0.033 (4)0.038 (4)0.015 (3)0.005 (3)0.000 (3)
C50.021 (3)0.038 (4)0.039 (4)0.004 (3)0.004 (3)0.001 (3)
C60.023 (3)0.022 (3)0.027 (3)0.001 (2)0.000 (3)0.002 (3)
C70.025 (3)0.029 (3)0.041 (4)0.005 (3)0.005 (3)0.001 (3)
C80.043 (4)0.026 (3)0.067 (5)0.003 (3)0.011 (3)0.005 (3)
C90.038 (4)0.033 (4)0.051 (4)0.000 (3)0.005 (3)0.010 (3)
O10.026 (2)0.020 (2)0.048 (3)0.0014 (15)0.0092 (19)0.0026 (17)
O20.049 (3)0.016 (2)0.096 (3)0.0022 (19)0.011 (2)0.005 (2)
O30.031 (2)0.018 (2)0.073 (3)0.0009 (16)0.010 (2)0.0023 (19)
O40.077 (3)0.037 (3)0.130 (4)0.025 (2)0.026 (3)0.013 (3)
O50.048 (3)0.068 (3)0.135 (4)0.022 (3)0.047 (3)0.003 (3)
O60.037 (2)0.036 (3)0.044 (3)0.0001 (19)0.007 (2)0.008 (2)
O70.027 (2)0.035 (2)0.079 (3)0.0045 (19)0.008 (2)0.001 (2)
O80.039 (2)0.029 (2)0.053 (3)0.0002 (17)0.008 (2)0.000 (2)
O90.045 (2)0.032 (2)0.056 (3)0.004 (2)0.010 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—N11.897 (4)C5—C61.396 (6)
Cu1—O11.916 (3)C5—H50.9300
Cu1—O31.930 (3)C6—C71.456 (6)
Cu1—O61.963 (4)C7—H70.9300
Cu1—O82.447 (4)C8—C91.511 (6)
N1—C71.260 (5)C8—H8A0.9700
N1—C81.481 (5)C8—H8B0.9700
N2—O41.215 (5)C9—O21.215 (5)
N2—O51.221 (5)C9—O31.266 (5)
N2—C41.433 (6)O6—H6B0.80 (3)
C1—O11.286 (5)O6—H6A0.80 (4)
C1—C61.404 (6)O7—H7A0.85 (3)
C1—C21.415 (6)O7—H7B0.85 (3)
C2—C31.360 (6)O8—H8D0.82 (3)
C2—H20.9300O8—H8E0.85 (4)
C3—C41.367 (6)O9—H9D0.78 (3)
C3—H30.9300O9—H9B0.84 (3)
C4—C51.380 (6)
N1—Cu1—O193.87 (15)C5—C4—N2118.9 (5)
N1—Cu1—O384.20 (15)C4—C5—C6120.3 (5)
O1—Cu1—O3177.76 (14)C4—C5—H5119.8
N1—Cu1—O6164.91 (16)C6—C5—H5119.8
O1—Cu1—O690.32 (15)C5—C6—C1120.4 (5)
O3—Cu1—O691.26 (15)C5—C6—C7116.8 (4)
N1—Cu1—O8103.44 (14)C1—C6—C7122.9 (4)
O1—Cu1—O888.09 (13)N1—C7—C6124.5 (4)
O3—Cu1—O893.45 (13)N1—C7—H7117.7
O6—Cu1—O891.16 (14)C6—C7—H7117.7
C7—N1—C8119.7 (4)N1—C8—C9109.6 (4)
C7—N1—Cu1127.2 (3)N1—C8—H8A109.7
C8—N1—Cu1113.1 (3)C9—C8—H8A109.7
O4—N2—O5121.6 (5)N1—C8—H8B109.7
O4—N2—C4118.8 (5)C9—C8—H8B109.7
O5—N2—C4119.5 (5)H8A—C8—H8B108.2
O1—C1—C6124.8 (5)O2—C9—O3126.9 (5)
O1—C1—C2117.9 (4)O2—C9—C8117.6 (5)
C6—C1—C2117.3 (5)O3—C9—C8115.5 (5)
C3—C2—C1120.9 (5)C1—O1—Cu1126.1 (3)
C3—C2—H2119.5C9—O3—Cu1117.5 (3)
C1—C2—H2119.5Cu1—O6—H6B125 (4)
C2—C3—C4121.5 (5)Cu1—O6—H6A106 (3)
C2—C3—H3119.2H6B—O6—H6A116 (4)
C4—C3—H3119.2H7A—O7—H7B105 (3)
C3—C4—C5119.5 (5)H8D—O8—H8E108 (3)
C3—C4—N2121.5 (5)H9D—O9—H9B112 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O70.80 (4)1.90 (4)2.666 (5)162 (5)
O6—H6B···O9i0.80 (3)1.96 (3)2.726 (5)162 (5)
O7—H7A···O3ii0.85 (3)1.90 (3)2.749 (4)178 (4)
O7—H7B···O9iii0.85 (3)2.03 (4)2.814 (5)154 (4)
O8—H8D···O1iv0.82 (3)2.05 (3)2.860 (4)167 (5)
O8—H8E···O70.85 (4)1.96 (4)2.792 (5)166 (4)
O9—H9B···O8v0.84 (3)2.04 (2)2.827 (5)156 (5)
O9—H9D···O2iv0.78 (3)1.99 (3)2.764 (5)173 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z1/2; (v) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C9H6N2O5)(H2O)2]·2H2O
Mr357.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.306 (4), 10.837 (2), 7.185 (2)
β (°) 91.63 (1)
V3)1347.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.25 × 0.2 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.68, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
6554, 2369, 1107
Rint0.122
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.074, 0.62
No. of reflections2369
No. of parameters214
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.41

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O70.80 (4)1.90 (4)2.666 (5)162 (5)
O6—H6B···O9i0.80 (3)1.96 (3)2.726 (5)162 (5)
O7—H7A···O3ii0.85 (3)1.90 (3)2.749 (4)178 (4)
O7—H7B···O9iii0.85 (3)2.03 (4)2.814 (5)154 (4)
O8—H8D···O1iv0.82 (3)2.05 (3)2.860 (4)167 (5)
O8—H8E···O70.85 (4)1.96 (4)2.792 (5)166 (4)
O9—H9B···O8v0.84 (3)2.04 (2)2.827 (5)156 (5)
O9—H9D···O2iv0.78 (3)1.99 (3)2.764 (5)173 (5)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z1/2; (v) x, y1, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Zhejiang Province, China (No. Y4080342) and the Science Foundation of Zhejiang Sci-Tech University (No. 0813622-Y) for financial support.

References

First citationBkouche-Waksman, I., Barbe, J. M. & Kvick, Å. (1988). Acta Cryst. B44, 595–601.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGanguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.  Web of Science CrossRef CAS Google Scholar
First citationJammi, S., Rout, L., Saha, P., Akkilagunta, V. K., Sanyasi, S. & Punniyamurthy, T. (2008). Inorg. Chem. 47, 5093–5098.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUeki, T., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Acta Cryst. 22, 870–878.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWetmore, S. D., Smith, D. M. & Radom, L. (2001). J. Am. Chem. Soc. 123, 8678–8689.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZabinski, R. F. & Toney, M. D. (2001). J. Am. Chem. Soc. 123, 193–198.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds