organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Benzo­thia­zol-2-yl)-3-(prop-2-yn­yl)hex-5-yn-2-one

aLaboratoire de Chimie Organique et Etudes Physico-chimique, ENS Takaddoum, Rabat, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: emessassi@yahoo.fr

(Received 22 February 2010; accepted 11 March 2010; online 17 March 2010)

The title compound, C16H13NOS, was prepared by alkyl­ation of 1-(benzothia­zol-2-yl)propan-2-one with propargyl bromide. The asymmetric unit contains two mol­ecules that are crystallographically independent but linked to each other by non-classical C—H⋯O hydrogen bonds, building up a dimeric substructure. The benzothia­zole rings are essentially planar with maximum deviations of 0.005 (1) and 0.007 (2) Å for the N atoms. Although the two mol­ecules have similar bond distances and angles, they slightly differ in the orientation of the benzothia­zole ring with respect to the two propargyl groups and the acetonyl unit . In the crystal, inter­molecular C—H⋯O inter­actions link the dimeric subunits into a two-dimensional array in the bc plane.

Related literature

For background to the applications of benzothia­zoles in the chemical industry, see: Bradshaw et al. (2002[Bradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). BJC, 86, 1348-1354.]); Delmas et al. (2002[Delmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J.-P. (2002). Antimicrob. Agents Chemother. 46, 2588-2594.]); Hutchinson et al. (2002[Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744-747.]). For the pharmacological activity of benzothia­zole derivatives, see: Repiĉ et al. (2001[Repiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process. Res. Dev. 5, 519-527.]); Schwartz et al. (1992[Schwartz, A., Madan, P. B., Mohacsi, E., O'Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851-856.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NOS

  • Mr = 267.34

  • Monoclinic, P 21 /n

  • a = 7.7913 (1) Å

  • b = 30.2051 (6) Å

  • c = 12.4437 (2) Å

  • β = 106.161 (1)°

  • V = 2812.74 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.36 × 0.30 × 0.20 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 45783 measured reflections

  • 8407 independent reflections

  • 5449 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.128

  • S = 1.01

  • 8407 reflections

  • 391 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—–H13⋯..O1i 0.93 (3) 2.52 (3) 3.409 (3) 161 (2)
C14—–H14B⋯..O2 0.97 2.39 3.302 (2) 155
C27—–H27A⋯..O1ii 0.97 2.55 3.409 (2) 147
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Benzothiazoles possess therapeutic value, are synthetic intermediates in the preparation of medicinal compounds and find numerous applications in chemical industry (Bradshaw et al. 2002, Hutchinson et al. 2002, Delmas et al. 2002). Benzothiazole nucleus is associated with several pharmacological activities such as antitumoral (Repiĉ et al. 2001) and antimicrobial (Schwartz, et al. 1992). An alkylating reaction with propargyl bromide of 1-(benzothiazol-2-yl)propan-2-one (I) leading to the title compound 3-(benzothiazol-2-yl)-3-prop-2-ynyl-hex-5-yn-2-one (II) was performed employing either phase transfer catalysis or classical reaction conditions in acetone with potassium carbonate as a base.

The plot of the two molecules bulding the asymmetric unit is shown in Fig. 1. Each molecule consists of a benzothiazole moiety linked to dipropargylacetonyl group. The benzothiazole rings are essentially planar with maximum deviations of 0.005 (1) Å and 0.007 (2) Å from N1 and N2 respectively. The difference between the molecules is observed in the orientation of the two propargyl and acetonyl groups in each molecule (Spek, 2009). The dihedral angles in the first molecule, between S1-N1-C7 and C11-C12-C13, C14-C15-C16, O1-C9-C10 are 18 (4), 82 (9) and 87.5 (2)°, respectively. In the second molecule, we have 63 (8), 75 (4) and 88.8 (2)° respectively, between S2-N2-C23 and C27-C29-C28, C30-C31-C32 and O2-C25-C26. The two molecules within the asymmetric unit are linked by C—H···O hydrogen bonds building up a dimeric substructure. These dimers are further linked to each other by C—H···O hydrogen bonds forming in to 2-D array in the bc plane (Table 1, Fig. 2).

Related literature top

For background to the applications of benzothiazoles in the chemical industry, see: Bradshaw et al. (2002); Delmas et al. (2002); Hutchinson et al. (2002). For the pharmacological activity of benzothiazole derivatives, see: Repiĉ et al. (2001); Schwartz et al. (1992).

Experimental top

To a stirred solution containing 1 g (5.23 mmol) of 1-(benzothiazol-2-yl)propan -2-one (I), 1 g (7.43 mmol) of potassium carbonate and 20 mg of the catalyst benzyl triethylammonium bromide (BTBA) in 30 ml of dimethylformamide, was added in one portion 0.7 g (5.76 mmol) of propargyl bromide . The reaction mixture was stirred for 24 hours at room temperature. The mixture was extracted with dichloromethane (10 ml x 3). The organic layer was dried over Na2SO4 and evaporated to dryness in vacuo to get viscous liquid product, which was further precipitated after cooling. On recrystallization from ethanol brown single crystals of (II) (yield: 1.26 g; 90%; mp 110-112°C) were obtained.

Refinement top

H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å for methyl groups and C—H = 0.93 Å for all other hydrogens with Uiso(H) = 1.2 Ueq(aromatic, methine ) or Uiso(H) = 1.5 Ueq(methyl). All other H atoms were located from difference Fourier maps and refined without any distance restraints.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. : Partial packing view showing the intermolecular C–H···O interactions linking the molecules into a 2-D array in the bc plane.
3-(Benzothiazol-2-yl)-3-(prop-2-ynyl)hex-5-yn-2-one top
Crystal data top
C16H13NOSZ = 8
Mr = 267.34F(000) = 1120
Monoclinic, P21/nDx = 1.263 Mg m3
Hall symbol: -p 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.7913 (1) Åθ = 7.0–30.3°
b = 30.2051 (6) ŵ = 0.22 mm1
c = 12.4437 (2) ÅT = 298 K
β = 106.161 (1)°Parallelepiped, clear pale yellow
V = 2812.74 (8) Å30.36 × 0.30 × 0.20 mm
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
5449 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 30.3°, θmin = 2.2°
ϕ and ω scansh = 1111
45783 measured reflectionsk = 4242
8407 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.4268P]
where P = (Fo2 + 2Fc2)/3
8407 reflections(Δ/σ)max = 0.001
391 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H13NOSV = 2812.74 (8) Å3
Mr = 267.34Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.7913 (1) ŵ = 0.22 mm1
b = 30.2051 (6) ÅT = 298 K
c = 12.4437 (2) Å0.36 × 0.30 × 0.20 mm
β = 106.161 (1)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
5449 reflections with I > 2σ(I)
45783 measured reflectionsRint = 0.052
8407 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
8407 reflectionsΔρmin = 0.19 e Å3
391 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62822 (19)0.02125 (4)0.85422 (13)0.0661 (4)
S10.45815 (6)0.126638 (14)0.65398 (3)0.04635 (12)
N10.55435 (17)0.17249 (4)0.83678 (10)0.0379 (3)
C10.4413 (2)0.19924 (5)0.75663 (12)0.0360 (3)
C20.3957 (2)0.24295 (6)0.77253 (15)0.0463 (4)
H20.440 (2)0.2551 (6)0.8419 (16)0.045 (5)*
C30.2901 (2)0.26604 (6)0.68364 (16)0.0514 (4)
H30.260 (3)0.2954 (7)0.6956 (16)0.059 (6)*
C40.2271 (3)0.24671 (7)0.57885 (16)0.0541 (5)
H40.154 (3)0.2633 (7)0.5185 (17)0.063 (6)*
C50.2673 (2)0.20358 (7)0.56119 (15)0.0496 (4)
H50.222 (3)0.1904 (7)0.4940 (17)0.062 (6)*
C60.3754 (2)0.17996 (5)0.65053 (13)0.0383 (3)
C70.5758 (2)0.13457 (5)0.79517 (12)0.0357 (3)
C80.6974 (2)0.09826 (5)0.85737 (12)0.0372 (3)
C90.5878 (2)0.05786 (5)0.87635 (13)0.0435 (4)
C100.4340 (3)0.06577 (7)0.92442 (17)0.0601 (5)
H10A0.46570.08830.98080.090*
H10B0.40620.03890.95710.090*
H10C0.33170.07520.86610.090*
C110.8066 (2)0.11589 (6)0.97374 (13)0.0442 (4)
H11A0.86910.14270.96390.053*
H11B0.72560.12321.01780.053*
C120.9358 (3)0.08305 (6)1.03360 (14)0.0516 (4)
C131.0392 (4)0.05574 (9)1.07695 (19)0.0747 (7)
H131.122 (4)0.0344 (9)1.112 (2)0.099 (9)*
C140.8253 (2)0.08345 (6)0.78856 (14)0.0453 (4)
H14A0.90670.06120.83030.054*
H14B0.75600.07010.71910.054*
C150.9280 (3)0.12022 (7)0.76328 (16)0.0543 (5)
C161.0073 (3)0.15030 (10)0.7428 (2)0.0793 (7)
H161.067 (4)0.1724 (8)0.724 (2)0.088 (8)*
O20.6762 (2)0.05561 (5)0.52220 (10)0.0639 (4)
S20.55463 (6)0.170295 (14)0.37374 (3)0.04545 (12)
N20.49980 (18)0.12720 (4)0.18749 (10)0.0388 (3)
C170.4081 (2)0.16709 (5)0.16241 (13)0.0391 (3)
C180.3085 (3)0.18000 (7)0.05589 (16)0.0563 (5)
H180.299 (3)0.1604 (7)0.0094 (19)0.074 (7)*
C190.2278 (3)0.22127 (8)0.04356 (19)0.0658 (6)
H190.162 (3)0.2295 (7)0.0307 (18)0.072 (6)*
C200.2450 (3)0.24907 (7)0.1344 (2)0.0621 (5)
H200.183 (3)0.2782 (7)0.1227 (18)0.072 (6)*
C210.3403 (3)0.23676 (6)0.24036 (18)0.0540 (5)
H210.353 (3)0.2552 (7)0.3008 (17)0.068 (6)*
C220.4227 (2)0.19521 (5)0.25372 (13)0.0395 (3)
C230.5807 (2)0.12458 (5)0.29265 (12)0.0338 (3)
C240.6913 (2)0.08534 (5)0.34795 (12)0.0356 (3)
C250.5961 (2)0.06227 (5)0.42620 (13)0.0434 (4)
C260.4072 (3)0.04820 (7)0.37852 (18)0.0634 (5)
H26A0.36020.06130.30590.095*
H26B0.33760.05770.42690.095*
H26C0.40180.01650.37190.095*
C270.7065 (2)0.05229 (5)0.25588 (12)0.0395 (3)
H27A0.58760.04310.21370.047*
H27B0.76150.06710.20470.047*
C280.8117 (3)0.01322 (7)0.30197 (15)0.0583 (5)
C290.8994 (5)0.01727 (10)0.3395 (2)0.1035 (11)
H290.970 (4)0.0425 (11)0.363 (3)0.128 (11)*
C300.8784 (2)0.10077 (6)0.41712 (14)0.0499 (4)
H30A0.86610.12030.47650.060*
H30B0.94770.07520.45150.060*
C310.9732 (2)0.12394 (6)0.34835 (17)0.0527 (4)
C321.0447 (3)0.14150 (8)0.2886 (2)0.0713 (6)
H321.099 (4)0.1568 (10)0.237 (3)0.123 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0675 (9)0.0358 (7)0.0939 (11)0.0001 (6)0.0208 (8)0.0075 (7)
S10.0574 (3)0.0398 (2)0.0367 (2)0.00420 (18)0.00457 (18)0.00849 (16)
N10.0421 (7)0.0375 (7)0.0339 (6)0.0034 (5)0.0102 (5)0.0030 (5)
C10.0343 (8)0.0377 (8)0.0362 (7)0.0020 (6)0.0103 (6)0.0021 (6)
C20.0481 (10)0.0430 (9)0.0454 (9)0.0083 (7)0.0092 (8)0.0074 (7)
C30.0486 (10)0.0437 (10)0.0583 (11)0.0160 (8)0.0089 (8)0.0015 (8)
C40.0479 (10)0.0568 (12)0.0509 (10)0.0143 (9)0.0029 (8)0.0066 (8)
C50.0469 (10)0.0575 (11)0.0387 (9)0.0050 (8)0.0022 (8)0.0022 (8)
C60.0355 (8)0.0411 (8)0.0380 (7)0.0008 (6)0.0095 (6)0.0030 (6)
C70.0399 (8)0.0350 (8)0.0320 (7)0.0012 (6)0.0097 (6)0.0025 (6)
C80.0434 (8)0.0330 (8)0.0349 (7)0.0029 (6)0.0102 (6)0.0030 (6)
C90.0509 (10)0.0360 (9)0.0395 (8)0.0005 (7)0.0059 (7)0.0001 (6)
C100.0698 (13)0.0564 (12)0.0613 (11)0.0093 (10)0.0302 (10)0.0011 (9)
C110.0499 (10)0.0423 (9)0.0370 (8)0.0031 (7)0.0065 (7)0.0044 (6)
C120.0552 (11)0.0539 (11)0.0412 (9)0.0043 (9)0.0060 (8)0.0048 (8)
C130.0797 (16)0.0767 (16)0.0555 (12)0.0263 (13)0.0016 (11)0.0013 (11)
C140.0508 (10)0.0452 (9)0.0405 (8)0.0097 (7)0.0139 (7)0.0015 (7)
C150.0501 (10)0.0620 (12)0.0560 (10)0.0085 (9)0.0234 (9)0.0035 (9)
C160.0670 (15)0.0808 (18)0.1034 (19)0.0018 (13)0.0460 (15)0.0091 (14)
O20.0870 (10)0.0675 (9)0.0372 (6)0.0073 (8)0.0172 (7)0.0111 (6)
S20.0591 (3)0.0369 (2)0.0393 (2)0.00400 (18)0.01197 (19)0.00679 (16)
N20.0446 (7)0.0345 (7)0.0348 (6)0.0052 (6)0.0072 (6)0.0006 (5)
C170.0383 (8)0.0361 (8)0.0431 (8)0.0041 (6)0.0117 (7)0.0047 (6)
C180.0616 (12)0.0554 (11)0.0476 (10)0.0185 (9)0.0080 (9)0.0062 (8)
C190.0651 (13)0.0678 (14)0.0622 (12)0.0292 (11)0.0138 (11)0.0211 (11)
C200.0615 (12)0.0481 (11)0.0815 (15)0.0242 (10)0.0280 (11)0.0162 (10)
C210.0571 (11)0.0391 (10)0.0713 (13)0.0095 (8)0.0272 (10)0.0009 (9)
C220.0392 (8)0.0334 (8)0.0488 (9)0.0008 (6)0.0170 (7)0.0020 (6)
C230.0384 (8)0.0288 (7)0.0345 (7)0.0020 (6)0.0107 (6)0.0022 (6)
C240.0416 (8)0.0313 (7)0.0311 (7)0.0030 (6)0.0056 (6)0.0003 (5)
C250.0624 (11)0.0311 (8)0.0387 (8)0.0070 (7)0.0171 (8)0.0026 (6)
C260.0670 (13)0.0606 (13)0.0681 (13)0.0082 (10)0.0277 (11)0.0132 (10)
C270.0472 (9)0.0354 (8)0.0338 (7)0.0058 (7)0.0080 (7)0.0016 (6)
C280.0786 (14)0.0538 (11)0.0425 (9)0.0245 (10)0.0166 (9)0.0008 (8)
C290.158 (3)0.093 (2)0.0589 (14)0.080 (2)0.0293 (16)0.0151 (13)
C300.0471 (10)0.0504 (10)0.0426 (9)0.0029 (8)0.0030 (7)0.0021 (7)
C310.0404 (9)0.0481 (10)0.0633 (11)0.0031 (8)0.0041 (8)0.0116 (9)
C320.0557 (13)0.0712 (15)0.0896 (17)0.0181 (11)0.0245 (12)0.0116 (13)
Geometric parameters (Å, º) top
O1—C91.203 (2)O2—C251.201 (2)
S1—C61.7308 (17)S2—C221.7319 (17)
S1—C71.7573 (16)S2—C231.7549 (15)
N1—C71.2869 (19)N2—C231.2873 (19)
N1—C11.3909 (19)N2—C171.3912 (19)
C1—C21.396 (2)C17—C181.393 (2)
C1—C61.403 (2)C17—C221.398 (2)
C2—C31.371 (2)C18—C191.385 (3)
C2—H20.912 (18)C18—H180.99 (2)
C3—C41.388 (3)C19—C201.384 (3)
C3—H30.94 (2)C19—H190.96 (2)
C4—C51.372 (3)C20—C211.372 (3)
C4—H40.95 (2)C20—H201.00 (2)
C5—C61.390 (2)C21—C221.398 (2)
C5—H50.91 (2)C21—H210.92 (2)
C7—C81.514 (2)C23—C241.514 (2)
C8—C91.545 (2)C24—C301.544 (2)
C8—C141.549 (2)C24—C251.544 (2)
C8—C111.555 (2)C24—C271.549 (2)
C9—C101.500 (3)C25—C261.488 (3)
C10—H10A0.9600C26—H26A0.9600
C10—H10B0.9600C26—H26B0.9600
C10—H10C0.9600C26—H26C0.9600
C11—C121.461 (2)C27—C281.460 (2)
C11—H11A0.9700C27—H27A0.9700
C11—H11B0.9700C27—H27B0.9700
C12—C131.174 (3)C28—C291.164 (3)
C13—H130.93 (3)C29—H290.94 (3)
C14—C151.454 (3)C30—C311.456 (3)
C14—H14A0.9700C30—H30A0.9700
C14—H14B0.9700C30—H30B0.9700
C15—C161.166 (3)C31—C321.173 (3)
C16—H160.88 (3)C32—H320.98 (3)
C6—S1—C789.14 (7)C22—S2—C2388.96 (7)
C7—N1—C1110.83 (13)C23—N2—C17110.90 (13)
N1—C1—C2125.68 (14)N2—C17—C18124.86 (15)
N1—C1—C6115.25 (14)N2—C17—C22115.06 (14)
C2—C1—C6119.03 (15)C18—C17—C22120.08 (15)
C3—C2—C1119.07 (16)C19—C18—C17118.23 (19)
C3—C2—H2122.9 (11)C19—C18—H18121.3 (13)
C1—C2—H2118.0 (11)C17—C18—H18120.4 (12)
C2—C3—C4121.33 (17)C20—C19—C18121.16 (19)
C2—C3—H3118.2 (12)C20—C19—H19122.3 (13)
C4—C3—H3120.5 (12)C18—C19—H19116.5 (13)
C5—C4—C3120.89 (17)C21—C20—C19121.61 (18)
C5—C4—H4119.2 (12)C21—C20—H20119.4 (13)
C3—C4—H4119.9 (12)C19—C20—H20119.0 (13)
C4—C5—C6118.28 (17)C20—C21—C22117.70 (19)
C4—C5—H5121.3 (13)C20—C21—H21121.9 (14)
C6—C5—H5120.4 (13)C22—C21—H21120.4 (14)
C5—C6—C1121.39 (15)C17—C22—C21121.20 (16)
C5—C6—S1129.48 (13)C17—C22—S2109.35 (11)
C1—C6—S1109.07 (12)C21—C22—S2129.44 (14)
N1—C7—C8124.89 (13)N2—C23—C24124.47 (13)
N1—C7—S1115.70 (12)N2—C23—S2115.73 (11)
C8—C7—S1119.37 (11)C24—C23—S2119.80 (10)
C7—C8—C9110.88 (13)C23—C24—C30110.29 (13)
C7—C8—C14109.50 (12)C23—C24—C25109.11 (12)
C9—C8—C14108.92 (13)C30—C24—C25109.21 (13)
C7—C8—C11109.28 (12)C23—C24—C27108.63 (12)
C9—C8—C11108.09 (13)C30—C24—C27110.63 (13)
C14—C8—C11110.16 (13)C25—C24—C27108.93 (12)
O1—C9—C10121.82 (17)O2—C25—C26122.09 (17)
O1—C9—C8120.00 (16)O2—C25—C24119.67 (17)
C10—C9—C8118.18 (14)C26—C25—C24118.22 (14)
C9—C10—H10A109.5C25—C26—H26A109.5
C9—C10—H10B109.5C25—C26—H26B109.5
H10A—C10—H10B109.5H26A—C26—H26B109.5
C9—C10—H10C109.5C25—C26—H26C109.5
H10A—C10—H10C109.5H26A—C26—H26C109.5
H10B—C10—H10C109.5H26B—C26—H26C109.5
C12—C11—C8111.27 (14)C28—C27—C24112.37 (13)
C12—C11—H11A109.4C28—C27—H27A109.1
C8—C11—H11A109.4C24—C27—H27A109.1
C12—C11—H11B109.4C28—C27—H27B109.1
C8—C11—H11B109.4C24—C27—H27B109.1
H11A—C11—H11B108.0H27A—C27—H27B107.9
C13—C12—C11176.8 (2)C29—C28—C27178.3 (3)
C12—C13—H13179.2 (18)C28—C29—H29174.5 (19)
C15—C14—C8112.10 (14)C31—C30—C24111.84 (14)
C15—C14—H14A109.2C31—C30—H30A109.2
C8—C14—H14A109.2C24—C30—H30A109.2
C15—C14—H14B109.2C31—C30—H30B109.2
C8—C14—H14B109.2C24—C30—H30B109.2
H14A—C14—H14B107.9H30A—C30—H30B107.9
C16—C15—C14178.6 (2)C32—C31—C30176.8 (2)
C15—C16—H16177.2 (18)C31—C32—H32177.4 (19)
C7—N1—C1—C2177.23 (16)C23—N2—C17—C18179.57 (17)
C7—N1—C1—C60.27 (19)C23—N2—C17—C220.14 (19)
N1—C1—C2—C3176.44 (16)N2—C17—C18—C19178.52 (18)
C6—C1—C2—C31.0 (3)C22—C17—C18—C190.9 (3)
C1—C2—C3—C40.4 (3)C17—C18—C19—C200.1 (3)
C2—C3—C4—C50.7 (3)C18—C19—C20—C210.9 (4)
C3—C4—C5—C61.1 (3)C19—C20—C21—C221.0 (3)
C4—C5—C6—C10.5 (3)N2—C17—C22—C21178.71 (15)
C4—C5—C6—S1176.61 (15)C18—C17—C22—C210.7 (3)
N1—C1—C6—C5177.15 (15)N2—C17—C22—S20.31 (17)
C2—C1—C6—C50.5 (2)C18—C17—C22—S2179.77 (14)
N1—C1—C6—S10.50 (17)C20—C21—C22—C170.2 (3)
C2—C1—C6—S1178.18 (13)C20—C21—C22—S2178.59 (15)
C7—S1—C6—C5176.60 (17)C23—S2—C22—C170.29 (12)
C7—S1—C6—C10.80 (12)C23—S2—C22—C21178.63 (16)
C1—N1—C7—C8176.84 (13)C17—N2—C23—C24179.44 (13)
C1—N1—C7—S10.94 (17)C17—N2—C23—S20.10 (17)
C6—S1—C7—N11.05 (13)C22—S2—C23—N20.24 (13)
C6—S1—C7—C8176.85 (12)C22—S2—C23—C24179.61 (12)
N1—C7—C8—C9112.90 (17)N2—C23—C24—C30127.53 (16)
S1—C7—C8—C969.40 (15)S2—C23—C24—C3053.15 (16)
N1—C7—C8—C14126.88 (16)N2—C23—C24—C25112.51 (16)
S1—C7—C8—C1450.82 (16)S2—C23—C24—C2566.81 (15)
N1—C7—C8—C116.1 (2)N2—C23—C24—C276.1 (2)
S1—C7—C8—C11171.56 (11)S2—C23—C24—C27174.56 (11)
C7—C8—C9—O1131.63 (17)C23—C24—C25—O2126.98 (16)
C14—C8—C9—O111.1 (2)C30—C24—C25—O26.3 (2)
C11—C8—C9—O1108.61 (18)C27—C24—C25—O2114.58 (17)
C7—C8—C9—C1049.44 (19)C23—C24—C25—C2654.16 (19)
C14—C8—C9—C10170.00 (15)C30—C24—C25—C26174.79 (15)
C11—C8—C9—C1070.32 (18)C27—C24—C25—C2664.29 (19)
C7—C8—C11—C12175.71 (14)C23—C24—C27—C28179.97 (15)
C9—C8—C11—C1263.53 (18)C30—C24—C27—C2858.76 (19)
C14—C8—C11—C1255.37 (18)C25—C24—C27—C2861.29 (19)
C8—C11—C12—C1322 (4)C24—C27—C28—C2968 (7)
C7—C8—C14—C1556.19 (18)C23—C24—C30—C3158.50 (18)
C9—C8—C14—C15177.59 (14)C25—C24—C30—C31178.41 (14)
C11—C8—C14—C1564.02 (18)C27—C24—C30—C3161.71 (18)
C8—C14—C15—C1635 (10)C24—C30—C31—C3226 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—–H13···..O1i0.93 (3)2.52 (3)3.409 (3)161 (2)
C14—–H14B···..O20.972.393.302 (2)155
C27—–H27A···..O1ii0.972.553.409 (2)147
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H13NOS
Mr267.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.7913 (1), 30.2051 (6), 12.4437 (2)
β (°) 106.161 (1)
V3)2812.74 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.36 × 0.30 × 0.20
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
45783, 8407, 5449
Rint0.052
(sin θ/λ)max1)0.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.01
No. of reflections8407
No. of parameters391
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—–H13···..O1i0.93 (3)2.52 (3)3.409 (3)161 (2)
C14—–H14B···..O20.972.393.302 (2)155
C27—–H27A···..O1ii0.972.553.409 (2)147
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBradshaw, T. D., Chua, M. S., Browne, H. L., Trapani, V., Sausville, E. A. & Stevens, M. F. G. (2002). BJC, 86, 1348–1354.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P. & Galy, J.-P. (2002). Antimicrob. Agents Chemother. 46, 2588–2594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRepiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process. Res. Dev. 5, 519–527.  Google Scholar
First citationSchwartz, A., Madan, P. B., Mohacsi, E., O'Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851–856.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds