organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(2-Chloro-7-methyl-3-quinol­yl)meth­yl]pyridin-2(1H)-one

aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 24 March 2010; accepted 24 March 2010; online 27 March 2010)

In the title compound, C16H13ClN2O, the quinoline ring system is essentially planar, with a maximum deviation of 0.021 (2) Å. The pyridone ring is oriented at a dihedral angle of 85.93 (6)° with respect to the quinoline ring system. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules along the b axis. Weak ππ stacking inter­actions [centroid–centroid distances = 3.7218 (9) and 3.6083 (9) Å] are also observed.

Related literature

For related structures, see: Arman et al. (2009[Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187.]); Clegg & Nichol (2004[Clegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433-o1436.]); Nichol & Clegg (2005[Nichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383-o385.]). For the synthesis of 2-pyridone derivatives, see: Conreaux et al. (2005[Conreaux, D., Bossharth, E., Monteiro, N., Desbordes, P. & Balme, G. (2005). Tetrahedron Lett. 46, 7917-7920.]); Roopan & Khan (2009[Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161-169.]); Roopan et al. (2010[Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. 51, 2309-2311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN2O

  • Mr = 284.73

  • Monoclinic, C 2/c

  • a = 11.8934 (3) Å

  • b = 11.1092 (3) Å

  • c = 21.2858 (6) Å

  • β = 102.413 (3)°

  • V = 2746.67 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.26 × 0.21 × 0.18 mm

Data collection
  • Oxford Xcalibur diffractometer with an Eos (Nova) CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.932, Tmax = 0.952

  • 13638 measured reflections

  • 2556 independent reflections

  • 1893 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.10

  • 2556 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.37 3.299 (2) 173
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyridone analogues such as naturally occurring mappicine based molecule have been focused of great interest by reason of their diversified biological activities. N-alkylated 2-pyridones are important intermediates in the synthesis of alkaloids as illustrated by the recent synthetic approaches toward the mappicine family. Thus, modifications of biologically active mappicine synthons may lead to achieve the highly expected effective drugs (Roopan & Khan, 2009). Having succeeded in developing a practical, alternative synthesis of pyridine (Conreaux et al., 2005), we then focused our attention on the general applicability of the N-alkylation (Roopan et al., 2010) of pyridones by mean of the t-BuOK/THF system In connection with the program of synthesis of 2-pyridone analogues, we report herein the synthesis of 1-[(2-chloro-7-methylquinolin-3yl)-methyl]-pyridine-2(1H)-one.

In the title molecule, the quinoline ring system (N1/C1–C9) is almost planar, with maximum deviations of 0.021 (1) Å for N1 and -0.021 (2) Å for C7 (Fig. 1). The pyridone ring (N2/C11—C15) is oriented at a dihedral angle of 85.93 (6)° with respect to the quinoline ring system. In the crystal structure, intermolecular C—H···O hydrogen bonds contribute to the stability of the structure, linking the molecules along the [010] direction (Table 1 and Fig. 2). Weak ππ stacking interactions are also observed [Cg1···Cg3(3/2-x, 1/2-y, -z) = 3.7218 (9), where Cg1 and Cg3 are the centroids of the N1/C1–C3/C8/C9 and C4–C9 rings, respectively; Cg2···Cg2(2-x, y, 1/2-z) = 3.6083 (9) Å, where Cg2 is a centroid of the N2/C11–C15 ring].

Related literature top

For related structures, see: Arman et al. (2009); Clegg & Nichol (2004); Nichol & Clegg (2005). For related literature on the synthesis of 2-pyridone derivatives, see: Conreaux et al. (2005); Roopan & Khan (2009); Roopan et al. (2010).

Experimental top

To a mixed well solution of 2-pyridone (95 mg, 1 mmol, in 2 ml of DMF), KOtBu (112 mg, 1 mmol, in 10 ml THF) and 2-chloro-3-(chloromethyl)-7-methylquinoline (226 mg, 1 mmol) were added and the resulting mixture was refluxed at 343 K for 1 h. After the completion of the reaction, cooled and removed the excess of solvent under reduced pressure. Crushed ice was mixed with the residue. White solid was formed, filtered, dried and purified by column chromatography using hexane and ethylacetate as the eluant. Crystals of suitable quality were grown by solvent evaporation from a diethylether solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing diagram and the hydrogen bonding interactions of the title compound down the a axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
1-[(2-Chloro-7-methyl-3-quinolyl)methyl]pyridin-2(1H)-one top
Crystal data top
C16H13ClN2OF(000) = 1184
Mr = 284.73Dx = 1.377 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 985 reflections
a = 11.8934 (3) Åθ = 3.4–25.5°
b = 11.1092 (3) ŵ = 0.27 mm1
c = 21.2858 (6) ÅT = 295 K
β = 102.413 (3)°Block, colourless
V = 2746.67 (13) Å30.26 × 0.21 × 0.18 mm
Z = 8
Data collection top
Oxford Xcalibur
diffractometer with an Eos (Nova) CCD detector
2556 independent reflections
Radiation source: Enhance (Mo) X-ray Source1893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 25.5°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
h = 1414
Tmin = 0.932, Tmax = 0.952k = 1313
13638 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.1075P]
where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13ClN2OV = 2746.67 (13) Å3
Mr = 284.73Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.8934 (3) ŵ = 0.27 mm1
b = 11.1092 (3) ÅT = 295 K
c = 21.2858 (6) Å0.26 × 0.21 × 0.18 mm
β = 102.413 (3)°
Data collection top
Oxford Xcalibur
diffractometer with an Eos (Nova) CCD detector
2556 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
1893 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.952Rint = 0.025
13638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.10Δρmax = 0.12 e Å3
2556 reflectionsΔρmin = 0.22 e Å3
182 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.09208 (3)0.30078 (4)0.05639 (2)0.0632 (2)
O10.85807 (10)0.41006 (11)0.21457 (5)0.0685 (5)
N10.89822 (11)0.31396 (11)0.02677 (6)0.0489 (5)
N20.92375 (10)0.56671 (11)0.16368 (5)0.0467 (4)
C10.95261 (12)0.35624 (13)0.02798 (7)0.0459 (5)
C20.91154 (12)0.44280 (13)0.06637 (7)0.0434 (5)
C30.80426 (12)0.48690 (13)0.04162 (7)0.0460 (5)
C40.62855 (14)0.49071 (14)0.04533 (8)0.0542 (6)
C50.56786 (14)0.44843 (16)0.10296 (8)0.0602 (6)
C60.61864 (16)0.35797 (17)0.13404 (8)0.0648 (7)
C70.72499 (15)0.31365 (15)0.10943 (7)0.0580 (6)
C80.78938 (13)0.35771 (14)0.05035 (7)0.0475 (5)
C90.73932 (12)0.44607 (13)0.01767 (7)0.0447 (5)
C100.98427 (13)0.48243 (15)0.13024 (7)0.0513 (5)
C110.92446 (14)0.68655 (15)0.14990 (8)0.0595 (6)
C120.86613 (16)0.76605 (17)0.17753 (9)0.0705 (7)
C130.80463 (15)0.72478 (18)0.22262 (8)0.0688 (7)
C140.80364 (13)0.60698 (17)0.23677 (8)0.0593 (6)
C150.86079 (13)0.51932 (16)0.20637 (7)0.0503 (6)
C160.44951 (15)0.49594 (19)0.13245 (9)0.0845 (8)
H30.773400.545200.064400.0550*
H40.596300.550000.023900.0650*
H60.577500.327500.172900.0780*
H70.755700.254100.131500.0700*
H10A1.006500.412300.157200.0620*
H10B1.054000.520200.123100.0620*
H110.966600.713500.120600.0710*
H120.866300.847300.167100.0850*
H130.764400.779100.242800.0820*
H140.764000.581900.267700.0710*
H16A0.430100.559400.106000.1270*
H16B0.394200.432100.135400.1270*
H16C0.448800.526600.174700.1270*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0530 (3)0.0666 (3)0.0737 (3)0.0066 (2)0.0219 (2)0.0046 (2)
O10.0847 (9)0.0633 (8)0.0632 (8)0.0139 (7)0.0289 (6)0.0034 (6)
N10.0569 (8)0.0505 (8)0.0446 (8)0.0072 (6)0.0228 (6)0.0011 (6)
N20.0474 (7)0.0559 (8)0.0375 (7)0.0067 (6)0.0108 (6)0.0030 (6)
C10.0485 (9)0.0466 (9)0.0475 (9)0.0040 (7)0.0214 (7)0.0056 (7)
C20.0482 (9)0.0476 (9)0.0372 (8)0.0069 (7)0.0154 (7)0.0024 (6)
C30.0492 (9)0.0486 (9)0.0422 (9)0.0028 (7)0.0143 (7)0.0033 (7)
C40.0544 (10)0.0542 (10)0.0527 (10)0.0062 (8)0.0085 (8)0.0039 (8)
C50.0572 (10)0.0661 (11)0.0532 (11)0.0165 (9)0.0030 (8)0.0139 (9)
C60.0747 (12)0.0765 (12)0.0406 (10)0.0307 (10)0.0064 (9)0.0007 (9)
C70.0726 (12)0.0615 (11)0.0436 (10)0.0180 (9)0.0205 (9)0.0052 (8)
C80.0578 (10)0.0490 (9)0.0392 (9)0.0138 (8)0.0183 (7)0.0023 (7)
C90.0495 (9)0.0466 (9)0.0394 (9)0.0080 (7)0.0125 (7)0.0033 (7)
C100.0462 (9)0.0643 (10)0.0449 (9)0.0019 (8)0.0131 (7)0.0028 (8)
C110.0643 (11)0.0594 (11)0.0558 (11)0.0124 (9)0.0150 (8)0.0015 (8)
C120.0798 (13)0.0590 (11)0.0725 (13)0.0027 (10)0.0158 (11)0.0053 (9)
C130.0641 (11)0.0784 (14)0.0624 (12)0.0046 (10)0.0105 (9)0.0214 (10)
C140.0525 (10)0.0839 (13)0.0437 (9)0.0086 (9)0.0153 (8)0.0137 (9)
C150.0482 (9)0.0649 (11)0.0367 (9)0.0122 (8)0.0069 (7)0.0054 (8)
C160.0655 (13)0.0976 (16)0.0791 (14)0.0176 (11)0.0096 (11)0.0184 (12)
Geometric parameters (Å, º) top
Cl1—C11.7509 (15)C11—C121.335 (3)
O1—C151.228 (2)C12—C131.403 (3)
N1—C11.2935 (19)C13—C141.344 (3)
N1—C81.373 (2)C14—C151.421 (2)
N2—C101.457 (2)C3—H30.9300
N2—C111.364 (2)C4—H40.9300
N2—C151.3986 (19)C6—H60.9300
C1—C21.415 (2)C7—H70.9300
C2—C31.363 (2)C10—H10A0.9700
C2—C101.512 (2)C10—H10B0.9700
C3—C91.406 (2)C11—H110.9300
C4—C51.366 (2)C12—H120.9300
C4—C91.412 (2)C13—H130.9300
C5—C61.409 (3)C14—H140.9300
C5—C161.508 (3)C16—H16A0.9600
C6—C71.354 (3)C16—H16B0.9600
C7—C81.412 (2)C16—H16C0.9600
C8—C91.407 (2)
Cl1···C9i3.6496 (15)C15···C10iv3.592 (2)
Cl1···C5ii3.6161 (18)C15···C15iv3.431 (2)
Cl1···C3i3.5414 (15)C16···C14vi3.526 (3)
Cl1···H10A2.8500C5···H12vii2.8400
Cl1···H10B2.9100C6···H14viii3.0600
Cl1···H16Bii3.0700C7···H14viii2.9900
O1···C23.3690 (18)C8···H10Bi2.9900
O1···C7ii3.348 (2)C11···H32.7600
O1···C13iii3.299 (2)C14···H16Bvi2.8600
O1···H10A2.3500C15···H32.9900
O1···H13iii2.3700C16···H12vii3.0100
O1···H10Aiv2.8600H3···N22.4700
O1···H7ii2.6900H3···C112.7600
N2···C15iv3.3835 (19)H3···C152.9900
N1···H11i2.8400H3···H42.5000
N1···H10Bi2.9000H4···H32.5000
N2···H32.4700H4···H16A2.3400
C1···C6ii3.507 (2)H7···O1ii2.6900
C1···C7ii3.550 (2)H10A···Cl12.8500
C2···O13.3690 (18)H10A···O12.3500
C2···C7ii3.498 (2)H10A···O1iv2.8600
C3···C113.295 (2)H10B···Cl12.9100
C3···C153.445 (2)H10B···H112.3800
C3···Cl1i3.5414 (15)H10B···N1i2.9000
C5···Cl1ii3.6161 (18)H10B···C8i2.9900
C6···C1ii3.507 (2)H11···H10B2.3800
C7···C2ii3.498 (2)H11···N1i2.8400
C7···O1ii3.348 (2)H12···C5vii2.8400
C7···C1ii3.550 (2)H12···C16vii3.0100
C8···C8ii3.473 (2)H12···H16Cvii2.5800
C9···Cl1i3.6496 (15)H13···O1v2.3700
C10···C15iv3.592 (2)H14···C6ix3.0600
C11···C33.295 (2)H14···C7ix2.9900
C13···O1v3.299 (2)H16A···H42.3400
C14···C16vi3.526 (3)H16B···C14vi2.8600
C15···N2iv3.3835 (19)H16B···Cl1ii3.0700
C15···C33.445 (2)H16C···H12vii2.5800
C1—N1—C8116.78 (13)O1—C15—C14125.67 (15)
C10—N2—C11119.73 (12)N2—C15—C14114.41 (15)
C10—N2—C15117.73 (13)C2—C3—H3119.00
C11—N2—C15122.42 (13)C9—C3—H3119.00
Cl1—C1—N1115.89 (11)C5—C4—H4119.00
Cl1—C1—C2117.30 (11)C9—C4—H4119.00
N1—C1—C2126.81 (14)C5—C6—H6119.00
C1—C2—C3115.58 (13)C7—C6—H6119.00
C1—C2—C10121.03 (13)C6—C7—H7120.00
C3—C2—C10123.39 (13)C8—C7—H7120.00
C2—C3—C9121.28 (14)N2—C10—H10A109.00
C5—C4—C9121.27 (15)N2—C10—H10B109.00
C4—C5—C6118.03 (16)C2—C10—H10A109.00
C4—C5—C16121.28 (16)C2—C10—H10B109.00
C6—C5—C16120.68 (16)H10A—C10—H10B108.00
C5—C6—C7122.49 (16)N2—C11—H11119.00
C6—C7—C8120.10 (15)C12—C11—H11119.00
N1—C8—C7119.42 (14)C11—C12—H12121.00
N1—C8—C9122.15 (13)C13—C12—H12121.00
C7—C8—C9118.43 (14)C12—C13—H13120.00
C3—C9—C4122.97 (14)C14—C13—H13120.00
C3—C9—C8117.37 (13)C13—C14—H14119.00
C4—C9—C8119.65 (14)C15—C14—H14119.00
N2—C10—C2112.30 (12)C5—C16—H16A109.00
N2—C11—C12121.55 (16)C5—C16—H16B109.00
C11—C12—C13118.81 (17)C5—C16—H16C109.00
C12—C13—C14120.18 (17)H16A—C16—H16B109.00
C13—C14—C15122.51 (16)H16A—C16—H16C109.00
O1—C15—N2119.91 (14)H16B—C16—H16C109.00
C8—N1—C1—Cl1179.03 (11)C2—C3—C9—C4179.11 (15)
C8—N1—C1—C20.2 (2)C2—C3—C9—C80.1 (2)
C1—N1—C8—C7179.03 (14)C9—C4—C5—C60.5 (2)
C1—N1—C8—C91.3 (2)C9—C4—C5—C16179.90 (16)
C11—N2—C10—C285.11 (17)C5—C4—C9—C3179.74 (15)
C15—N2—C10—C291.08 (15)C5—C4—C9—C81.0 (2)
C10—N2—C11—C12177.19 (16)C4—C5—C6—C71.1 (3)
C15—N2—C11—C121.2 (2)C16—C5—C6—C7179.45 (17)
C10—N2—C15—O10.1 (2)C5—C6—C7—C80.2 (3)
C10—N2—C15—C14179.61 (13)C6—C7—C8—N1178.43 (15)
C11—N2—C15—O1176.14 (14)C6—C7—C8—C91.3 (2)
C11—N2—C15—C143.5 (2)N1—C8—C9—C31.5 (2)
Cl1—C1—C2—C3177.80 (11)N1—C8—C9—C4177.83 (14)
Cl1—C1—C2—C101.85 (19)C7—C8—C9—C3178.85 (14)
N1—C1—C2—C31.4 (2)C7—C8—C9—C41.9 (2)
N1—C1—C2—C10178.91 (14)N2—C11—C12—C131.2 (3)
C1—C2—C3—C91.2 (2)C11—C12—C13—C140.9 (3)
C10—C2—C3—C9179.19 (14)C12—C13—C14—C151.7 (3)
C1—C2—C10—N2176.75 (13)C13—C14—C15—O1175.85 (16)
C3—C2—C10—N23.6 (2)C13—C14—C15—N23.8 (2)
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y+1/2, z; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y, z+1/2; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y+1, z; (vii) x+3/2, y+3/2, z; (viii) x, y+1, z1/2; (ix) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1v0.932.373.299 (2)173
Symmetry code: (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13ClN2O
Mr284.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)11.8934 (3), 11.1092 (3), 21.2858 (6)
β (°) 102.413 (3)
V3)2746.67 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.26 × 0.21 × 0.18
Data collection
DiffractometerOxford Xcalibur
diffractometer with an Eos (Nova) CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2009)
Tmin, Tmax0.932, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
13638, 2556, 1893
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.10
No. of reflections2556
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.22

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.373.299 (2)173
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the FIST program for the data collection at SSCU, IISc, Bangalore and Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationArman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationClegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433–o1436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationConreaux, D., Bossharth, E., Monteiro, N., Desbordes, P. & Balme, G. (2005). Tetrahedron Lett. 46, 7917–7920.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383–o385.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M. & Khan, F. N. (2009). ARKIVOC, pp. 161–169.  CrossRef Google Scholar
First citationRoopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett. 51, 2309–2311.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds