organic compounds
(8-Bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp
In the title compound, C19H14BrClO3, the naphthalene ring system and the benzene ring make a dihedral angle of 77.36 (10)°. The conformation around the central C=O group is such that the C=O bond vector forms a larger angle to the plane of the naphthalene ring system than to the plane of the benzene ring, viz. 75.73 (15)° versus 2.33 (17)°. In the a π–π interaction is formed between naphthalene ring systems, with a centroid–centroid distance of 3.8363 (14) Å and a lateral offset of 1.606 Å. Intermolecular C—H⋯Br and C—H⋯O hydrogen bonds and a C—H⋯π contact are present in the crystal structure.
Related literature
For the structures of closely related compounds, see: Mitsui et al. (2009, 2010); Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa (2008); Mitsui, Nakaema, Noguchi & Yonezawa (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810009463/is2530sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009463/is2530Isup2.hkl
1-Bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (1.56 g, 4.0 mmol) was dissolved in acetone (5.0 ml) and aqueous 0.4 M NaOH (5.0 ml). Then, dimethyl sulfate (0.78 ml, 8.0 mmol) was added and the reaction mixture was stirred for 6 h at room temperature. The mixture was concentrated by evaporation and poured into a mixture of H2O (10 ml) and CHCl3 (10 ml), and the aqueous layer was extracted with CHCl3 (3 × 10 ml). The combined organic layers were washed with brine (3 × 30 ml), and dried over MgSO4 overnight. The solvent was removed in vacuo and the crude material was purified by recrystallization from CHCl3/hexane to give the title compound as colorless platelets (m.p. 447.0–447.5 K, yield 1.43 g, 88%).
Spectroscopic Data: 1H NMR (300 MHz, CDCl3) δ 7.88–7.79 (m, 4H), 7.37 (d, 2H), 7.21–7.15 (m, 2H), 3.95 (s, 3H), 3.75 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 196.5, 157.2, 155.7, 138.7, 138.6, 132.2, 131.9, 130.4, 130.1, 128.7, 126.3, 122.5, 111.8, 111.6, 104.9, 57.0, 56.8; IR (KBr): 1665, 1613, 1506, 1273, 1043, 827; HRMS (m/z): [M + H]+ calcd for C19H15BrClO3, 404.9893 found, 404.9862. Anal. Calcd for C19H14BrClO3: C 56.25, H 3.48. Found: C 56.48, H 3.42.
All the H atoms could be located in a difference Fourier map. The C-bound H atoms were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H14BrClO3 | F(000) = 816 |
Mr = 405.66 | Dx = 1.589 Mg m−3 |
Monoclinic, P21/c | Melting point = 447.0–447.5 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54187 Å |
a = 15.0867 (3) Å | Cell parameters from 25305 reflections |
b = 8.72313 (16) Å | θ = 3.1–68.2° |
c = 13.5894 (3) Å | µ = 4.88 mm−1 |
β = 108.536 (1)° | T = 193 K |
V = 1695.64 (6) Å3 | Platelet, colorless |
Z = 4 | 0.50 × 0.40 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 3092 independent reflections |
Radiation source: rotating anode | 2845 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 3.1° |
ω scans | h = −18→18 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −10→10 |
Tmin = 0.160, Tmax = 0.614 | l = −16→15 |
26838 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.036P)2 + 0.9139P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3092 reflections | Δρmax = 0.45 e Å−3 |
220 parameters | Δρmin = −0.43 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0034 (2) |
C19H14BrClO3 | V = 1695.64 (6) Å3 |
Mr = 405.66 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 15.0867 (3) Å | µ = 4.88 mm−1 |
b = 8.72313 (16) Å | T = 193 K |
c = 13.5894 (3) Å | 0.50 × 0.40 × 0.20 mm |
β = 108.536 (1)° |
Rigaku R-AXIS RAPID diffractometer | 3092 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2845 reflections with I > 2σ(I) |
Tmin = 0.160, Tmax = 0.614 | Rint = 0.071 |
26838 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.45 e Å−3 |
3092 reflections | Δρmin = −0.43 e Å−3 |
220 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.147755 (18) | 0.22446 (3) | 0.41929 (2) | 0.03662 (13) | |
Cl1 | 0.50868 (6) | 0.13053 (10) | 0.23975 (8) | 0.0709 (3) | |
O1 | 0.14525 (10) | 0.53370 (19) | 0.27564 (12) | 0.0318 (4) | |
O2 | 0.32367 (14) | 0.7494 (2) | 0.39704 (16) | 0.0411 (5) | |
O3 | 0.03824 (12) | 0.2074 (2) | 0.55691 (15) | 0.0372 (4) | |
C1 | 0.23238 (14) | 0.5731 (2) | 0.44962 (17) | 0.0248 (5) | |
C2 | 0.27916 (16) | 0.7120 (3) | 0.4674 (2) | 0.0307 (5) | |
C3 | 0.27780 (19) | 0.8080 (3) | 0.5498 (2) | 0.0401 (6) | |
H3 | 0.3116 | 0.9017 | 0.5619 | 0.048* | |
C4 | 0.2273 (2) | 0.7647 (3) | 0.6119 (2) | 0.0417 (6) | |
H4 | 0.2251 | 0.8309 | 0.6666 | 0.050* | |
C5 | 0.17794 (16) | 0.6246 (3) | 0.59797 (19) | 0.0313 (5) | |
C6 | 0.12237 (18) | 0.5854 (3) | 0.66060 (19) | 0.0375 (6) | |
H6 | 0.1192 | 0.6544 | 0.7135 | 0.045* | |
C7 | 0.07338 (16) | 0.4519 (3) | 0.64755 (19) | 0.0339 (6) | |
H7 | 0.0346 | 0.4304 | 0.6889 | 0.041* | |
C8 | 0.08055 (15) | 0.3461 (3) | 0.57235 (18) | 0.0294 (5) | |
C9 | 0.13469 (15) | 0.3817 (3) | 0.51018 (17) | 0.0253 (5) | |
C10 | 0.18258 (14) | 0.5234 (2) | 0.51737 (16) | 0.0243 (5) | |
C11 | 0.21803 (15) | 0.5047 (2) | 0.34374 (17) | 0.0251 (5) | |
C12 | 0.29276 (15) | 0.4137 (2) | 0.32081 (18) | 0.0264 (5) | |
C13 | 0.37831 (16) | 0.3841 (3) | 0.39620 (19) | 0.0325 (5) | |
H13 | 0.3907 | 0.4235 | 0.4644 | 0.039* | |
C14 | 0.44561 (17) | 0.2970 (3) | 0.3718 (2) | 0.0406 (6) | |
H14 | 0.5043 | 0.2775 | 0.4228 | 0.049* | |
C15 | 0.42620 (18) | 0.2396 (3) | 0.2732 (2) | 0.0402 (7) | |
C16 | 0.34149 (19) | 0.2680 (3) | 0.1967 (2) | 0.0397 (6) | |
H16 | 0.3294 | 0.2279 | 0.1287 | 0.048* | |
C17 | 0.27547 (16) | 0.3553 (3) | 0.22136 (19) | 0.0321 (5) | |
H17 | 0.2174 | 0.3758 | 0.1697 | 0.039* | |
C18 | 0.3499 (2) | 0.9051 (3) | 0.3903 (3) | 0.0476 (7) | |
H18A | 0.3716 | 0.9176 | 0.3300 | 0.057* | |
H18B | 0.4004 | 0.9329 | 0.4535 | 0.057* | |
H18C | 0.2959 | 0.9718 | 0.3827 | 0.057* | |
C19 | −0.01877 (17) | 0.1655 (3) | 0.6194 (2) | 0.0425 (7) | |
H19A | −0.0466 | 0.0645 | 0.5978 | 0.051* | |
H19B | −0.0685 | 0.2416 | 0.6104 | 0.051* | |
H19C | 0.0199 | 0.1618 | 0.6925 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05100 (19) | 0.02421 (18) | 0.0425 (2) | −0.00965 (10) | 0.02598 (14) | −0.00643 (10) |
Cl1 | 0.0531 (4) | 0.0667 (5) | 0.1010 (7) | 0.0177 (4) | 0.0360 (4) | −0.0234 (5) |
O1 | 0.0301 (8) | 0.0363 (9) | 0.0288 (9) | 0.0025 (7) | 0.0094 (7) | 0.0005 (7) |
O2 | 0.0518 (11) | 0.0298 (9) | 0.0537 (13) | −0.0136 (8) | 0.0336 (10) | −0.0043 (8) |
O3 | 0.0405 (9) | 0.0338 (10) | 0.0443 (11) | −0.0086 (7) | 0.0236 (8) | 0.0042 (8) |
C1 | 0.0244 (10) | 0.0233 (11) | 0.0284 (12) | 0.0000 (8) | 0.0108 (9) | −0.0009 (9) |
C2 | 0.0310 (11) | 0.0301 (13) | 0.0351 (14) | −0.0043 (9) | 0.0163 (10) | −0.0003 (10) |
C3 | 0.0476 (14) | 0.0312 (13) | 0.0453 (16) | −0.0136 (11) | 0.0201 (12) | −0.0121 (12) |
C4 | 0.0554 (16) | 0.0370 (14) | 0.0369 (15) | −0.0104 (12) | 0.0207 (13) | −0.0157 (12) |
C5 | 0.0358 (12) | 0.0307 (12) | 0.0296 (13) | −0.0025 (10) | 0.0136 (10) | −0.0030 (10) |
C6 | 0.0471 (14) | 0.0396 (14) | 0.0305 (14) | 0.0011 (11) | 0.0191 (11) | −0.0049 (11) |
C7 | 0.0357 (12) | 0.0410 (14) | 0.0314 (13) | 0.0029 (10) | 0.0194 (10) | 0.0055 (11) |
C8 | 0.0280 (10) | 0.0283 (12) | 0.0322 (13) | 0.0015 (9) | 0.0099 (9) | 0.0075 (10) |
C9 | 0.0287 (10) | 0.0252 (11) | 0.0233 (11) | 0.0003 (9) | 0.0100 (9) | 0.0009 (9) |
C10 | 0.0248 (10) | 0.0241 (11) | 0.0236 (11) | 0.0006 (8) | 0.0069 (8) | 0.0017 (9) |
C11 | 0.0297 (11) | 0.0209 (11) | 0.0276 (12) | −0.0044 (8) | 0.0131 (9) | 0.0029 (9) |
C12 | 0.0293 (11) | 0.0219 (11) | 0.0324 (13) | −0.0019 (8) | 0.0160 (9) | 0.0009 (9) |
C13 | 0.0356 (12) | 0.0310 (12) | 0.0316 (13) | −0.0006 (10) | 0.0116 (10) | 0.0012 (10) |
C14 | 0.0308 (12) | 0.0351 (14) | 0.0541 (17) | 0.0055 (10) | 0.0110 (12) | 0.0050 (13) |
C15 | 0.0366 (13) | 0.0287 (13) | 0.062 (2) | 0.0007 (10) | 0.0258 (13) | −0.0069 (12) |
C16 | 0.0423 (14) | 0.0349 (14) | 0.0468 (17) | −0.0038 (11) | 0.0212 (13) | −0.0119 (12) |
C17 | 0.0338 (11) | 0.0291 (12) | 0.0357 (14) | −0.0050 (9) | 0.0142 (10) | −0.0047 (10) |
C18 | 0.0543 (16) | 0.0321 (14) | 0.0622 (19) | −0.0114 (12) | 0.0269 (14) | 0.0052 (13) |
C19 | 0.0357 (13) | 0.0438 (16) | 0.0538 (17) | −0.0021 (11) | 0.0223 (12) | 0.0171 (14) |
Br1—C9 | 1.898 (2) | C7—H7 | 0.9500 |
Cl1—C15 | 1.738 (3) | C8—C9 | 1.384 (3) |
O1—C11 | 1.217 (3) | C9—C10 | 1.419 (3) |
O2—C2 | 1.371 (3) | C11—C12 | 1.490 (3) |
O2—C18 | 1.426 (3) | C12—C17 | 1.389 (3) |
O3—C8 | 1.353 (3) | C12—C13 | 1.393 (3) |
O3—C19 | 1.435 (3) | C13—C14 | 1.390 (4) |
C1—C2 | 1.385 (3) | C13—H13 | 0.9500 |
C1—C10 | 1.428 (3) | C14—C15 | 1.372 (4) |
C1—C11 | 1.508 (3) | C14—H14 | 0.9500 |
C2—C3 | 1.403 (4) | C15—C16 | 1.389 (4) |
C3—C4 | 1.359 (4) | C16—C17 | 1.377 (3) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.412 (3) | C17—H17 | 0.9500 |
C4—H4 | 0.9500 | C18—H18A | 0.9800 |
C5—C6 | 1.414 (3) | C18—H18B | 0.9800 |
C5—C10 | 1.426 (3) | C18—H18C | 0.9800 |
C6—C7 | 1.360 (4) | C19—H19A | 0.9800 |
C6—H6 | 0.9500 | C19—H19B | 0.9800 |
C7—C8 | 1.406 (4) | C19—H19C | 0.9800 |
C2—O2—C18 | 118.6 (2) | O1—C11—C1 | 117.7 (2) |
C8—O3—C19 | 118.6 (2) | C12—C11—C1 | 121.43 (18) |
C2—C1—C10 | 119.8 (2) | C17—C12—C13 | 119.4 (2) |
C2—C1—C11 | 115.1 (2) | C17—C12—C11 | 118.6 (2) |
C10—C1—C11 | 123.34 (18) | C13—C12—C11 | 122.0 (2) |
O2—C2—C1 | 114.9 (2) | C14—C13—C12 | 120.2 (2) |
O2—C2—C3 | 123.3 (2) | C14—C13—H13 | 119.9 |
C1—C2—C3 | 121.7 (2) | C12—C13—H13 | 119.9 |
C4—C3—C2 | 118.9 (2) | C15—C14—C13 | 119.1 (2) |
C4—C3—H3 | 120.5 | C15—C14—H14 | 120.4 |
C2—C3—H3 | 120.5 | C13—C14—H14 | 120.4 |
C3—C4—C5 | 122.2 (3) | C14—C15—C16 | 121.7 (2) |
C3—C4—H4 | 118.9 | C14—C15—Cl1 | 120.5 (2) |
C5—C4—H4 | 118.9 | C16—C15—Cl1 | 117.8 (2) |
C4—C5—C6 | 121.1 (2) | C17—C16—C15 | 118.8 (3) |
C4—C5—C10 | 119.1 (2) | C17—C16—H16 | 120.6 |
C6—C5—C10 | 119.7 (2) | C15—C16—H16 | 120.6 |
C7—C6—C5 | 122.0 (2) | C16—C17—C12 | 120.8 (2) |
C7—C6—H6 | 119.0 | C16—C17—H17 | 119.6 |
C5—C6—H6 | 119.0 | C12—C17—H17 | 119.6 |
C6—C7—C8 | 119.5 (2) | O2—C18—H18A | 109.5 |
C6—C7—H7 | 120.3 | O2—C18—H18B | 109.5 |
C8—C7—H7 | 120.3 | H18A—C18—H18B | 109.5 |
O3—C8—C9 | 116.5 (2) | O2—C18—H18C | 109.5 |
O3—C8—C7 | 123.9 (2) | H18A—C18—H18C | 109.5 |
C9—C8—C7 | 119.5 (2) | H18B—C18—H18C | 109.5 |
C8—C9—C10 | 122.6 (2) | O3—C19—H19A | 109.5 |
C8—C9—Br1 | 116.03 (17) | O3—C19—H19B | 109.5 |
C10—C9—Br1 | 121.22 (17) | H19A—C19—H19B | 109.5 |
C9—C10—C5 | 116.3 (2) | O3—C19—H19C | 109.5 |
C9—C10—C1 | 125.5 (2) | H19A—C19—H19C | 109.5 |
C5—C10—C1 | 118.2 (2) | H19B—C19—H19C | 109.5 |
O1—C11—C12 | 120.8 (2) | ||
C18—O2—C2—C1 | 162.1 (2) | C4—C5—C10—C9 | 177.4 (2) |
C18—O2—C2—C3 | −16.0 (4) | C6—C5—C10—C9 | −4.2 (3) |
C10—C1—C2—O2 | −179.2 (2) | C4—C5—C10—C1 | −4.0 (3) |
C11—C1—C2—O2 | −14.2 (3) | C6—C5—C10—C1 | 174.3 (2) |
C10—C1—C2—C3 | −1.2 (3) | C2—C1—C10—C9 | −177.6 (2) |
C11—C1—C2—C3 | 163.9 (2) | C11—C1—C10—C9 | 18.6 (3) |
O2—C2—C3—C4 | 176.3 (3) | C2—C1—C10—C5 | 4.0 (3) |
C1—C2—C3—C4 | −1.6 (4) | C11—C1—C10—C5 | −159.8 (2) |
C2—C3—C4—C5 | 1.6 (4) | C2—C1—C11—O1 | −92.9 (3) |
C3—C4—C5—C6 | −177.0 (3) | C10—C1—C11—O1 | 71.6 (3) |
C3—C4—C5—C10 | 1.3 (4) | C2—C1—C11—C12 | 82.9 (3) |
C4—C5—C6—C7 | 179.2 (3) | C10—C1—C11—C12 | −112.7 (2) |
C10—C5—C6—C7 | 0.9 (4) | O1—C11—C12—C17 | −3.6 (3) |
C5—C6—C7—C8 | 2.5 (4) | C1—C11—C12—C17 | −179.3 (2) |
C19—O3—C8—C9 | −179.9 (2) | O1—C11—C12—C13 | 177.3 (2) |
C19—O3—C8—C7 | 1.1 (3) | C1—C11—C12—C13 | 1.6 (3) |
C6—C7—C8—O3 | 176.7 (2) | C17—C12—C13—C14 | 0.1 (4) |
C6—C7—C8—C9 | −2.3 (3) | C11—C12—C13—C14 | 179.2 (2) |
O3—C8—C9—C10 | 179.58 (19) | C12—C13—C14—C15 | −0.7 (4) |
C7—C8—C9—C10 | −1.3 (3) | C13—C14—C15—C16 | 0.9 (4) |
O3—C8—C9—Br1 | −4.0 (3) | C13—C14—C15—Cl1 | 179.9 (2) |
C7—C8—C9—Br1 | 175.04 (16) | C14—C15—C16—C17 | −0.4 (4) |
C8—C9—C10—C5 | 4.5 (3) | Cl1—C15—C16—C17 | −179.43 (19) |
Br1—C9—C10—C5 | −171.66 (16) | C15—C16—C17—C12 | −0.2 (4) |
C8—C9—C10—C1 | −173.9 (2) | C13—C12—C17—C16 | 0.4 (4) |
Br1—C9—C10—C1 | 9.9 (3) | C11—C12—C17—C16 | −178.7 (2) |
Cg1 is the centroid of the C1–C5/C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.49 | 3.366 (3) | 154 |
C19—H19A···Br1ii | 0.98 | 2.92 | 3.871 (3) | 165 |
C19—H19C···O1iii | 0.98 | 2.53 | 3.211 (3) | 126 |
C19—H19B···Cg1iv | 0.98 | 2.70 | 3.509 (3) | 140 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C19H14BrClO3 |
Mr | 405.66 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 15.0867 (3), 8.72313 (16), 13.5894 (3) |
β (°) | 108.536 (1) |
V (Å3) | 1695.64 (6) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.88 |
Crystal size (mm) | 0.50 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.160, 0.614 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26838, 3092, 2845 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.086, 1.07 |
No. of reflections | 3092 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.43 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Cg1 is the centroid of the C1–C5/C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.49 | 3.366 (3) | 154 |
C19—H19A···Br1ii | 0.98 | 2.92 | 3.871 (3) | 165 |
C19—H19C···O1iii | 0.98 | 2.53 | 3.211 (3) | 126 |
C19—H19B···Cg1iv | 0.98 | 2.70 | 3.509 (3) | 140 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x, −y+1, −z+1. |
Acknowledgements
The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o676. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008). Acta Cryst. E64, o1278. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o2497. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, o543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, we reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalenes, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui, Nakaema, Noguchi, Okamoto & Yonezawa, 2008), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui, Nakaema, Noguchi & Yonezawa, 2008), (4-chlorophenyl)(2-ethoxy-7-methoxynaphthalen-1-yl)methanone (Mitsui et al., 2009) and 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (Mitsui et al., 2010). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of crystal of 1-bromo-8-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene, (I). The title compound was prepared by methylation of 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene with dimethyl sulfonate.
An ORTEPIII (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. In the molecule of (I), the dihedral angle between the benzene ring (C12–C17) and the naphthalene ring (C1–C10) is 77.36 (10)°. The C═O bond vector and the least-squares plane of the benzene ring are almost coplanar [2.33 (17)°]. By contrast, the C═O bond vector and the least-squares plane of the naphthalene ring are largely twisted [75.73 (15)°]. The conformation of these groups resembles to that of 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene.
In the crystal structure, all H atoms belonging the methoxy group in the 7-position of naphthalene ring, interact with adjacent molecule constructing intermolecular C—H···Br, C—H···O hydrogen bonds and C—H···π contact, respectively (Table 1). H19A and Br1 interact with each other [H19A···Br1 = 2.92 Å] along the b axis (Fig. 2). H19C interacts with the carbonyl oxygen [H19C···O1 = 2.53 Å] along the b axis (Fig. 3). The carbonyl oxygen also interacts with naphthalene ring hydrogen [O1···H4 = 2.49 Å] along the c axis (Figs. 2 and 3). The methoxy group acts as a hydrogen-bond donor and the π system of the naphthalene ring [C1/C2/C3/C4/C5/C10 ring (with centroid Cg1)] of an adjacent molecule acts as an acceptor, viz. C19—H19B···π (Fig. 4 and Table 1). Additionally, the π systems of the C5–C10 ring (with centroid Cg2) in the naphthalene group are exactly parallel. The perpendicular distance between these aromatic rings is 3.4840 (10) Å. The centroid–centroid distance between the parallel aromatic rings is 3.8363 (14) Å, and the lateral offsets are 1.606 Å, indicating the presence of a π–π interaction (Fig. 4).