organic compounds
1-[(2-Chloro-7-methyl-3-quinolyl)methyl]pyridin-2(1H)-one
aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C16H13ClN2O, the quinoline ring system is essentially planar, with a maximum deviation of 0.021 (2) Å. The pyridone ring is oriented at a dihedral angle of 85.93 (6)° with respect to the quinoline ring system. In the intermolecular C—H⋯O hydrogen bonds link the molecules along the b axis. Weak π–π stacking interactions [centroid–centroid distances = 3.7218 (9) and 3.6083 (9) Å] are also observed.
Related literature
For related structures, see: Arman et al. (2009); Clegg & Nichol (2004); Nichol & Clegg (2005). For the synthesis of 2-pyridone derivatives, see: Conreaux et al. (2005); Roopan & Khan (2009); Roopan et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810011177/is2533sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810011177/is2533Isup2.hkl
To a mixed well solution of 2-pyridone (95 mg, 1 mmol, in 2 ml of DMF), KOtBu (112 mg, 1 mmol, in 10 ml THF) and 2-chloro-3-(chloromethyl)-7-methylquinoline (226 mg, 1 mmol) were added and the resulting mixture was refluxed at 343 K for 1 h. After the completion of the reaction, cooled and removed the excess of solvent under reduced pressure. Crushed ice was mixed with the residue. White solid was formed, filtered, dried and purified by
using hexane and ethylacetate as the eluant. Crystals of suitable quality were grown by solvent evaporation from a diethylether solution.H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell
CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C16H13ClN2O | F(000) = 1184 |
Mr = 284.73 | Dx = 1.377 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 985 reflections |
a = 11.8934 (3) Å | θ = 3.4–25.5° |
b = 11.1092 (3) Å | µ = 0.27 mm−1 |
c = 21.2858 (6) Å | T = 295 K |
β = 102.413 (3)° | Block, colourless |
V = 2746.67 (13) Å3 | 0.26 × 0.21 × 0.18 mm |
Z = 8 |
Oxford Xcalibur diffractometer with an Eos (Nova) CCD detector | 2556 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1893 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ω scans | θmax = 25.5°, θmin = 3.4° |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) | h = −14→14 |
Tmin = 0.932, Tmax = 0.952 | k = −13→13 |
13638 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0497P)2 + 0.1075P] where P = (Fo2 + 2Fc2)/3 |
2556 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 0.12 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C16H13ClN2O | V = 2746.67 (13) Å3 |
Mr = 284.73 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.8934 (3) Å | µ = 0.27 mm−1 |
b = 11.1092 (3) Å | T = 295 K |
c = 21.2858 (6) Å | 0.26 × 0.21 × 0.18 mm |
β = 102.413 (3)° |
Oxford Xcalibur diffractometer with an Eos (Nova) CCD detector | 2556 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) | 1893 reflections with I > 2σ(I) |
Tmin = 0.932, Tmax = 0.952 | Rint = 0.025 |
13638 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.12 e Å−3 |
2556 reflections | Δρmin = −0.22 e Å−3 |
182 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.09208 (3) | 0.30078 (4) | 0.05639 (2) | 0.0632 (2) | |
O1 | 0.85807 (10) | 0.41006 (11) | 0.21457 (5) | 0.0685 (5) | |
N1 | 0.89822 (11) | 0.31396 (11) | −0.02677 (6) | 0.0489 (5) | |
N2 | 0.92375 (10) | 0.56671 (11) | 0.16368 (5) | 0.0467 (4) | |
C1 | 0.95261 (12) | 0.35624 (13) | 0.02798 (7) | 0.0459 (5) | |
C2 | 0.91154 (12) | 0.44280 (13) | 0.06637 (7) | 0.0434 (5) | |
C3 | 0.80426 (12) | 0.48690 (13) | 0.04162 (7) | 0.0460 (5) | |
C4 | 0.62855 (14) | 0.49071 (14) | −0.04533 (8) | 0.0542 (6) | |
C5 | 0.56786 (14) | 0.44843 (16) | −0.10296 (8) | 0.0602 (6) | |
C6 | 0.61864 (16) | 0.35797 (17) | −0.13404 (8) | 0.0648 (7) | |
C7 | 0.72499 (15) | 0.31365 (15) | −0.10943 (7) | 0.0580 (6) | |
C8 | 0.78938 (13) | 0.35771 (14) | −0.05035 (7) | 0.0475 (5) | |
C9 | 0.73932 (12) | 0.44607 (13) | −0.01767 (7) | 0.0447 (5) | |
C10 | 0.98427 (13) | 0.48243 (15) | 0.13024 (7) | 0.0513 (5) | |
C11 | 0.92446 (14) | 0.68655 (15) | 0.14990 (8) | 0.0595 (6) | |
C12 | 0.86613 (16) | 0.76605 (17) | 0.17753 (9) | 0.0705 (7) | |
C13 | 0.80463 (15) | 0.72478 (18) | 0.22262 (8) | 0.0688 (7) | |
C14 | 0.80364 (13) | 0.60698 (17) | 0.23677 (8) | 0.0593 (6) | |
C15 | 0.86079 (13) | 0.51932 (16) | 0.20637 (7) | 0.0503 (6) | |
C16 | 0.44951 (15) | 0.49594 (19) | −0.13245 (9) | 0.0845 (8) | |
H3 | 0.77340 | 0.54520 | 0.06440 | 0.0550* | |
H4 | 0.59630 | 0.55000 | −0.02390 | 0.0650* | |
H6 | 0.57750 | 0.32750 | −0.17290 | 0.0780* | |
H7 | 0.75570 | 0.25410 | −0.13150 | 0.0700* | |
H10A | 1.00650 | 0.41230 | 0.15720 | 0.0620* | |
H10B | 1.05400 | 0.52020 | 0.12310 | 0.0620* | |
H11 | 0.96660 | 0.71350 | 0.12060 | 0.0710* | |
H12 | 0.86630 | 0.84730 | 0.16710 | 0.0850* | |
H13 | 0.76440 | 0.77910 | 0.24280 | 0.0820* | |
H14 | 0.76400 | 0.58190 | 0.26770 | 0.0710* | |
H16A | 0.43010 | 0.55940 | −0.10600 | 0.1270* | |
H16B | 0.39420 | 0.43210 | −0.13540 | 0.1270* | |
H16C | 0.44880 | 0.52660 | −0.17470 | 0.1270* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0530 (3) | 0.0666 (3) | 0.0737 (3) | 0.0066 (2) | 0.0219 (2) | 0.0046 (2) |
O1 | 0.0847 (9) | 0.0633 (8) | 0.0632 (8) | −0.0139 (7) | 0.0289 (6) | 0.0034 (6) |
N1 | 0.0569 (8) | 0.0505 (8) | 0.0446 (8) | −0.0072 (6) | 0.0228 (6) | −0.0011 (6) |
N2 | 0.0474 (7) | 0.0559 (8) | 0.0375 (7) | −0.0067 (6) | 0.0108 (6) | −0.0030 (6) |
C1 | 0.0485 (9) | 0.0466 (9) | 0.0475 (9) | −0.0040 (7) | 0.0214 (7) | 0.0056 (7) |
C2 | 0.0482 (9) | 0.0476 (9) | 0.0372 (8) | −0.0069 (7) | 0.0154 (7) | 0.0024 (6) |
C3 | 0.0492 (9) | 0.0486 (9) | 0.0422 (9) | −0.0028 (7) | 0.0143 (7) | −0.0033 (7) |
C4 | 0.0544 (10) | 0.0542 (10) | 0.0527 (10) | −0.0062 (8) | 0.0085 (8) | 0.0039 (8) |
C5 | 0.0572 (10) | 0.0661 (11) | 0.0532 (11) | −0.0165 (9) | 0.0030 (8) | 0.0139 (9) |
C6 | 0.0747 (12) | 0.0765 (12) | 0.0406 (10) | −0.0307 (10) | 0.0064 (9) | 0.0007 (9) |
C7 | 0.0726 (12) | 0.0615 (11) | 0.0436 (10) | −0.0180 (9) | 0.0205 (9) | −0.0052 (8) |
C8 | 0.0578 (10) | 0.0490 (9) | 0.0392 (9) | −0.0138 (8) | 0.0183 (7) | 0.0023 (7) |
C9 | 0.0495 (9) | 0.0466 (9) | 0.0394 (9) | −0.0080 (7) | 0.0125 (7) | 0.0033 (7) |
C10 | 0.0462 (9) | 0.0643 (10) | 0.0449 (9) | −0.0019 (8) | 0.0131 (7) | −0.0028 (8) |
C11 | 0.0643 (11) | 0.0594 (11) | 0.0558 (11) | −0.0124 (9) | 0.0150 (8) | 0.0015 (8) |
C12 | 0.0798 (13) | 0.0590 (11) | 0.0725 (13) | −0.0027 (10) | 0.0158 (11) | −0.0053 (9) |
C13 | 0.0641 (11) | 0.0784 (14) | 0.0624 (12) | 0.0046 (10) | 0.0105 (9) | −0.0214 (10) |
C14 | 0.0525 (10) | 0.0839 (13) | 0.0437 (9) | −0.0086 (9) | 0.0153 (8) | −0.0137 (9) |
C15 | 0.0482 (9) | 0.0649 (11) | 0.0367 (9) | −0.0122 (8) | 0.0069 (7) | −0.0054 (8) |
C16 | 0.0655 (13) | 0.0976 (16) | 0.0791 (14) | −0.0176 (11) | −0.0096 (11) | 0.0184 (12) |
Cl1—C1 | 1.7509 (15) | C11—C12 | 1.335 (3) |
O1—C15 | 1.228 (2) | C12—C13 | 1.403 (3) |
N1—C1 | 1.2935 (19) | C13—C14 | 1.344 (3) |
N1—C8 | 1.373 (2) | C14—C15 | 1.421 (2) |
N2—C10 | 1.457 (2) | C3—H3 | 0.9300 |
N2—C11 | 1.364 (2) | C4—H4 | 0.9300 |
N2—C15 | 1.3986 (19) | C6—H6 | 0.9300 |
C1—C2 | 1.415 (2) | C7—H7 | 0.9300 |
C2—C3 | 1.363 (2) | C10—H10A | 0.9700 |
C2—C10 | 1.512 (2) | C10—H10B | 0.9700 |
C3—C9 | 1.406 (2) | C11—H11 | 0.9300 |
C4—C5 | 1.366 (2) | C12—H12 | 0.9300 |
C4—C9 | 1.412 (2) | C13—H13 | 0.9300 |
C5—C6 | 1.409 (3) | C14—H14 | 0.9300 |
C5—C16 | 1.508 (3) | C16—H16A | 0.9600 |
C6—C7 | 1.354 (3) | C16—H16B | 0.9600 |
C7—C8 | 1.412 (2) | C16—H16C | 0.9600 |
C8—C9 | 1.407 (2) | ||
Cl1···C9i | 3.6496 (15) | C15···C10iv | 3.592 (2) |
Cl1···C5ii | 3.6161 (18) | C15···C15iv | 3.431 (2) |
Cl1···C3i | 3.5414 (15) | C16···C14vi | 3.526 (3) |
Cl1···H10A | 2.8500 | C5···H12vii | 2.8400 |
Cl1···H10B | 2.9100 | C6···H14viii | 3.0600 |
Cl1···H16Bii | 3.0700 | C7···H14viii | 2.9900 |
O1···C2 | 3.3690 (18) | C8···H10Bi | 2.9900 |
O1···C7ii | 3.348 (2) | C11···H3 | 2.7600 |
O1···C13iii | 3.299 (2) | C14···H16Bvi | 2.8600 |
O1···H10A | 2.3500 | C15···H3 | 2.9900 |
O1···H13iii | 2.3700 | C16···H12vii | 3.0100 |
O1···H10Aiv | 2.8600 | H3···N2 | 2.4700 |
O1···H7ii | 2.6900 | H3···C11 | 2.7600 |
N2···C15iv | 3.3835 (19) | H3···C15 | 2.9900 |
N1···H11i | 2.8400 | H3···H4 | 2.5000 |
N1···H10Bi | 2.9000 | H4···H3 | 2.5000 |
N2···H3 | 2.4700 | H4···H16A | 2.3400 |
C1···C6ii | 3.507 (2) | H7···O1ii | 2.6900 |
C1···C7ii | 3.550 (2) | H10A···Cl1 | 2.8500 |
C2···O1 | 3.3690 (18) | H10A···O1 | 2.3500 |
C2···C7ii | 3.498 (2) | H10A···O1iv | 2.8600 |
C3···C11 | 3.295 (2) | H10B···Cl1 | 2.9100 |
C3···C15 | 3.445 (2) | H10B···H11 | 2.3800 |
C3···Cl1i | 3.5414 (15) | H10B···N1i | 2.9000 |
C5···Cl1ii | 3.6161 (18) | H10B···C8i | 2.9900 |
C6···C1ii | 3.507 (2) | H11···H10B | 2.3800 |
C7···C2ii | 3.498 (2) | H11···N1i | 2.8400 |
C7···O1ii | 3.348 (2) | H12···C5vii | 2.8400 |
C7···C1ii | 3.550 (2) | H12···C16vii | 3.0100 |
C8···C8ii | 3.473 (2) | H12···H16Cvii | 2.5800 |
C9···Cl1i | 3.6496 (15) | H13···O1v | 2.3700 |
C10···C15iv | 3.592 (2) | H14···C6ix | 3.0600 |
C11···C3 | 3.295 (2) | H14···C7ix | 2.9900 |
C13···O1v | 3.299 (2) | H16A···H4 | 2.3400 |
C14···C16vi | 3.526 (3) | H16B···C14vi | 2.8600 |
C15···N2iv | 3.3835 (19) | H16B···Cl1ii | 3.0700 |
C15···C3 | 3.445 (2) | H16C···H12vii | 2.5800 |
C1—N1—C8 | 116.78 (13) | O1—C15—C14 | 125.67 (15) |
C10—N2—C11 | 119.73 (12) | N2—C15—C14 | 114.41 (15) |
C10—N2—C15 | 117.73 (13) | C2—C3—H3 | 119.00 |
C11—N2—C15 | 122.42 (13) | C9—C3—H3 | 119.00 |
Cl1—C1—N1 | 115.89 (11) | C5—C4—H4 | 119.00 |
Cl1—C1—C2 | 117.30 (11) | C9—C4—H4 | 119.00 |
N1—C1—C2 | 126.81 (14) | C5—C6—H6 | 119.00 |
C1—C2—C3 | 115.58 (13) | C7—C6—H6 | 119.00 |
C1—C2—C10 | 121.03 (13) | C6—C7—H7 | 120.00 |
C3—C2—C10 | 123.39 (13) | C8—C7—H7 | 120.00 |
C2—C3—C9 | 121.28 (14) | N2—C10—H10A | 109.00 |
C5—C4—C9 | 121.27 (15) | N2—C10—H10B | 109.00 |
C4—C5—C6 | 118.03 (16) | C2—C10—H10A | 109.00 |
C4—C5—C16 | 121.28 (16) | C2—C10—H10B | 109.00 |
C6—C5—C16 | 120.68 (16) | H10A—C10—H10B | 108.00 |
C5—C6—C7 | 122.49 (16) | N2—C11—H11 | 119.00 |
C6—C7—C8 | 120.10 (15) | C12—C11—H11 | 119.00 |
N1—C8—C7 | 119.42 (14) | C11—C12—H12 | 121.00 |
N1—C8—C9 | 122.15 (13) | C13—C12—H12 | 121.00 |
C7—C8—C9 | 118.43 (14) | C12—C13—H13 | 120.00 |
C3—C9—C4 | 122.97 (14) | C14—C13—H13 | 120.00 |
C3—C9—C8 | 117.37 (13) | C13—C14—H14 | 119.00 |
C4—C9—C8 | 119.65 (14) | C15—C14—H14 | 119.00 |
N2—C10—C2 | 112.30 (12) | C5—C16—H16A | 109.00 |
N2—C11—C12 | 121.55 (16) | C5—C16—H16B | 109.00 |
C11—C12—C13 | 118.81 (17) | C5—C16—H16C | 109.00 |
C12—C13—C14 | 120.18 (17) | H16A—C16—H16B | 109.00 |
C13—C14—C15 | 122.51 (16) | H16A—C16—H16C | 109.00 |
O1—C15—N2 | 119.91 (14) | H16B—C16—H16C | 109.00 |
C8—N1—C1—Cl1 | −179.03 (11) | C2—C3—C9—C4 | −179.11 (15) |
C8—N1—C1—C2 | 0.2 (2) | C2—C3—C9—C8 | 0.1 (2) |
C1—N1—C8—C7 | −179.03 (14) | C9—C4—C5—C6 | 0.5 (2) |
C1—N1—C8—C9 | 1.3 (2) | C9—C4—C5—C16 | 179.90 (16) |
C11—N2—C10—C2 | −85.11 (17) | C5—C4—C9—C3 | −179.74 (15) |
C15—N2—C10—C2 | 91.08 (15) | C5—C4—C9—C8 | 1.0 (2) |
C10—N2—C11—C12 | 177.19 (16) | C4—C5—C6—C7 | −1.1 (3) |
C15—N2—C11—C12 | 1.2 (2) | C16—C5—C6—C7 | 179.45 (17) |
C10—N2—C15—O1 | 0.1 (2) | C5—C6—C7—C8 | 0.2 (3) |
C10—N2—C15—C14 | −179.61 (13) | C6—C7—C8—N1 | −178.43 (15) |
C11—N2—C15—O1 | 176.14 (14) | C6—C7—C8—C9 | 1.3 (2) |
C11—N2—C15—C14 | −3.5 (2) | N1—C8—C9—C3 | −1.5 (2) |
Cl1—C1—C2—C3 | 177.80 (11) | N1—C8—C9—C4 | 177.83 (14) |
Cl1—C1—C2—C10 | −1.85 (19) | C7—C8—C9—C3 | 178.85 (14) |
N1—C1—C2—C3 | −1.4 (2) | C7—C8—C9—C4 | −1.9 (2) |
N1—C1—C2—C10 | 178.91 (14) | N2—C11—C12—C13 | 1.2 (3) |
C1—C2—C3—C9 | 1.2 (2) | C11—C12—C13—C14 | −0.9 (3) |
C10—C2—C3—C9 | −179.19 (14) | C12—C13—C14—C15 | −1.7 (3) |
C1—C2—C10—N2 | −176.75 (13) | C13—C14—C15—O1 | −175.85 (16) |
C3—C2—C10—N2 | 3.6 (2) | C13—C14—C15—N2 | 3.8 (2) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+3/2, −y+1/2, −z; (iii) −x+3/2, y−1/2, −z+1/2; (iv) −x+2, y, −z+1/2; (v) −x+3/2, y+1/2, −z+1/2; (vi) −x+1, −y+1, −z; (vii) −x+3/2, −y+3/2, −z; (viii) x, −y+1, z−1/2; (ix) x, −y+1, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O1v | 0.93 | 2.37 | 3.299 (2) | 173 |
Symmetry code: (v) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C16H13ClN2O |
Mr | 284.73 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 11.8934 (3), 11.1092 (3), 21.2858 (6) |
β (°) | 102.413 (3) |
V (Å3) | 2746.67 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.26 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Oxford Xcalibur diffractometer with an Eos (Nova) CCD detector |
Absorption correction | Multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.932, 0.952 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13638, 2556, 1893 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.095, 1.10 |
No. of reflections | 2556 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.12, −0.22 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O1i | 0.93 | 2.37 | 3.299 (2) | 173 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
We thank the FIST program for the data collection at SSCU, IISc, Bangalore and Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.
References
Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187. Web of Science CSD CrossRef IUCr Journals Google Scholar
Clegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433–o1436. Web of Science CSD CrossRef IUCr Journals Google Scholar
Conreaux, D., Bossharth, E., Monteiro, N., Desbordes, P. & Balme, G. (2005). Tetrahedron Lett. 46, 7917–7920. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Nichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383–o385. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161–169. CrossRef Google Scholar
Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. 51, 2309–2311. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The pyridone analogues such as naturally occurring mappicine based molecule have been focused of great interest by reason of their diversified biological activities. N-alkylated 2-pyridones are important intermediates in the synthesis of alkaloids as illustrated by the recent synthetic approaches toward the mappicine family. Thus, modifications of biologically active mappicine synthons may lead to achieve the highly expected effective drugs (Roopan & Khan, 2009). Having succeeded in developing a practical, alternative synthesis of pyridine (Conreaux et al., 2005), we then focused our attention on the general applicability of the N-alkylation (Roopan et al., 2010) of pyridones by mean of the t-BuOK/THF system In connection with the program of synthesis of 2-pyridone analogues, we report herein the synthesis of 1-[(2-chloro-7-methylquinolin-3yl)-methyl]-pyridine-2(1H)-one.
In the title molecule, the quinoline ring system (N1/C1–C9) is almost planar, with maximum deviations of 0.021 (1) Å for N1 and -0.021 (2) Å for C7 (Fig. 1). The pyridone ring (N2/C11—C15) is oriented at a dihedral angle of 85.93 (6)° with respect to the quinoline ring system. In the crystal structure, intermolecular C—H···O hydrogen bonds contribute to the stability of the structure, linking the molecules along the [010] direction (Table 1 and Fig. 2). Weak π–π stacking interactions are also observed [Cg1···Cg3(3/2-x, 1/2-y, -z) = 3.7218 (9), where Cg1 and Cg3 are the centroids of the N1/C1–C3/C8/C9 and C4–C9 rings, respectively; Cg2···Cg2(2-x, y, 1/2-z) = 3.6083 (9) Å, where Cg2 is a centroid of the N2/C11–C15 ring].