organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-1-phenyl­ethanol

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 4 March 2010; accepted 24 March 2010; online 27 March 2010)

In the title compound, C14H13N3O, the benzotriazole ring is oriented at a dihedral angle of 13.43 (4)° with respect to the phenyl ring. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link the mol­ecules into chains along the b axis. Aromatic ππ contacts between benzene rings and between triazole and benzene rings [centroid–centroid distances = 3.8133 (8) and 3.7810 (8) Å, respectively], as well as a weak C—H⋯π inter­action involving the phenyl ring, are also observed.

Related literature

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973-1978.]); Yu et al. (2003[Yu, K.-L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141-2144.]); Kopańska et al. (2004[Kopańska, K., Najda, A., Żebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2317-2624.]). For related structures, see: Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Katritzky et al. (2001[Katritzky, A. R., Zhang, S., Kurz, T., Wang, M. & Steel, P. J. (2001). Org. Lett. 3, 2807-2809.]); Özel Güven et al. (2008[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.]); Swamy et al. (2006[Swamy, S. N., Basappa, Sarala G., Priya, B. S., Gaonkar, S. L., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999-1004.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O

  • Mr = 239.27

  • Orthorhombic, P b c a

  • a = 11.0731 (3) Å

  • b = 8.6571 (2) Å

  • c = 25.3436 (7) Å

  • V = 2429.5 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.981

  • 11997 measured reflections

  • 2772 independent reflections

  • 2447 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 1.06

  • 2772 reflections

  • 215 parameters

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 (2) 1.92 (2) 2.766 (2) 170 (2)
C11—H11⋯Cg3i 1.01 (2) 2.94 (2) 3.850 (2) 151 (1)
Symmetry code: (i) [x, -y-{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azole compounds have important antifungal and antibacterial activities. Benzotriazole derivatives also exhibit a good degree of analgesic, anti-inflammatory, diuretic, antiviral and antihypertensive activities (Kopańska et al., 2004; Yu et al., 2003; Hirokawa et al., 1998). Crystal structures of similar compounds such as 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol (Özel Güven et al., 2008), fluconazole (Caira et al., 2004) and benzotriazole ring possessing compounds (Katritzky et al., 2001; Swamy et al., 2006) have been reported. Now, we report herein the crystal structure of the title benzotriazole derivative, (I).

In the molecule of the title compound (Fig. 1), bond lengths and angles are generally within normal ranges. The planar benzotriazole ring system is oriented with respect to the phenyl ring at a dihedral angle of 13.43 (4)°. Exocyclic carbon atoms C7 and C8 are 0.062 (1) and -0.028 (1) Å away from the planes of the benzotriazole and phenyl rings, respectively. So, they are almost coplanar with the adjacent rings.

In the crystal structure, intermolecular O-H···N hydrogen bonds (Table 1) link the molecules into chains along the b-axis (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene rings and between the triazole and the benzene rings , Cg2—Cg2i and Cg1—Cg2i [symmetry code: (i) 1 - x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings (C1/C6/N1-N3) and (C1-C6), respectively] with centroid-centroid distances of 3.8133 (8) and 3.7810 (8) Å are also observed in the crystal structure. respectively. A weak C—H···π interaction (Table 1) involving the phenyl ring also occurs.

Related literature top

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopańska et al. (2004). For related structures, see: Caira et al. (2004); Katritzky et al. (2001); Özel Güven et al. (2008); Swamy et al. (2006).

Experimental top

The title compound was synthesized by the reduction of 2-(-benzotriazol-1-yl)-1-phenylethanone with sodiumborohydride. A mixture of 2-(-benzotriazol-1-yl)-1-phenylethanone (500 mg, 2.10 mmol) and sodiumborohydride (159.5 mg, 4.21 mmol) in ethanol (25 ml) was refluxed for 4 h. After evaporation of the solvent, the mixture was neutralized with dilute HCl, and then refluxed for 30 min. After the mixture was cooled, the solution was alkalinized with dilute NaOH and the resulting precipitate was filtered. The filtrate was extracted with chloroform, then the organic phase was dried and evaporated. The residue was crystallized from ethyl acetate to obtain colorless crystals suitable for X-ray analysis (yield; 216 mg, 43%).

Refinement top

H atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
2-(1H-Benzotriazol-1-yl)-1-phenylethanol top
Crystal data top
C14H13N3OF(000) = 1008
Mr = 239.27Dx = 1.308 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 13033 reflections
a = 11.0731 (3) Åθ = 2.9–27.5°
b = 8.6571 (2) ŵ = 0.09 mm1
c = 25.3436 (7) ÅT = 120 K
V = 2429.5 (1) Å3Block, colorless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Nonius Kappa CCD
diffractometer
2772 independent reflections
Radiation source: fine-focus sealed tube2447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1414
Tmin = 0.968, Tmax = 0.981k = 1011
11997 measured reflectionsl = 3216
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0259P)2 + 1.6489P]
where P = (Fo2 + 2Fc2)/3
2772 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H13N3OV = 2429.5 (1) Å3
Mr = 239.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.0731 (3) ŵ = 0.09 mm1
b = 8.6571 (2) ÅT = 120 K
c = 25.3436 (7) Å0.40 × 0.30 × 0.20 mm
Data collection top
Nonius Kappa CCD
diffractometer
2772 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2447 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.981Rint = 0.043
11997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 1.06Δρmax = 0.25 e Å3
2772 reflectionsΔρmin = 0.23 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02061 (10)0.04949 (12)0.40376 (4)0.0279 (2)
H10.090 (2)0.038 (2)0.4178 (9)0.054 (6)*
N10.25101 (12)0.48299 (16)0.44171 (5)0.0300 (3)
N20.18457 (11)0.44939 (15)0.40068 (5)0.0295 (3)
N30.08582 (11)0.37136 (13)0.41711 (4)0.0222 (3)
C10.19546 (12)0.42532 (16)0.48602 (5)0.0224 (3)
C20.22997 (13)0.43162 (17)0.53950 (5)0.0240 (3)
H20.3052 (16)0.479 (2)0.5494 (7)0.029 (4)*
C30.15335 (14)0.36306 (17)0.57508 (5)0.0253 (3)
H30.1736 (15)0.3631 (19)0.6119 (7)0.030 (4)*
C40.04479 (14)0.29030 (16)0.55904 (6)0.0255 (3)
H40.0089 (16)0.240 (2)0.5866 (8)0.036 (5)*
C50.01041 (13)0.28261 (16)0.50680 (6)0.0228 (3)
H50.0631 (15)0.232 (2)0.4957 (7)0.028 (4)*
C60.08867 (12)0.35214 (15)0.47059 (5)0.0199 (3)
C70.00031 (13)0.31427 (16)0.37785 (5)0.0229 (3)
H710.0807 (15)0.3138 (18)0.3945 (6)0.022 (4)*
H720.0019 (15)0.388 (2)0.3473 (7)0.028 (4)*
C80.03379 (12)0.15050 (16)0.36022 (5)0.0216 (3)
H80.1203 (14)0.1535 (17)0.3473 (6)0.021 (4)*
C90.04730 (12)0.09913 (16)0.31533 (5)0.0214 (3)
C100.13758 (13)0.00987 (17)0.32359 (5)0.0248 (3)
H100.1479 (15)0.0567 (19)0.3588 (7)0.032 (4)*
C110.21348 (14)0.05425 (19)0.28253 (6)0.0303 (3)
H110.2784 (17)0.134 (2)0.2882 (7)0.039 (5)*
C120.19924 (15)0.00902 (19)0.23260 (6)0.0317 (3)
H120.2518 (18)0.023 (2)0.2038 (8)0.043 (5)*
C130.10914 (15)0.11692 (19)0.22396 (6)0.0318 (3)
H130.0995 (17)0.162 (2)0.1892 (8)0.041 (5)*
C140.03327 (14)0.16238 (17)0.26496 (6)0.0270 (3)
H140.0301 (16)0.238 (2)0.2584 (7)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0291 (6)0.0264 (5)0.0282 (5)0.0010 (4)0.0097 (4)0.0070 (4)
N10.0289 (6)0.0409 (7)0.0201 (6)0.0107 (5)0.0015 (5)0.0021 (5)
N20.0311 (6)0.0367 (7)0.0206 (6)0.0111 (6)0.0016 (5)0.0001 (5)
N30.0250 (6)0.0238 (6)0.0176 (5)0.0032 (5)0.0009 (4)0.0004 (4)
C10.0222 (6)0.0248 (7)0.0202 (6)0.0007 (5)0.0013 (5)0.0008 (5)
C20.0235 (7)0.0265 (7)0.0221 (7)0.0007 (6)0.0024 (5)0.0037 (5)
C30.0339 (8)0.0237 (7)0.0184 (6)0.0030 (6)0.0022 (6)0.0002 (5)
C40.0332 (8)0.0219 (7)0.0213 (7)0.0005 (6)0.0047 (6)0.0012 (5)
C50.0245 (7)0.0213 (7)0.0227 (7)0.0025 (5)0.0015 (5)0.0003 (5)
C60.0227 (6)0.0191 (6)0.0178 (6)0.0017 (5)0.0009 (5)0.0002 (5)
C70.0269 (7)0.0240 (7)0.0178 (6)0.0001 (5)0.0051 (5)0.0004 (5)
C80.0205 (6)0.0232 (7)0.0212 (6)0.0001 (5)0.0013 (5)0.0002 (5)
C90.0212 (6)0.0233 (7)0.0197 (6)0.0048 (5)0.0004 (5)0.0042 (5)
C100.0239 (7)0.0307 (7)0.0197 (6)0.0000 (6)0.0014 (5)0.0046 (6)
C110.0269 (7)0.0376 (8)0.0263 (7)0.0032 (6)0.0011 (6)0.0098 (6)
C120.0322 (8)0.0401 (9)0.0227 (7)0.0071 (7)0.0065 (6)0.0109 (6)
C130.0439 (9)0.0340 (8)0.0176 (7)0.0078 (7)0.0013 (6)0.0024 (6)
C140.0317 (8)0.0274 (7)0.0218 (7)0.0015 (6)0.0033 (6)0.0016 (6)
Geometric parameters (Å, º) top
O1—C81.4154 (17)C7—H710.992 (17)
O1—H10.86 (2)C7—H721.003 (17)
N1—C11.3743 (18)C8—C71.5320 (19)
N2—N11.3067 (17)C8—C91.5161 (18)
N3—N21.3511 (16)C8—H81.012 (16)
N3—C61.3659 (16)C9—C101.390 (2)
N3—C71.4597 (17)C9—C141.3978 (19)
C1—C21.4091 (18)C10—C111.392 (2)
C2—H20.962 (18)C10—H100.986 (18)
C3—C21.373 (2)C11—H111.005 (19)
C3—H30.960 (17)C12—C131.384 (2)
C4—C31.417 (2)C12—C111.388 (2)
C4—C51.3793 (19)C12—H120.98 (2)
C4—H41.014 (19)C13—H130.97 (2)
C5—H50.965 (17)C14—C131.393 (2)
C6—C11.3974 (19)C14—H140.972 (18)
C6—C51.3983 (19)
C8—O1—H1107.8 (15)C8—C7—H71109.9 (9)
N2—N1—C1108.51 (12)C8—C7—H72111.1 (10)
N1—N2—N3108.76 (11)H71—C7—H72110.3 (13)
N2—N3—C6110.37 (11)O1—C8—C7108.63 (11)
N2—N3—C7118.95 (11)O1—C8—C9110.04 (11)
C6—N3—C7130.55 (12)O1—C8—H8111.5 (9)
N1—C1—C2130.58 (13)C9—C8—C7110.30 (11)
N1—C1—C6108.35 (12)C9—C8—H8108.9 (9)
C6—C1—C2121.07 (13)C7—C8—H8107.4 (9)
C1—C2—H2120.1 (10)C10—C9—C8120.79 (12)
C3—C2—C1116.58 (13)C10—C9—C14118.89 (13)
C3—C2—H2123.2 (10)C14—C9—C8120.31 (13)
C2—C3—C4121.87 (13)C9—C10—C11120.60 (14)
C2—C3—H3119.6 (10)C9—C10—H10119.9 (10)
C4—C3—H3118.5 (10)C11—C10—H10119.5 (10)
C3—C4—H4119.4 (11)C10—C11—H11120.9 (11)
C5—C4—C3122.08 (13)C12—C11—C10120.28 (15)
C5—C4—H4118.5 (11)C12—C11—H11118.8 (10)
C4—C5—C6115.99 (13)C11—C12—H12120.1 (12)
C4—C5—H5122.4 (10)C13—C12—C11119.50 (14)
C6—C5—H5121.6 (10)C13—C12—H12120.4 (12)
N3—C6—C1104.01 (12)C12—C13—C14120.49 (14)
N3—C6—C5133.57 (13)C12—C13—H13119.5 (11)
C1—C6—C5122.41 (12)C14—C13—H13120.0 (12)
N3—C7—C8110.81 (11)C9—C14—H14120.0 (11)
N3—C7—H71107.3 (9)C13—C14—C9120.24 (14)
N3—C7—H72107.4 (10)C13—C14—H14119.8 (11)
N2—N1—C1—C2179.62 (15)C5—C6—C1—N1179.32 (13)
N2—N1—C1—C60.05 (17)C5—C6—C1—C20.4 (2)
N3—N2—N1—C10.35 (17)N3—C6—C5—C4178.54 (14)
C6—N3—N2—N10.64 (16)C1—C6—C5—C40.0 (2)
C7—N3—N2—N1177.00 (12)O1—C8—C7—N365.40 (14)
N2—N3—C6—C10.64 (15)C9—C8—C7—N3173.92 (11)
N2—N3—C6—C5179.36 (15)O1—C8—C9—C1013.06 (17)
N2—N3—C7—C890.35 (15)O1—C8—C9—C14167.73 (12)
C6—N3—C7—C885.16 (17)C7—C8—C9—C10106.78 (15)
C7—N3—C6—C1176.45 (13)C7—C8—C9—C1472.44 (16)
C7—N3—C6—C54.8 (3)C8—C9—C10—C11178.62 (13)
N1—C1—C2—C3179.42 (15)C14—C9—C10—C110.6 (2)
C6—C1—C2—C30.2 (2)C8—C9—C14—C13178.95 (13)
C4—C3—C2—C10.3 (2)C10—C9—C14—C130.3 (2)
C5—C4—C3—C20.7 (2)C9—C10—C11—C120.5 (2)
C3—C4—C5—C60.5 (2)C13—C12—C11—C100.2 (2)
N3—C6—C1—N10.42 (15)C11—C12—C13—C140.2 (2)
N3—C6—C1—C2179.29 (13)C9—C14—C13—C120.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (2)1.92 (2)2.766 (2)170 (2)
C11—H11···Cg3i1.01 (2)2.94 (2)3.850 (2)151 (1)
Symmetry code: (i) x, y3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O
Mr239.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)11.0731 (3), 8.6571 (2), 25.3436 (7)
V3)2429.5 (1)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.968, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
11997, 2772, 2447
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 1.06
No. of reflections2772
No. of parameters215
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (2)1.92 (2)2.766 (2)170 (2)
C11—H11···Cg3i1.01 (2)2.94 (2)3.850 (2)151 (1)
Symmetry code: (i) x, y3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund for support.

References

First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973–1978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R., Zhang, S., Kurz, T., Wang, M. & Steel, P. J. (2001). Org. Lett. 3, 2807–2809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopańska, K., Najda, A., Żebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2317–2624.  Web of Science PubMed Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, S. N., Basappa, Sarala G., Priya, B. S., Gaonkar, S. L., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004.  Google Scholar
First citationYu, K.-L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds