metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{N′-[1-(2-pyrid­yl)ethyl­­idene-κN]benzohydrazidato-κ2N′,O}nickel(II)

aDepartment of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 23 February 2010; accepted 26 February 2010; online 3 March 2010)

In the title complex, [Ni(C14H12N3O)2], the NiII atom lies at the centre of a distorted octahedron formed by two tridentate hydrazone ligands. Inter­molecular hydrogen bonds of the type C—H⋯X (X = N, O) link the complexes into a two-dimensional network.

Related literature

For the preparation of the precursor ligand, see: Sen et al. (2005[Sen, S., Talukder, P., Rosair, G. & Mitra, S. (2005). Struct. Chem. 16, 605-610.]). For related complexes of the same ligand, see: Sen et al. (2005[Sen, S., Talukder, P., Rosair, G. & Mitra, S. (2005). Struct. Chem. 16, 605-610.], 2007a[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007a). Inorg. Chim. Acta, 360, 4085-4092.],b[Sen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007b). Polyhedron, 26, 1740-1744.]), Ray et al. (2008[Ray, A., Banerjee, S., Sen, S., Butcher, R. J., Rosair, G. M., Garland, M. T. & Mitra, S. (2008). Struct. Chem. 19, 209-217.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H12N3O)2]

  • Mr = 535.24

  • Monoclinic, C c

  • a = 10.248 (6) Å

  • b = 19.692 (11) Å

  • c = 12.281 (7) Å

  • β = 91.523 (10)°

  • V = 2477 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 298 K

  • 0.37 × 0.33 × 0.25 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.821

  • 5679 measured reflections

  • 3600 independent reflections

  • 3352 reflections with I > 2σ

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.182

  • S = 1.04

  • 3600 reflections

  • 336 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.89 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1156 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯N6 0.96 2.51 2.861 (10) 102
C10—H10⋯N3 0.93 2.51 2.813 (10) 100
C4—H4⋯O1i 0.93 2.51 3.164 (8) 128
C18—H18⋯O2ii 0.93 2.39 3.300 (9) 167
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

The title complex adopts a distorted octahedron geometry with two tridentate hydrazone ligands. While the N–Ni–N angle is 174.5 (2)°, which is close to the ideal 180°, the two O–Ni–N angles are much smaller (154.7 (2)° and 153.9 (2)°).

An intramolecular non-classical hydrogen bond of the type C—H···N is present. Non-classical intermolecular hydrogen bonds of type C—H···N and C—H···O also link complexes into a two-dimensional network.

Copper (Sen et al. 2007a)(Sen et al. 2007b), cadmium (Sen et al. 2005), zinc (Ray et al. 2008) and manganese (Ray et al. 2008) complexes of the same ligand have been published.

Related literature top

For the preparation of the precursor ligand, see: Sen et al. (2005). For related complexes of the same ligand, see: Sen et al. (2005, 2007a,b), Ray et al. (2008).

Experimental top

The ligand precursor, [C6H5C(O)NHN=C(CH3)C5H4N] (LH) was prepared according to a literature procedure (Sen et al. 2005). To a methanolic solution (20 ml) of nickel chloride hexahydrate (0.237 g, 1.0 mmol), LH (0.478 g, 2 mmol) was added and then kept at room temperature. After a few days, dark brown, rectangular crystals of the title compound suitable for X-ray diffraction studies were formed. Crystals were collected and dried in the air. Yield: 0.147 g, 62%.

Refinement top

All the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.93, Cmethyl—H = 0.96, Å while Uiso(H) = 1.5 Ueq (C) for the methyl H atoms and 1.2 Ueq (C) for all the other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. H atoms are excluded for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound along the c-axis showing the intermolecular hydrogen bonds (dashed lines).
Bis{N'-[1-(2-pyridyl)ethylidene-κN]benzohydrazidato- κ2N',O}nickel(II) top
Crystal data top
[Ni(C14H12N3O)2]F(000) = 1112
Mr = 535.24Dx = 1.435 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3920 reflections
a = 10.248 (6) Åθ = 2.2–26.3°
b = 19.692 (11) ŵ = 0.82 mm1
c = 12.281 (7) ÅT = 298 K
β = 91.523 (10)°Parallelepiped, brown
V = 2477 (2) Å30.37 × 0.33 × 0.25 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3600 independent reflections
Radiation source: fine-focus sealed tube3352 reflections with I > 2σ
Graphite monochromatorRint = 0.093
ω scansθmax = 26.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.751, Tmax = 0.821k = 2224
5679 measured reflectionsl = 1513
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.1528P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3600 reflectionsΔρmax = 1.05 e Å3
336 parametersΔρmin = 0.89 e Å3
2 restraintsAbsolute structure: Flack (1983), 1156 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
[Ni(C14H12N3O)2]V = 2477 (2) Å3
Mr = 535.24Z = 4
Monoclinic, CcMo Kα radiation
a = 10.248 (6) ŵ = 0.82 mm1
b = 19.692 (11) ÅT = 298 K
c = 12.281 (7) Å0.37 × 0.33 × 0.25 mm
β = 91.523 (10)°
Data collection top
Bruker SMART APEXII
diffractometer
3600 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3352 reflections with I > 2σ
Tmin = 0.751, Tmax = 0.821Rint = 0.093
5679 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.182Δρmax = 1.05 e Å3
S = 1.04Δρmin = 0.89 e Å3
3600 reflectionsAbsolute structure: Flack (1983), 1156 Friedel pairs
336 parametersAbsolute structure parameter: 0.00 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1923 (7)0.6618 (3)0.3808 (6)0.0451 (14)
H11.19420.65240.45500.054*
C21.2836 (8)0.6300 (4)0.3159 (7)0.0561 (18)
H21.34560.60050.34600.067*
C31.2791 (7)0.6435 (4)0.2071 (7)0.0552 (18)
H31.33850.62290.16160.066*
C41.1860 (7)0.6880 (4)0.1640 (6)0.0467 (15)
H41.18120.69680.08960.056*
C51.0994 (6)0.7192 (3)0.2350 (5)0.0370 (12)
C61.0010 (7)0.7708 (3)0.1986 (5)0.0404 (14)
C70.9737 (8)0.7881 (4)0.0812 (5)0.0532 (17)
H7A0.96770.83650.07310.080*
H7B0.89290.76760.05750.080*
H7C1.04320.77120.03780.080*
C80.8049 (6)0.8668 (3)0.3545 (5)0.0364 (12)
C90.7033 (7)0.9222 (3)0.3491 (5)0.0400 (13)
C100.6377 (9)0.9389 (4)0.2532 (7)0.064 (2)
H100.65930.91670.18930.076*
C110.5411 (9)0.9875 (4)0.2496 (7)0.067 (2)
H110.49710.99730.18430.080*
C120.5094 (8)1.0221 (4)0.3453 (7)0.0556 (18)
H120.44481.05530.34390.067*
C130.5742 (8)1.0065 (3)0.4398 (6)0.0487 (16)
H130.55361.02940.50330.058*
C140.6709 (7)0.9568 (3)0.4436 (6)0.0473 (15)
H140.71380.94660.50930.057*
C151.2059 (8)0.8590 (4)0.4491 (6)0.0527 (17)
H151.19290.86800.37520.063*
C161.3118 (9)0.8881 (4)0.5021 (8)0.063 (2)
H161.37070.91460.46460.076*
C171.3282 (8)0.8767 (4)0.6122 (8)0.064 (2)
H171.39770.89670.65040.076*
C181.2418 (7)0.8358 (3)0.6658 (6)0.0495 (16)
H181.25150.82830.74030.059*
C191.1398 (6)0.8059 (3)0.6063 (5)0.0360 (12)
C201.0465 (7)0.7564 (3)0.6536 (5)0.0374 (14)
C211.0476 (10)0.7429 (4)0.7719 (6)0.0523 (19)
H21A1.12190.71540.79140.078*
H21B0.96910.71960.79030.078*
H21C1.05280.78520.81080.078*
C220.8200 (6)0.6570 (3)0.5195 (5)0.0358 (12)
C230.7290 (6)0.6000 (3)0.5351 (5)0.0384 (12)
C240.7114 (8)0.5723 (4)0.6395 (6)0.0568 (18)
H240.76050.58790.69920.068*
C250.6194 (10)0.5212 (5)0.6517 (9)0.081 (3)
H250.60880.50210.72020.098*
C260.5425 (10)0.4977 (5)0.5641 (9)0.075 (3)
H260.47850.46500.57430.090*
C270.5632 (8)0.5235 (4)0.4637 (8)0.061 (2)
H270.51550.50670.40420.073*
C280.6546 (7)0.5747 (3)0.4480 (6)0.0462 (14)
H280.66590.59210.37850.055*
N11.1029 (5)0.7048 (3)0.3422 (4)0.0379 (11)
N20.9417 (5)0.7980 (3)0.2778 (4)0.0338 (10)
N30.8495 (6)0.8480 (3)0.2592 (4)0.0414 (11)
N41.1212 (5)0.8188 (3)0.4977 (4)0.0389 (11)
N50.9746 (6)0.7265 (2)0.5806 (4)0.0352 (11)
N60.8911 (5)0.6760 (3)0.6080 (4)0.0373 (11)
Ni10.96750 (6)0.76219 (3)0.42846 (5)0.0314 (2)
O10.8347 (5)0.8422 (2)0.4467 (4)0.0439 (10)
O20.8288 (5)0.6838 (2)0.4245 (4)0.0415 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (3)0.057 (3)0.052 (4)0.004 (3)0.000 (3)0.001 (3)
C20.035 (4)0.057 (4)0.077 (6)0.008 (3)0.002 (3)0.007 (3)
C30.035 (4)0.065 (4)0.067 (5)0.005 (3)0.016 (3)0.016 (3)
C40.033 (4)0.062 (4)0.045 (4)0.004 (3)0.012 (3)0.010 (3)
C50.027 (3)0.049 (3)0.035 (3)0.009 (3)0.006 (2)0.004 (2)
C60.041 (4)0.050 (3)0.031 (3)0.012 (3)0.007 (3)0.001 (2)
C70.057 (5)0.072 (4)0.030 (3)0.007 (4)0.004 (3)0.005 (3)
C80.027 (3)0.044 (3)0.038 (3)0.000 (2)0.002 (2)0.000 (2)
C90.035 (3)0.047 (3)0.038 (3)0.001 (3)0.001 (2)0.004 (2)
C100.068 (6)0.068 (4)0.055 (4)0.027 (4)0.009 (4)0.000 (3)
C110.070 (6)0.067 (4)0.062 (5)0.031 (4)0.019 (4)0.002 (4)
C120.042 (4)0.057 (4)0.069 (5)0.010 (3)0.006 (3)0.009 (3)
C130.051 (4)0.051 (3)0.045 (4)0.001 (3)0.010 (3)0.002 (3)
C140.042 (4)0.053 (3)0.047 (4)0.002 (3)0.003 (3)0.007 (3)
C150.052 (5)0.057 (4)0.049 (4)0.010 (3)0.006 (3)0.006 (3)
C160.050 (5)0.055 (4)0.085 (6)0.018 (4)0.001 (4)0.004 (4)
C170.046 (5)0.057 (4)0.086 (6)0.008 (3)0.023 (4)0.011 (4)
C180.045 (4)0.050 (3)0.053 (4)0.005 (3)0.013 (3)0.017 (3)
C190.022 (3)0.042 (3)0.044 (3)0.011 (2)0.003 (2)0.005 (2)
C200.039 (4)0.042 (3)0.031 (3)0.007 (2)0.002 (3)0.003 (2)
C210.058 (6)0.065 (4)0.033 (4)0.012 (3)0.009 (3)0.000 (3)
C220.029 (3)0.047 (3)0.031 (3)0.005 (2)0.004 (2)0.002 (2)
C230.021 (3)0.049 (3)0.046 (3)0.000 (2)0.009 (2)0.005 (2)
C240.054 (5)0.066 (4)0.051 (4)0.001 (4)0.009 (3)0.021 (3)
C250.079 (7)0.088 (6)0.079 (7)0.016 (5)0.025 (6)0.028 (5)
C260.056 (5)0.067 (5)0.103 (8)0.014 (4)0.018 (5)0.017 (5)
C270.044 (4)0.056 (4)0.083 (6)0.012 (3)0.006 (4)0.004 (4)
C280.031 (3)0.051 (3)0.057 (4)0.007 (3)0.002 (3)0.001 (3)
N10.026 (3)0.049 (3)0.039 (3)0.004 (2)0.002 (2)0.001 (2)
N20.021 (2)0.053 (3)0.027 (2)0.0020 (19)0.0042 (17)0.0075 (19)
N30.036 (3)0.052 (3)0.036 (3)0.004 (2)0.002 (2)0.009 (2)
N40.024 (2)0.046 (3)0.047 (3)0.004 (2)0.002 (2)0.003 (2)
N50.030 (3)0.048 (2)0.028 (3)0.008 (2)0.002 (2)0.0004 (18)
N60.030 (3)0.046 (2)0.037 (3)0.001 (2)0.001 (2)0.0061 (19)
Ni10.0219 (4)0.0438 (3)0.0284 (4)0.0005 (3)0.0006 (2)0.0020 (3)
O10.039 (3)0.057 (2)0.036 (2)0.010 (2)0.0046 (19)0.0086 (18)
O20.036 (3)0.056 (2)0.032 (2)0.0078 (19)0.0022 (18)0.0039 (17)
Geometric parameters (Å, º) top
C1—N11.326 (9)C16—H160.9300
C1—C21.393 (10)C17—C181.378 (12)
C1—H10.9300C17—H170.9300
C2—C31.362 (12)C18—C191.389 (9)
C2—H20.9300C18—H180.9300
C3—C41.391 (12)C19—N41.366 (8)
C3—H30.9300C19—C201.493 (9)
C4—C51.402 (9)C20—N51.288 (9)
C4—H40.9300C20—C211.477 (10)
C5—N11.346 (8)C21—H21A0.9600
C5—C61.492 (10)C21—H21B0.9600
C6—N21.277 (9)C21—H21C0.9600
C6—C71.501 (9)C22—O21.285 (8)
C7—H7A0.9600C22—N61.346 (8)
C7—H7B0.9600C22—C231.476 (9)
C7—H7C0.9600C23—C281.389 (10)
C8—O11.262 (8)C23—C241.410 (9)
C8—N31.321 (8)C24—C251.390 (12)
C8—C91.508 (9)C24—H240.9300
C9—C101.381 (10)C25—C261.396 (16)
C9—C141.393 (10)C25—H250.9300
C10—C111.376 (11)C26—C271.355 (13)
C10—H100.9300C26—H260.9300
C11—C121.404 (12)C27—C281.394 (10)
C11—H110.9300C27—H270.9300
C12—C131.358 (11)C28—H280.9300
C12—H120.9300N1—Ni12.099 (5)
C13—C141.393 (10)N2—N31.380 (8)
C13—H130.9300N2—Ni11.992 (5)
C14—H140.9300N4—Ni12.091 (5)
C15—N41.329 (9)N5—N61.359 (8)
C15—C161.375 (12)N5—Ni11.995 (5)
C15—H150.9300Ni1—O12.098 (5)
C16—C171.376 (12)Ni1—O22.098 (5)
N1—C1—C2123.4 (7)N5—C20—C19112.9 (6)
N1—C1—H1118.3C21—C20—C19120.7 (6)
C2—C1—H1118.3C20—C21—H21A109.5
C3—C2—C1117.9 (7)C20—C21—H21B109.5
C3—C2—H2121.1H21A—C21—H21B109.5
C1—C2—H2121.1C20—C21—H21C109.5
C2—C3—C4120.1 (6)H21A—C21—H21C109.5
C2—C3—H3120.0H21B—C21—H21C109.5
C4—C3—H3120.0O2—C22—N6124.7 (6)
C3—C4—C5118.6 (7)O2—C22—C23119.3 (5)
C3—C4—H4120.7N6—C22—C23116.0 (5)
C5—C4—H4120.7C28—C23—C24118.7 (7)
N1—C5—C4121.0 (6)C28—C23—C22120.6 (6)
N1—C5—C6115.9 (5)C24—C23—C22120.6 (6)
C4—C5—C6123.1 (6)C25—C24—C23118.8 (9)
N2—C6—C5112.9 (6)C25—C24—H24120.6
N2—C6—C7123.8 (7)C23—C24—H24120.6
C5—C6—C7123.3 (6)C24—C25—C26121.8 (8)
C6—C7—H7A109.5C24—C25—H25119.1
C6—C7—H7B109.5C26—C25—H25119.1
H7A—C7—H7B109.5C27—C26—C25118.6 (8)
C6—C7—H7C109.5C27—C26—H26120.7
H7A—C7—H7C109.5C25—C26—H26120.7
H7B—C7—H7C109.5C26—C27—C28121.3 (9)
O1—C8—N3127.4 (6)C26—C27—H27119.3
O1—C8—C9117.8 (5)C28—C27—H27119.3
N3—C8—C9114.7 (5)C23—C28—C27120.7 (7)
C10—C9—C14118.2 (7)C23—C28—H28119.7
C10—C9—C8122.0 (6)C27—C28—H28119.7
C14—C9—C8119.8 (6)C1—N1—C5119.0 (6)
C11—C10—C9121.8 (8)C1—N1—Ni1128.6 (5)
C11—C10—H10119.1C5—N1—Ni1112.3 (4)
C9—C10—H10119.1C6—N2—N3120.7 (5)
C10—C11—C12119.5 (7)C6—N2—Ni1120.3 (5)
C10—C11—H11120.2N3—N2—Ni1118.7 (4)
C12—C11—H11120.2C8—N3—N2107.7 (5)
C13—C12—C11119.2 (7)C15—N4—C19118.3 (6)
C13—C12—H12120.4C15—N4—Ni1129.0 (5)
C11—C12—H12120.4C19—N4—Ni1112.5 (4)
C12—C13—C14121.3 (7)C20—N5—N6120.9 (5)
C12—C13—H13119.4C20—N5—Ni1119.7 (5)
C14—C13—H13119.4N6—N5—Ni1118.8 (4)
C13—C14—C9120.1 (7)C22—N6—N5109.5 (5)
C13—C14—H14120.0N2—Ni1—N5174.5 (2)
C9—C14—H14120.0N2—Ni1—N4105.6 (2)
N4—C15—C16123.5 (7)N5—Ni1—N478.4 (2)
N4—C15—H15118.3N2—Ni1—O176.29 (19)
C16—C15—H15118.3N5—Ni1—O199.93 (19)
C15—C16—C17118.2 (7)N4—Ni1—O192.3 (2)
C15—C16—H16120.9N2—Ni1—O299.56 (19)
C17—C16—H16120.9N5—Ni1—O276.7 (2)
C16—C17—C18120.1 (7)N4—Ni1—O2154.7 (2)
C16—C17—H17120.0O1—Ni1—O296.6 (2)
C18—C17—H17120.0N2—Ni1—N178.2 (2)
C17—C18—C19118.7 (7)N5—Ni1—N1105.9 (2)
C17—C18—H18120.6N4—Ni1—N189.5 (2)
C19—C18—H18120.6O1—Ni1—N1153.90 (19)
N4—C19—C18121.2 (6)O2—Ni1—N192.8 (2)
N4—C19—C20115.2 (5)C8—O1—Ni1109.5 (4)
C18—C19—C20123.6 (6)C22—O2—Ni1110.1 (4)
N5—C20—C21126.3 (7)
N1—C1—C2—C30.8 (11)C18—C19—N4—Ni1176.5 (5)
C1—C2—C3—C40.3 (11)C20—C19—N4—Ni11.5 (6)
C2—C3—C4—C51.2 (11)C21—C20—N5—N61.5 (10)
C3—C4—C5—N12.3 (10)C19—C20—N5—N6174.9 (5)
C3—C4—C5—C6176.2 (6)C21—C20—N5—Ni1170.3 (6)
N1—C5—C6—N25.6 (8)C19—C20—N5—Ni113.3 (7)
C4—C5—C6—N2173.0 (6)O2—C22—N6—N51.3 (8)
N1—C5—C6—C7173.6 (6)C23—C22—N6—N5177.0 (5)
C4—C5—C6—C77.8 (10)C20—N5—N6—C22175.0 (6)
O1—C8—C9—C10161.4 (7)Ni1—N5—N6—C223.1 (6)
N3—C8—C9—C1016.3 (10)C6—N2—Ni1—N492.0 (5)
O1—C8—C9—C1416.8 (9)N3—N2—Ni1—N494.3 (4)
N3—C8—C9—C14165.5 (6)C6—N2—Ni1—O1179.5 (5)
C14—C9—C10—C111.0 (13)N3—N2—Ni1—O15.7 (4)
C8—C9—C10—C11177.2 (8)C6—N2—Ni1—O285.0 (5)
C9—C10—C11—C121.2 (14)N3—N2—Ni1—O288.7 (4)
C10—C11—C12—C130.5 (13)C6—N2—Ni1—N15.9 (5)
C11—C12—C13—C140.2 (12)N3—N2—Ni1—N1179.6 (5)
C12—C13—C14—C90.3 (11)C20—N5—Ni1—N410.0 (5)
C10—C9—C14—C130.3 (10)N6—N5—Ni1—N4178.1 (4)
C8—C9—C14—C13178.0 (6)C20—N5—Ni1—O180.3 (5)
N4—C15—C16—C172.3 (13)N6—N5—Ni1—O191.6 (4)
C15—C16—C17—C181.7 (13)C20—N5—Ni1—O2174.8 (5)
C16—C17—C18—C190.8 (11)N6—N5—Ni1—O22.8 (4)
C17—C18—C19—N42.8 (9)C20—N5—Ni1—N196.1 (5)
C17—C18—C19—C20175.0 (6)N6—N5—Ni1—N191.9 (4)
N4—C19—C20—N59.3 (7)C15—N4—Ni1—N214.2 (7)
C18—C19—C20—N5168.7 (6)C19—N4—Ni1—N2172.2 (4)
N4—C19—C20—C21174.1 (6)C15—N4—Ni1—N5169.7 (7)
C18—C19—C20—C218.0 (9)C19—N4—Ni1—N53.8 (4)
O2—C22—C23—C280.9 (9)C15—N4—Ni1—O190.6 (6)
N6—C22—C23—C28177.6 (6)C19—N4—Ni1—O195.8 (4)
O2—C22—C23—C24176.2 (6)C15—N4—Ni1—O2158.8 (6)
N6—C22—C23—C245.4 (9)C19—N4—Ni1—O214.7 (7)
C28—C23—C24—C250.6 (11)C15—N4—Ni1—N163.3 (6)
C22—C23—C24—C25176.5 (7)C19—N4—Ni1—N1110.2 (4)
C23—C24—C25—C261.3 (14)C1—N1—Ni1—N2173.1 (6)
C24—C25—C26—C273.2 (16)C5—N1—Ni1—N22.1 (4)
C25—C26—C27—C283.1 (14)C1—N1—Ni1—N510.8 (6)
C24—C23—C28—C270.8 (10)C5—N1—Ni1—N5174.0 (4)
C22—C23—C28—C27176.3 (6)C1—N1—Ni1—N467.0 (6)
C26—C27—C28—C231.1 (12)C5—N1—Ni1—N4108.2 (4)
C2—C1—N1—C50.3 (10)C1—N1—Ni1—O1161.2 (5)
C2—C1—N1—Ni1175.2 (5)C5—N1—Ni1—O114.0 (7)
C4—C5—N1—C11.8 (9)C1—N1—Ni1—O287.8 (6)
C6—C5—N1—C1176.8 (6)C5—N1—Ni1—O297.0 (4)
C4—C5—N1—Ni1177.6 (5)N3—C8—O1—Ni11.3 (8)
C6—C5—N1—Ni11.0 (6)C9—C8—O1—Ni1176.1 (4)
C5—C6—N2—N3178.5 (5)N2—Ni1—O1—C83.6 (4)
C7—C6—N2—N32.3 (10)N5—Ni1—O1—C8172.2 (4)
C5—C6—N2—Ni17.9 (7)N4—Ni1—O1—C8109.1 (4)
C7—C6—N2—Ni1171.3 (5)O2—Ni1—O1—C894.6 (4)
O1—C8—N3—N23.2 (9)N1—Ni1—O1—C815.6 (7)
C9—C8—N3—N2179.4 (5)N6—C22—O2—Ni10.9 (7)
C6—N2—N3—C8179.8 (6)C23—C22—O2—Ni1179.2 (4)
Ni1—N2—N3—C86.5 (7)N2—Ni1—O2—C22173.9 (4)
C16—C15—N4—C190.4 (11)N5—Ni1—O2—C221.9 (4)
C16—C15—N4—Ni1172.8 (6)N4—Ni1—O2—C2212.9 (7)
C18—C19—N4—C152.2 (9)O1—Ni1—O2—C2296.8 (4)
C20—C19—N4—C15175.8 (6)N1—Ni1—O2—C22107.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···N60.962.512.861 (10)102
C10—H10···N30.932.512.813 (10)100
C4—H4···O1i0.932.513.164 (8)128
C18—H18···O2ii0.932.393.300 (9)167
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C14H12N3O)2]
Mr535.24
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)10.248 (6), 19.692 (11), 12.281 (7)
β (°) 91.523 (10)
V3)2477 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.37 × 0.33 × 0.25
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.751, 0.821
No. of measured, independent and
observed (I > 2σ) reflections
5679, 3600, 3352
Rint0.093
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.182, 1.04
No. of reflections3600
No. of parameters336
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.89
Absolute structureFlack (1983), 1156 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21B···N60.962.512.861 (10)102
C10—H10···N30.932.512.813 (10)100
C4—H4···O1i0.932.513.164 (8)128
C18—H18···O2ii0.932.393.300 (9)167
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRay, A., Banerjee, S., Sen, S., Butcher, R. J., Rosair, G. M., Garland, M. T. & Mitra, S. (2008). Struct. Chem. 19, 209–217.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007a). Inorg. Chim. Acta, 360, 4085–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Mitra, S., Hughes, D. L., Rosair, G. & Desplanches, C. (2007b). Polyhedron, 26, 1740–1744.  Web of Science CSD CrossRef CAS Google Scholar
First citationSen, S., Talukder, P., Rosair, G. & Mitra, S. (2005). Struct. Chem. 16, 605–610.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds