organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methyl­enedi­nitrilo)tetra­aceto­nitrile

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 20 January 2010; accepted 3 March 2010; online 10 March 2010)

The mol­ecular structure of the title compound, C9H10N6, exhibits four cyano­methyl groups around a central N—CH2—N unit. In the crystal structure, mol­ecules are connected via inter­molecular C—H⋯N hydrogen bonds, forming a three-dimensional network.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthetic procedure, see: W. R. Grace & Co. (1969[W. R. Grace & Co. (1969). GB Patent No. 1167693.]). For the use of the title compound in the synthesis of N-(phosphono­meth­yl) imino­diacetic acid, see: Obeso Caceres & Urcelay del Pozo (1991[Obeso Caceres, R. M. & Urcelay del Pozo, M. I. (1991). ES Patent No. 2018746.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N6

  • Mr = 202.23

  • Monoclinic, P 21 /n

  • a = 6.743 (1) Å

  • b = 15.984 (3) Å

  • c = 10.610 (2) Å

  • β = 105.88 (3)°

  • V = 1099.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.992

  • 2167 measured reflections

  • 1991 independent reflections

  • 1396 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.143

  • S = 1.00

  • 1991 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯N4i 0.97 2.56 3.409 (3) 146
C4—H4B⋯N3ii 0.97 2.58 3.432 (3) 147
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tittle compound, {[(Bis-cyanomethyl-amino)-methyl]cyanomethyl-amino}-acetonitrile is an important intermediate for the synthesis of N-(Phosphonomethyl) iminodiacetic acid (Obeso Caceres & Urcelay del Pozo, 1991), which can be used to synthesize glyphosphates. Herein we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1, bond lengths and angles are within normal ranges (Allen et al., 1987).

In the crystal of the title compound molecules are connected via intermolecular C—H···N hydrogen bonds to form a three dimensional network.

Related literature top

For bond-length data, see: Allen et al. (1987). For the synthetic procedure, see: W.R. Grace & Co. (1969). For the use of the title compound in the synthesis of N-(Phosphonomethyl) iminodiacetic acid, see: Obeso Caceres & Urcelay del Pozo (1991).

Experimental top

The title compound, (I) was synthesized according to a literature method (W.R. Grace &Co., 1969). Crystals were obtained by dissolving compound (I) (1.5 g) in methanol (25 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.97 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for (I). C—H···N hydrogen bonds are shown as dashed lines.
(Methylenedinitrilo)tetraacetonitrile top
Crystal data top
C9H10N6F(000) = 424
Mr = 202.23Dx = 1.221 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 6.743 (1) Åθ = 10–13°
b = 15.984 (3) ŵ = 0.08 mm1
c = 10.610 (2) ÅT = 293 K
β = 105.88 (3)°Block, colorless
V = 1099.9 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1396 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.3°, θmin = 2.4°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.976, Tmax = 0.992l = 1212
2167 measured reflections3 standard reflections every 200 reflections
1991 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.085P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1991 reflectionsΔρmax = 0.13 e Å3
137 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.112 (10)
Crystal data top
C9H10N6V = 1099.9 (4) Å3
Mr = 202.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.743 (1) ŵ = 0.08 mm1
b = 15.984 (3) ÅT = 293 K
c = 10.610 (2) Å0.30 × 0.20 × 0.10 mm
β = 105.88 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1396 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.976, Tmax = 0.9923 standard reflections every 200 reflections
2167 measured reflections intensity decay: 1%
1991 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.00Δρmax = 0.13 e Å3
1991 reflectionsΔρmin = 0.14 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0963 (3)0.70909 (15)0.4827 (2)0.0615 (6)
N10.0281 (3)0.67348 (19)0.5772 (2)0.1033 (9)
C20.1891 (3)0.75550 (13)0.3610 (2)0.0500 (5)
H2A0.28110.71790.30050.060*
H2B0.27270.80020.38130.060*
N20.3724 (3)0.66055 (14)0.3957 (2)0.0783 (7)
C30.2363 (3)0.69176 (13)0.3233 (2)0.0528 (6)
N30.2530 (3)1.06022 (13)0.3005 (2)0.0812 (7)
C40.0600 (3)0.73457 (12)0.23192 (19)0.0472 (5)
H4A0.11010.76520.16790.057*
H4B0.03620.69260.18510.057*
N40.3020 (3)1.08661 (11)0.45391 (19)0.0650 (6)
N50.0489 (2)0.79180 (9)0.29447 (15)0.0444 (4)
C50.1757 (3)1.01621 (13)0.2444 (2)0.0563 (6)
N60.1060 (2)0.91629 (9)0.25246 (15)0.0451 (4)
C60.0768 (3)0.95691 (13)0.1736 (2)0.0560 (6)
H6A0.17650.91420.13380.067*
H6B0.04110.98680.10320.067*
C70.2980 (3)1.03432 (12)0.3814 (2)0.0480 (5)
C80.2920 (3)0.96600 (12)0.2853 (2)0.0555 (6)
H8A0.30940.99050.20530.067*
H8B0.40830.92920.32020.067*
C90.0716 (3)0.86329 (11)0.35568 (18)0.0457 (5)
H9A0.20250.84490.41290.055*
H9B0.00180.89410.40760.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0474 (12)0.0761 (15)0.0674 (15)0.0003 (11)0.0266 (11)0.0082 (13)
N10.0719 (15)0.150 (2)0.0938 (17)0.0147 (15)0.0319 (13)0.0500 (17)
C20.0450 (11)0.0465 (11)0.0627 (12)0.0006 (9)0.0219 (10)0.0000 (9)
N20.0670 (13)0.0839 (15)0.0872 (15)0.0192 (12)0.0263 (12)0.0043 (12)
C30.0534 (13)0.0451 (11)0.0675 (13)0.0022 (10)0.0292 (11)0.0072 (10)
N30.0713 (14)0.0637 (13)0.1181 (18)0.0208 (11)0.0419 (13)0.0157 (12)
C40.0527 (11)0.0397 (10)0.0530 (11)0.0015 (9)0.0210 (10)0.0084 (9)
N40.0758 (13)0.0522 (11)0.0720 (12)0.0069 (10)0.0287 (10)0.0107 (10)
N50.0462 (9)0.0358 (8)0.0559 (9)0.0021 (7)0.0218 (8)0.0058 (7)
C50.0470 (12)0.0459 (12)0.0764 (15)0.0039 (10)0.0176 (11)0.0155 (11)
N60.0438 (9)0.0388 (8)0.0552 (9)0.0052 (7)0.0176 (7)0.0047 (7)
C60.0596 (13)0.0518 (12)0.0559 (12)0.0032 (10)0.0148 (10)0.0026 (10)
C70.0479 (12)0.0408 (11)0.0590 (12)0.0067 (9)0.0210 (10)0.0010 (9)
C80.0529 (13)0.0479 (11)0.0733 (14)0.0092 (10)0.0303 (11)0.0149 (10)
C90.0514 (11)0.0352 (10)0.0510 (11)0.0026 (9)0.0151 (9)0.0056 (8)
Geometric parameters (Å, º) top
C1—N11.135 (3)N5—C91.449 (2)
C1—C21.472 (3)C5—C61.478 (3)
C2—N51.447 (2)N6—C61.441 (2)
C2—H2A0.9700N6—C81.445 (2)
C2—H2B0.9700N6—C91.452 (2)
N2—C31.138 (3)C6—H6A0.9700
C3—C41.480 (3)C6—H6B0.9700
N3—C51.136 (3)C7—C81.487 (3)
C4—N51.443 (2)C8—H8A0.9700
C4—H4A0.9700C8—H8B0.9700
C4—H4B0.9700C9—H9A0.9700
N4—C71.132 (2)C9—H9B0.9700
N1—C1—C2178.7 (2)C8—N6—C9116.50 (16)
N5—C2—C1116.91 (16)N6—C6—C5115.26 (17)
N5—C2—H2A108.1N6—C6—H6A108.5
C1—C2—H2A108.1C5—C6—H6A108.5
N5—C2—H2B108.1N6—C6—H6B108.5
C1—C2—H2B108.1C5—C6—H6B108.5
H2A—C2—H2B107.3H6A—C6—H6B107.5
N2—C3—C4178.2 (2)N4—C7—C8179.6 (2)
N5—C4—C3114.24 (16)N6—C8—C7115.34 (16)
N5—C4—H4A108.7N6—C8—H8A108.4
C3—C4—H4A108.7C7—C8—H8A108.4
N5—C4—H4B108.7N6—C8—H8B108.4
C3—C4—H4B108.7C7—C8—H8B108.4
H4A—C4—H4B107.6H8A—C8—H8B107.5
C4—N5—C2116.91 (15)N5—C9—N6107.91 (14)
C4—N5—C9114.36 (14)N5—C9—H9A110.1
C2—N5—C9117.30 (15)N6—C9—H9A110.1
N3—C5—C6178.4 (2)N5—C9—H9B110.1
C6—N6—C8116.11 (16)N6—C9—H9B110.1
C6—N6—C9114.43 (15)H9A—C9—H9B108.4
N1—C1—C2—N5160 (12)N3—C5—C6—N668 (9)
N2—C3—C4—N526 (7)C6—N6—C8—C771.1 (2)
C3—C4—N5—C277.5 (2)C9—N6—C8—C768.2 (2)
C3—C4—N5—C965.1 (2)N4—C7—C8—N692 (32)
C1—C2—N5—C470.3 (2)C4—N5—C9—N669.05 (19)
C1—C2—N5—C971.2 (2)C2—N5—C9—N6148.50 (16)
C8—N6—C6—C577.2 (2)C6—N6—C9—N568.47 (19)
C9—N6—C6—C563.0 (2)C8—N6—C9—N5151.47 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N4i0.972.563.409 (3)146
C4—H4B···N3ii0.972.583.432 (3)147
Symmetry codes: (i) x, y+2, z+1; (ii) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10N6
Mr202.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.743 (1), 15.984 (3), 10.610 (2)
β (°) 105.88 (3)
V3)1099.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
2167, 1991, 1396
Rint0.016
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.00
No. of reflections1991
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N4i0.97002.56003.409 (3)146.00
C4—H4B···N3ii0.97002.58003.432 (3)147.00
Symmetry codes: (i) x, y+2, z+1; (ii) x1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationObeso Caceres, R. M. & Urcelay del Pozo, M. I. (1991). ES Patent No. 2018746.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationW. R. Grace & Co. (1969). GB Patent No. 1167693.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds