metal-organic compounds
catena-Poly[sodium-di-μ-aqua-sodium-bis[μ-2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide]]
aKyiv National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, Lenina ave. 60, 61001, Khar'kov, Ukraine
*Correspondence e-mail: allicis@yahoo.com
The title compound, [Na2(C10H16Cl3N3O4P)2(H2O)2]n, can be considered as a two-dimensional coordination polymer in which one-dimensional chains are connected to each other by intermolecular C—H⋯O hydrogen bonds involving the water molecules. The NaI ion is five-coordinated in a distorted trigonal-bipyramidal geometry. The connection between the two NaI ions is facilitated by the two μ-O atoms of the carbonyl group of the 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (CAPh) ligand. A bridging coordination of the CAPh ligand via the carbonyl O atom is observed for the first time. The bridging water molecules form intermolecular O—H⋯O hydrogen bonds with the O atoms of the morpholine rings and the phosphoryl groups of neighboring CAPh molecules.
Related literature
For the pharmacological and biological properties of carbacylamidophosphate (CAPh) derivatives, see: Barak et al. (2000); Grimes et al. (2008); Adams et al. (2002); For structural analogues of phosphorylated carbacylamides and their coordination properties, see: Amirkhanov et al. (1996); Rebrova et al. (1982); Gubina et al. (1999); Ovchinnikov et al. (2001); Gholivand & Shariatinia (2006); Trush et al. (2005); Zhang et al. (1992). For details of the synthesis, see: Kirsanov & Derkach (1956). For the synthesis of the 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (HL) ligand, see: Ovchynnikov et al. (1998). For coordination compounds of HL, see: Ovchynnikov et al. (2000); Trush et al. (2002, 2003). For the trigonality index τ, see: Addison et al. (1984).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810009670/jh2135sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009670/jh2135Isup2.hkl
The synthesis of HL was carried out according to the method described early (Ovchynnikov et al., 1998).
HL (0,38 g, 1 mmol) was dissolved in methanol (10 ml) and added to 10 ml of sodium methoxide (0,023 g, 1 mmol of Na in methanol). After 20 min the solution was evaporated and the residue was dissolved in water. The resulting clear solution was left at ambient temperature for crystallization in air. The crystals were separated by filtration after 48 h and dried in air. Yield: 95-98%. IR (KBr pellet, cm-1): 1605 (s, CO), 1344 (Amide II), 1152 (s, PO).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Na2(C10H16Cl3N3O4P)2(H2O)2] | Z = 1 |
Mr = 841.17 | F(000) = 432 |
Triclinic, P1 | Dx = 1.557 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.522 (5) Å | Cell parameters from 2305 reflections |
b = 10.329 (4) Å | θ = 2.9–32.1° |
c = 12.451 (5) Å | µ = 0.65 mm−1 |
α = 84.17 (4)° | T = 294 K |
β = 80.89 (4)° | Block, colourless |
γ = 70.16 (5)° | 0.40 × 0.30 × 0.20 mm |
V = 897.3 (8) Å3 |
Oxford Diffraction Xcalibur3 diffractometer | 5137 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3339 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.0°, θmin = 3.0° |
ω scans | h = −9→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −14→14 |
Tmin = 0.782, Tmax = 0.938 | l = −17→17 |
10258 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0695P)2] where P = (Fo2 + 2Fc2)/3 |
5137 reflections | (Δ/σ)max < 0.001 |
236 parameters | Δρmax = 0.44 e Å−3 |
6 restraints | Δρmin = −0.55 e Å−3 |
[Na2(C10H16Cl3N3O4P)2(H2O)2] | γ = 70.16 (5)° |
Mr = 841.17 | V = 897.3 (8) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.522 (5) Å | Mo Kα radiation |
b = 10.329 (4) Å | µ = 0.65 mm−1 |
c = 12.451 (5) Å | T = 294 K |
α = 84.17 (4)° | 0.40 × 0.30 × 0.20 mm |
β = 80.89 (4)° |
Oxford Diffraction Xcalibur3 diffractometer | 5137 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 3339 reflections with I > 2σ(I) |
Tmin = 0.782, Tmax = 0.938 | Rint = 0.027 |
10258 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 6 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.44 e Å−3 |
5137 reflections | Δρmin = −0.55 e Å−3 |
236 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Na1 | 0.74853 (12) | −0.02122 (8) | 0.49141 (6) | 0.0462 (2) | |
P1 | 0.14168 (7) | 0.19927 (5) | 0.73292 (4) | 0.03306 (13) | |
Cl1 | 0.7919 (6) | −0.0374 (6) | 0.7663 (5) | 0.0975 (19) | 0.30 |
Cl2 | 0.5558 (14) | −0.1440 (9) | 0.9126 (2) | 0.082 (3) | 0.30 |
Cl3 | 0.6925 (9) | −0.2632 (4) | 0.7073 (5) | 0.109 (2) | 0.30 |
Cl1A | 0.8282 (3) | −0.0794 (3) | 0.7362 (2) | 0.1334 (12) | 0.70 |
Cl2A | 0.5706 (5) | −0.1301 (4) | 0.91551 (8) | 0.0708 (8) | 0.70 |
Cl3A | 0.6346 (6) | −0.26558 (18) | 0.7220 (3) | 0.1413 (14) | 0.70 |
N1 | −0.0076 (2) | 0.25733 (16) | 0.84197 (13) | 0.0387 (4) | |
N2 | 0.2136 (2) | 0.33001 (16) | 0.68794 (12) | 0.0376 (3) | |
N3 | 0.3105 (2) | 0.07308 (16) | 0.78548 (13) | 0.0398 (4) | |
O1 | −0.2764 (2) | 0.36756 (19) | 1.02222 (14) | 0.0712 (5) | |
O2 | 0.3238 (3) | 0.55916 (17) | 0.61132 (14) | 0.0605 (4) | |
O3 | 0.05740 (19) | 0.16343 (14) | 0.64384 (11) | 0.0436 (3) | |
O4 | 0.4863 (2) | 0.00857 (16) | 0.61885 (11) | 0.0492 (4) | |
C1 | −0.0371 (3) | 0.1708 (2) | 0.93747 (19) | 0.0533 (5) | |
H1B | 0.0821 | 0.0987 | 0.9481 | 0.064* | |
H1A | −0.1285 | 0.1274 | 0.9268 | 0.064* | |
C2 | −0.1092 (4) | 0.2545 (3) | 1.03586 (19) | 0.0689 (7) | |
H2A | −0.1360 | 0.1962 | 1.0980 | 0.083* | |
H2B | −0.0108 | 0.2885 | 1.0511 | 0.083* | |
C3 | −0.2430 (4) | 0.4527 (2) | 0.9306 (2) | 0.0621 (6) | |
H3A | −0.1457 | 0.4902 | 0.9421 | 0.074* | |
H3B | −0.3590 | 0.5292 | 0.9222 | 0.074* | |
C4 | −0.1799 (3) | 0.3747 (2) | 0.82922 (18) | 0.0517 (5) | |
H4B | −0.2802 | 0.3423 | 0.8146 | 0.062* | |
H4A | −0.1544 | 0.4347 | 0.7680 | 0.062* | |
C5 | 0.3079 (4) | 0.3877 (2) | 0.75538 (18) | 0.0520 (5) | |
H5B | 0.4445 | 0.3403 | 0.7443 | 0.062* | |
H5A | 0.2618 | 0.3753 | 0.8317 | 0.062* | |
C6 | 0.2665 (4) | 0.5365 (3) | 0.7248 (2) | 0.0583 (6) | |
H6A | 0.1309 | 0.5843 | 0.7421 | 0.070* | |
H6B | 0.3332 | 0.5744 | 0.7671 | 0.070* | |
C7 | 0.2333 (4) | 0.5012 (2) | 0.54594 (19) | 0.0577 (6) | |
H7A | 0.2777 | 0.5158 | 0.4696 | 0.069* | |
H7B | 0.0966 | 0.5477 | 0.5578 | 0.069* | |
C8 | 0.2748 (3) | 0.3510 (2) | 0.57246 (16) | 0.0462 (5) | |
H8B | 0.2074 | 0.3148 | 0.5293 | 0.055* | |
H8A | 0.4103 | 0.3027 | 0.5556 | 0.055* | |
C9 | 0.4531 (3) | 0.00130 (18) | 0.71992 (15) | 0.0344 (4) | |
C10 | 0.61717 (19) | −0.11305 (14) | 0.77559 (8) | 0.0466 (5) | |
O1W | 0.8336 (3) | 0.16719 (17) | 0.49163 (14) | 0.0647 (5) | |
H1WA | 0.8908 | 0.1732 | 0.5556 | 0.097* | |
H1WB | 0.7821 | 0.2673 | 0.4784 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0504 (5) | 0.0472 (5) | 0.0453 (4) | −0.0219 (4) | 0.0012 (4) | −0.0133 (4) |
P1 | 0.0316 (2) | 0.0281 (2) | 0.0357 (2) | −0.00463 (17) | −0.00432 (19) | −0.00264 (18) |
Cl1 | 0.064 (3) | 0.116 (3) | 0.139 (5) | −0.054 (3) | −0.054 (3) | 0.027 (3) |
Cl2 | 0.101 (5) | 0.052 (2) | 0.050 (3) | 0.014 (2) | 0.008 (3) | 0.025 (2) |
Cl3 | 0.134 (3) | 0.065 (3) | 0.057 (2) | 0.067 (2) | −0.013 (2) | −0.0271 (19) |
Cl1A | 0.0365 (6) | 0.226 (3) | 0.1052 (14) | −0.0258 (11) | −0.0134 (7) | 0.0845 (18) |
Cl2A | 0.0624 (10) | 0.0851 (18) | 0.0385 (10) | 0.0109 (10) | −0.0100 (8) | −0.0020 (9) |
Cl3A | 0.274 (4) | 0.0300 (8) | 0.0826 (14) | −0.0019 (12) | −0.0180 (19) | −0.0110 (7) |
N1 | 0.0328 (8) | 0.0308 (8) | 0.0405 (8) | 0.0016 (6) | 0.0014 (7) | 0.0008 (7) |
N2 | 0.0426 (8) | 0.0367 (8) | 0.0346 (8) | −0.0143 (7) | −0.0067 (7) | −0.0013 (7) |
N3 | 0.0375 (8) | 0.0341 (8) | 0.0377 (8) | 0.0006 (6) | −0.0022 (7) | −0.0033 (7) |
O1 | 0.0557 (10) | 0.0682 (11) | 0.0529 (10) | 0.0173 (8) | 0.0118 (8) | 0.0019 (9) |
O2 | 0.0806 (12) | 0.0514 (9) | 0.0615 (10) | −0.0379 (9) | −0.0111 (9) | 0.0026 (8) |
O3 | 0.0414 (7) | 0.0408 (7) | 0.0504 (8) | −0.0124 (6) | −0.0115 (7) | −0.0057 (6) |
O4 | 0.0415 (7) | 0.0600 (9) | 0.0353 (7) | −0.0027 (7) | −0.0040 (6) | −0.0034 (6) |
C1 | 0.0492 (12) | 0.0393 (11) | 0.0546 (13) | −0.0023 (9) | 0.0071 (11) | 0.0079 (10) |
C2 | 0.0613 (15) | 0.0683 (17) | 0.0442 (12) | 0.0153 (12) | 0.0022 (12) | 0.0038 (12) |
C3 | 0.0486 (12) | 0.0448 (13) | 0.0688 (16) | 0.0101 (10) | 0.0054 (12) | −0.0041 (11) |
C4 | 0.0375 (10) | 0.0479 (12) | 0.0509 (12) | 0.0067 (9) | −0.0033 (9) | 0.0057 (10) |
C5 | 0.0600 (13) | 0.0602 (14) | 0.0483 (12) | −0.0318 (12) | −0.0184 (11) | 0.0008 (10) |
C6 | 0.0734 (16) | 0.0563 (14) | 0.0560 (13) | −0.0320 (13) | −0.0115 (13) | −0.0104 (11) |
C7 | 0.0838 (17) | 0.0493 (13) | 0.0477 (12) | −0.0317 (13) | −0.0145 (12) | 0.0066 (10) |
C8 | 0.0576 (12) | 0.0406 (11) | 0.0377 (10) | −0.0158 (10) | 0.0021 (9) | −0.0047 (9) |
C9 | 0.0346 (9) | 0.0284 (8) | 0.0369 (9) | −0.0060 (7) | −0.0045 (8) | −0.0019 (7) |
C10 | 0.0432 (10) | 0.0420 (11) | 0.0400 (10) | 0.0017 (9) | −0.0003 (9) | 0.0005 (9) |
O1W | 0.0899 (12) | 0.0424 (9) | 0.0748 (11) | −0.0292 (9) | −0.0365 (10) | 0.0044 (8) |
Na1—O1W | 2.2458 (19) | O3—Na1i | 2.322 (2) |
Na1—O4 | 2.280 (2) | O4—C9 | 1.243 (2) |
Na1—O3i | 2.322 (2) | O4—Na1i | 2.366 (2) |
Na1—O4i | 2.366 (2) | C1—C2 | 1.493 (3) |
Na1—Cl1A | 3.158 (3) | C1—H1B | 0.9700 |
Na1—P1i | 3.3388 (19) | C1—H1A | 0.9700 |
P1—O3 | 1.4949 (15) | C2—H2A | 0.9700 |
P1—O3 | 1.4949 (15) | C2—H2B | 0.9700 |
P1—N2 | 1.6358 (18) | C3—C4 | 1.492 (4) |
P1—N1 | 1.6401 (19) | C3—H3A | 0.9700 |
P1—N3 | 1.645 (2) | C3—H3B | 0.9700 |
P1—Na1i | 3.3388 (19) | C4—H4B | 0.9700 |
Cl1—C10 | 1.7264 (14) | C4—H4A | 0.9700 |
Cl2—C10 | 1.7219 (13) | C5—C6 | 1.483 (3) |
Cl3—C10 | 1.7222 (14) | C5—H5B | 0.9700 |
Cl1A—C10 | 1.7246 (15) | C5—H5A | 0.9700 |
Cl2A—C10 | 1.7248 (12) | C6—H6A | 0.9700 |
Cl3A—C10 | 1.7290 (13) | C6—H6B | 0.9700 |
N1—C1 | 1.448 (3) | C7—C8 | 1.488 (3) |
N1—C4 | 1.461 (3) | C7—H7A | 0.9700 |
N2—C8 | 1.456 (2) | C7—H7B | 0.9700 |
N2—C5 | 1.463 (3) | C8—H8B | 0.9700 |
N3—C9 | 1.293 (3) | C8—H8A | 0.9700 |
O1—C3 | 1.412 (3) | C9—C10 | 1.586 (3) |
O1—C2 | 1.416 (3) | O1W—H1WA | 0.9800 |
O2—C7 | 1.427 (3) | O1W—H1WB | 0.9800 |
O2—C6 | 1.430 (3) | ||
O1W—Na1—O4 | 106.11 (9) | O1—C2—H2B | 109.2 |
O1W—Na1—O3i | 110.04 (8) | C1—C2—H2B | 109.2 |
O4—Na1—O3i | 143.65 (7) | H2A—C2—H2B | 107.9 |
O1W—Na1—O4i | 117.21 (8) | O1—C3—C4 | 111.4 (2) |
O4—Na1—O4i | 78.92 (7) | O1—C3—H3A | 109.4 |
O3i—Na1—O4i | 81.39 (7) | C4—C3—H3A | 109.4 |
O1W—Na1—Cl1A | 86.78 (8) | O1—C3—H3B | 109.4 |
O4—Na1—Cl1A | 64.22 (7) | C4—C3—H3B | 109.4 |
O3i—Na1—Cl1A | 121.01 (9) | H3A—C3—H3B | 108.0 |
O4i—Na1—Cl1A | 140.84 (6) | N1—C4—C3 | 109.77 (19) |
O1W—Na1—P1i | 119.98 (7) | N1—C4—H4B | 109.7 |
O4—Na1—P1i | 127.30 (6) | C3—C4—H4B | 109.7 |
O3i—Na1—P1i | 22.70 (4) | N1—C4—H4A | 109.7 |
O4i—Na1—P1i | 58.77 (6) | C3—C4—H4A | 109.7 |
Cl1A—Na1—P1i | 137.07 (7) | H4B—C4—H4A | 108.2 |
O1W—Na1—Na1i | 118.55 (8) | N2—C5—C6 | 108.99 (19) |
O4—Na1—Na1i | 40.33 (5) | N2—C5—H5B | 109.9 |
O3i—Na1—Na1i | 114.40 (6) | C6—C5—H5B | 109.9 |
O4i—Na1—Na1i | 38.58 (5) | N2—C5—H5A | 109.9 |
Cl1A—Na1—Na1i | 103.59 (6) | C6—C5—H5A | 109.9 |
P1i—Na1—Na1i | 92.48 (5) | H5B—C5—H5A | 108.3 |
O1W—Na1—Na1ii | 48.58 (7) | O2—C6—C5 | 111.5 (2) |
O4—Na1—Na1ii | 130.58 (6) | O2—C6—H6A | 109.3 |
O3i—Na1—Na1ii | 78.91 (6) | C5—C6—H6A | 109.3 |
O4i—Na1—Na1ii | 147.34 (6) | O2—C6—H6B | 109.3 |
Cl1A—Na1—Na1ii | 71.78 (5) | C5—C6—H6B | 109.3 |
P1i—Na1—Na1ii | 100.05 (5) | H6A—C6—H6B | 108.0 |
Na1i—Na1—Na1ii | 165.63 (5) | O2—C7—C8 | 111.4 (2) |
O3—P1—N2 | 107.86 (9) | O2—C7—H7A | 109.3 |
O3—P1—N2 | 107.86 (9) | C8—C7—H7A | 109.3 |
O3—P1—N1 | 115.65 (9) | O2—C7—H7B | 109.3 |
O3—P1—N1 | 115.65 (9) | C8—C7—H7B | 109.3 |
N2—P1—N1 | 102.81 (9) | H7A—C7—H7B | 108.0 |
O3—P1—N3 | 116.42 (9) | N2—C8—C7 | 108.85 (18) |
O3—P1—N3 | 116.42 (9) | N2—C8—H8B | 109.9 |
N2—P1—N3 | 111.58 (10) | C7—C8—H8B | 109.9 |
N1—P1—N3 | 101.70 (9) | N2—C8—H8A | 109.9 |
N2—P1—Na1i | 100.79 (7) | C7—C8—H8A | 109.9 |
N1—P1—Na1i | 149.19 (7) | H8B—C8—H8A | 108.3 |
N3—P1—Na1i | 87.59 (8) | O4—C9—N3 | 130.61 (18) |
C10—Cl1A—Na1 | 91.55 (11) | O4—C9—C10 | 113.42 (15) |
C1—N1—C4 | 111.08 (17) | N3—C9—C10 | 115.95 (15) |
C1—N1—P1 | 123.56 (14) | C9—C10—Cl2 | 113.7 (3) |
C4—N1—P1 | 118.63 (14) | C9—C10—Cl3 | 110.5 (2) |
C8—N2—C5 | 111.34 (16) | Cl2—C10—Cl3 | 110.9 (4) |
C8—N2—P1 | 120.92 (13) | C9—C10—Cl1A | 108.77 (14) |
C5—N2—P1 | 121.27 (14) | Cl2—C10—Cl1A | 117.4 (4) |
C9—N3—P1 | 118.23 (14) | Cl3—C10—Cl1A | 93.9 (3) |
C3—O1—C2 | 110.45 (18) | C9—C10—Cl2A | 114.42 (16) |
C7—O2—C6 | 111.22 (16) | Cl3—C10—Cl2A | 116.2 (3) |
P1—O3—Na1i | 120.47 (9) | Cl1A—C10—Cl2A | 111.12 (18) |
C9—O4—Na1 | 136.68 (13) | C9—C10—Cl1 | 102.9 (2) |
C9—O4—Na1i | 121.40 (13) | Cl2—C10—Cl1 | 106.0 (5) |
Na1—O4—Na1i | 101.08 (7) | Cl3—C10—Cl1 | 112.7 (3) |
N1—C1—C2 | 110.33 (19) | Cl2A—C10—Cl1 | 98.9 (3) |
N1—C1—H1B | 109.6 | C9—C10—Cl3A | 104.82 (15) |
C2—C1—H1B | 109.6 | Cl2—C10—Cl3A | 102.2 (4) |
N1—C1—H1A | 109.6 | Cl1A—C10—Cl3A | 109.0 (2) |
C2—C1—H1A | 109.6 | Cl2A—C10—Cl3A | 108.5 (2) |
H1B—C1—H1A | 108.1 | Cl1—C10—Cl3A | 127.7 (3) |
O1—C2—C1 | 112.3 (2) | Na1—O1W—H1WA | 115.1 |
O1—C2—H2A | 109.2 | Na1—O1W—H1WB | 139.9 |
C1—C2—H2A | 109.2 | H1WA—O1W—H1WB | 94.1 |
O1W—Na1—Cl1A—C10 | 133.78 (14) | O1W—Na1—O4—Na1i | 115.37 (8) |
O4—Na1—Cl1A—C10 | 24.16 (11) | O3i—Na1—O4—Na1i | −58.44 (12) |
O3i—Na1—Cl1A—C10 | −114.71 (13) | O4i—Na1—O4—Na1i | 0.0 |
O4i—Na1—Cl1A—C10 | 2.8 (2) | Cl1A—Na1—O4—Na1i | −166.44 (9) |
P1i—Na1—Cl1A—C10 | −93.81 (14) | P1i—Na1—O4—Na1i | −35.57 (8) |
Na1i—Na1—Cl1A—C10 | 15.17 (14) | Na1ii—Na1—O4—Na1i | 164.12 (7) |
Na1ii—Na1—Cl1A—C10 | −178.99 (14) | C4—N1—C1—C2 | −53.9 (3) |
O3—P1—N1—C1 | 94.71 (18) | P1—N1—C1—C2 | 155.41 (17) |
O3—P1—N1—C1 | 94.71 (18) | C3—O1—C2—C1 | −57.4 (3) |
N2—P1—N1—C1 | −148.03 (17) | N1—C1—C2—O1 | 55.1 (3) |
N3—P1—N1—C1 | −32.41 (19) | C2—O1—C3—C4 | 58.7 (3) |
Na1i—P1—N1—C1 | 72.9 (2) | C1—N1—C4—C3 | 55.3 (3) |
O3—P1—N1—C4 | −53.94 (18) | P1—N1—C4—C3 | −152.41 (17) |
O3—P1—N1—C4 | −53.94 (18) | O1—C3—C4—N1 | −57.7 (3) |
N2—P1—N1—C4 | 63.32 (17) | C8—N2—C5—C6 | 57.6 (3) |
N3—P1—N1—C4 | 178.94 (15) | P1—N2—C5—C6 | −150.46 (17) |
Na1i—P1—N1—C4 | −75.8 (2) | C7—O2—C6—C5 | 57.2 (3) |
O3—P1—N2—C8 | −29.02 (18) | N2—C5—C6—O2 | −56.6 (3) |
O3—P1—N2—C8 | −29.02 (18) | C6—O2—C7—C8 | −57.4 (3) |
N1—P1—N2—C8 | −151.68 (16) | C5—N2—C8—C7 | −57.7 (2) |
N3—P1—N2—C8 | 100.04 (17) | P1—N2—C8—C7 | 150.24 (17) |
Na1i—P1—N2—C8 | 8.36 (16) | O2—C7—C8—N2 | 57.1 (3) |
O3—P1—N2—C5 | −178.34 (16) | Na1—O4—C9—N3 | 144.80 (18) |
O3—P1—N2—C5 | −178.34 (16) | Na1i—O4—C9—N3 | −47.9 (3) |
N1—P1—N2—C5 | 59.00 (19) | Na1—O4—C9—C10 | −33.5 (3) |
N3—P1—N2—C5 | −49.28 (19) | Na1i—O4—C9—C10 | 133.83 (12) |
Na1i—P1—N2—C5 | −140.96 (16) | P1—N3—C9—O4 | −1.7 (3) |
O3—P1—N3—C9 | 52.00 (18) | P1—N3—C9—C10 | 176.53 (10) |
O3—P1—N3—C9 | 52.00 (18) | O4—C9—C10—Cl2 | −169.7 (4) |
N2—P1—N3—C9 | −72.38 (17) | N3—C9—C10—Cl2 | 11.8 (4) |
N1—P1—N3—C9 | 178.63 (15) | O4—C9—C10—Cl3 | −44.2 (3) |
Na1i—P1—N3—C9 | 28.27 (15) | N3—C9—C10—Cl3 | 137.3 (3) |
N2—P1—O3—O3 | 0.00 (17) | O4—C9—C10—Cl1A | 57.5 (2) |
N1—P1—O3—O3 | 0.00 (13) | N3—C9—C10—Cl1A | −121.00 (19) |
N3—P1—O3—O3 | 0.00 (14) | O4—C9—C10—Cl2A | −177.6 (2) |
Na1i—P1—O3—O3 | 0.00 (14) | N3—C9—C10—Cl2A | 3.9 (3) |
O3—P1—O3—Na1i | 0 (50) | O4—C9—C10—Cl1 | 76.3 (3) |
N2—P1—O3—Na1i | 84.15 (12) | N3—C9—C10—Cl1 | −102.3 (3) |
N1—P1—O3—Na1i | −161.45 (8) | O4—C9—C10—Cl3A | −58.9 (2) |
N3—P1—O3—Na1i | −42.12 (12) | N3—C9—C10—Cl3A | 122.6 (2) |
O1W—Na1—O4—C9 | −75.7 (2) | Na1—Cl1A—C10—C9 | −44.71 (14) |
O3i—Na1—O4—C9 | 110.5 (2) | Na1—Cl1A—C10—Cl2 | −175.6 (3) |
O4i—Na1—O4—C9 | 169.0 (2) | Na1—Cl1A—C10—Cl3 | 68.4 (2) |
Cl1A—Na1—O4—C9 | 2.54 (19) | Na1—Cl1A—C10—Cl2A | −171.53 (16) |
P1i—Na1—O4—C9 | 133.41 (18) | Na1—Cl1A—C10—Cl1 | −119.3 (9) |
Na1i—Na1—O4—C9 | 169.0 (2) | Na1—Cl1A—C10—Cl3A | 69.00 (16) |
Na1ii—Na1—O4—C9 | −26.9 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O1iii | 0.97 | 2.59 | 3.443 (4) | 147 |
O1W—H1WA···O3iv | 0.98 | 1.77 | 2.716 (3) | 163 |
O1W—H1WB···O2v | 0.98 | 2.00 | 2.917 (3) | 155 |
Symmetry codes: (iii) −x−1, −y+1, −z+2; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Na2(C10H16Cl3N3O4P)2(H2O)2] |
Mr | 841.17 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 7.522 (5), 10.329 (4), 12.451 (5) |
α, β, γ (°) | 84.17 (4), 80.89 (4), 70.16 (5) |
V (Å3) | 897.3 (8) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur3 diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.782, 0.938 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10258, 5137, 3339 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.121, 0.95 |
No. of reflections | 5137 |
No. of parameters | 236 |
No. of restraints | 6 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.55 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008), XP in SHELXTL Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O1i | 0.97 | 2.59 | 3.443 (4) | 147.0 |
O1W—H1WA···O3ii | 0.98 | 1.77 | 2.716 (3) | 163 |
O1W—H1WB···O2iii | 0.98 | 2.00 | 2.917 (3) | 155 |
Symmetry codes: (i) −x−1, −y+1, −z+2; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1. |
References
Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martin, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. 18, 2004–2005. Web of Science CrossRef Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Amirkhanov, V. M., Kapshuk, A. A., Ovchinnikov, V. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 1470–1474. CAS Google Scholar
Barak, D., Ordentlich, A., Kaplan, D., Barak, R., Mizrahi, D., Kronman, C., Segall, Y., Velan, B. & Shaerman, A. (2000). Biochemistry, 39, 1156–1161. Web of Science CrossRef PubMed CAS Google Scholar
Gholivand, K. & Shariatinia, Z. (2006). J. Organomet. Chem. 691, 4215–4224. Web of Science CSD CrossRef CAS Google Scholar
Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936–1945. Web of Science CrossRef PubMed CAS Google Scholar
Gubina, K., Ovchynnikov, V., Amirkhanov, V., Sliva, T., Skopenko, V., Glowiak, T. & Kozlowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357–1359. CAS Google Scholar
Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009–2014. CAS Google Scholar
Ovchinnikov, V. A., Amirkhanov, V. M., Domasevich, K. V., Sieler, J. & Skopenko, V. V. (2001). Zh. Neorg. Khim. 46, 615–619. CAS Google Scholar
Ovchynnikov, V. A., Amirkhanov, V. M., Timoshenko, T. P., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 481–484. CAS Google Scholar
Ovchynnikov, V. A., Timoshenko, T. P., Amirkhanov, V. M., Sieler, J. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 262–268. CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Rebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk. SSSR, 324, 103–108. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 9, 1221–1229. Web of Science CSD CrossRef Google Scholar
Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014. Web of Science CSD CrossRef CAS Google Scholar
Trush, E. A., Ovchynnikov, V. A., Domasevitch, K. V., Swiatek-Kozlowska, J., Zub, V. Ya. & Amirkhanov, V. M. (2002). Z. Naturforsch. Teil B, 57, 746–750. CAS Google Scholar
Zhang, W., Tan, M., Liu, W. & Yu, K. (1992). Polyhedron, 11, 1581–1585. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbacylamidophosphate compounds have been attracting substantial interest and are widely used to date. These compounds have been employed in pharmacology as potential novel antibacterial agents and prodrugs (Adams et al., 2002, Kimberly D. Grimes et al., 2008); some carbacylamidophosphates are effective pesticides (Barak et al., 2000). The ability of carbacylamidophosphates to form stable complexes both with transition and non-transition metals via their =P(O)N(H)C(O)- moiety has been investigated extensively by Amirkhanov et al., 1996, Trush et al., 2005, Ovchinnikov et al., 2001, Gholivand et al., 2006, Wenjun Zhang et al., 1992. This paper is devoted to the crystal structure of the sodium salt of 2,2,2-trichloro-N-(dimorpholin-4-yl-phosphoryl)acetamide (HL) NaL and the first fact of bridging coordination of CAPh ligand via carbonyl oxygen. Coordination compounds of 4f-metal ions with HL have been reported earlier (Ovchynnikov et al., 2000, Trush et al., 2002, Trush et al., 2003).
The molecular structure of the title compound is shown in Fig. 1. The structure is build up of [C10H18Cl3N3NaO5P]n chains along [001]. The polymeric chain contains Na atoms, which are five-coordinated by three O atoms of 2 HL molecules and two O atoms of water. Each CAPh ligand links Na+ centers via its phosphoryl and carbonyl groups in a chelating manner. Oxygen atom of carbonyl group is a bridging atom between two sodium ions. The value of the trigonality index τ (τ = (β-α)/60, where α and β are the largest coordination angles) (Addison et al., 1984) is 0,049 for Na(1) [α = O(4)—Na(1)—O(1 W) = 140,69°, β = O(3)—Na(1)—O(4) = 143,63°]. It indicates that sodium (I) ion is in a distorted trigonal bipyramidal coordination geometry. One of the equatorial distances is significantly longer [Na(1)—O(1 W) = 3,022 Å] than all other Na—O distances, which are almost equivalent. The values of the O—Na—O angles also reveal the strong deviation of the sodium (I) atom environment from the ideal trigonal- bipyramidal geometry. The P=O and C=O distances in the chelate ring and P—N distances in the morpholine substituents of L- in the sodium salt are longer than in the free ligand (i. e. uncoordinated) (Table 1). But the P—Namide distance is shortened upon coordination, indicating the presence of π-conjugation in the coordinated anion. Carbonyl group oxygen forms two types of bonds with Na: intrachelating bond O—Na is some longer, than bond with other Na atom. The bridging water molecules are involved in hydrogen bonding interactions (Table 1). Intramolecular hydrogen bonds stabilize the two-dimensional structure of the title compound. They are oriented towards the neighboring oxygen atom O(2) of the morpholine rings. The other H atom of the water molecule makes a strong intermolecular H bond to O(3) of P=O group of neighboring L- molecule. The intermolecular hydrogen bonds are arranged in inversion symmetric pairs that connect molecules along the c-axis leading to strongly hydrogen bonded strings of the molecules along that axis (Figure 2).