metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m426-m427

catena-Poly[sodium-di-μ-aqua-sodium-bis­[μ-2,2,2-tri­chloro-N-(di­morpholino­phosphoryl)acetamide]]

aKyiv National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", National Academy of Science of Ukraine, Lenina ave. 60, 61001, Khar'kov, Ukraine
*Correspondence e-mail: allicis@yahoo.com

(Received 11 March 2010; accepted 15 March 2010; online 20 March 2010)

The title compound, [Na2(C10H16Cl3N3O4P)2(H2O)2]n, can be considered as a two-dimensional coordination polymer in which one-dimensional chains are connected to each other by inter­molecular C—H⋯O hydrogen bonds involving the water mol­ecules. The NaI ion is five-coordinated in a distorted trigonal-bipyramidal geometry. The connection between the two NaI ions is facilitated by the two μ-O atoms of the carbonyl group of the 2,2,2-trichloro-N-(dimorpholino­phosphor­yl)acetamide (CAPh) ligand. A bridging coordination of the CAPh ligand via the carbonyl O atom is observed for the first time. The bridging water mol­ecules form inter­molecular O—H⋯O hydrogen bonds with the O atoms of the morpholine rings and the phosphoryl groups of neighboring CAPh mol­ecules.

Related literature

For the pharmacological and biological properties of carbacyl­amido­phosphate (CAPh) derivatives, see: Barak et al. (2000[Barak, D., Ordentlich, A., Kaplan, D., Barak, R., Mizrahi, D., Kronman, C., Segall, Y., Velan, B. & Shaerman, A. (2000). Biochemistry, 39, 1156-1161.]); Grimes et al. (2008[Grimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936-1945.]); Adams et al. (2002[Adams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martin, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. 18, 2004-2005.]); For structural analogues of phospho­rylated carbacyl­amides and their coordination properties, see: Amirkhanov et al. (1996[Amirkhanov, V. M., Kapshuk, A. A., Ovchinnikov, V. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 1470-1474.]); Rebrova et al. (1982[Rebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk. SSSR, 324, 103-108.]); Gubina et al. (1999[Gubina, K., Ovchynnikov, V., Amirkhanov, V., Sliva, T., Skopenko, V., Glowiak, T. & Kozlowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357-1359.]); Ovchinnikov et al. (2001[Ovchinnikov, V. A., Amirkhanov, V. M., Domasevich, K. V., Sieler, J. & Skopenko, V. V. (2001). Zh. Neorg. Khim. 46, 615-619.]); Gholivand & Shariatinia (2006[Gholivand, K. & Shariatinia, Z. (2006). J. Organomet. Chem. 691, 4215-4224.]); Trush et al. (2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]); Zhang et al. (1992[Zhang, W., Tan, M., Liu, W. & Yu, K. (1992). Polyhedron, 11, 1581-1585.]). For details of the synthesis, see: Kirsanov & Derkach (1956[Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009-2014.]). For the synthesis of the 2,2,2-trichloro-N-(dimorpholinophosphoryl)acetamide (HL) ligand, see: Ovchyn­nikov et al. (1998[Ovchynnikov, V. A., Amirkhanov, V. M., Timoshenko, T. P., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 481-484.]). For coordination compounds of HL, see: Ovchynnikov et al. (2000[Ovchynnikov, V. A., Timoshenko, T. P., Amirkhanov, V. M., Sieler, J. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 262-268.]); Trush et al. (2002[Trush, E. A., Ovchynnikov, V. A., Domasevitch, K. V., Swiatek-Kozlowska, J., Zub, V. Ya. & Amirkhanov, V. M. (2002). Z. Naturforsch. Teil B, 57, 746-750.], 2003[Trush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 9, 1221-1229.]). For the trigonality index τ, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Na2(C10H16Cl3N3O4P)2(H2O)2]

  • Mr = 841.17

  • Triclinic, [P \overline 1]

  • a = 7.522 (5) Å

  • b = 10.329 (4) Å

  • c = 12.451 (5) Å

  • α = 84.17 (4)°

  • β = 80.89 (4)°

  • γ = 70.16 (5)°

  • V = 897.3 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 294 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.782, Tmax = 0.938

  • 10258 measured reflections

  • 5137 independent reflections

  • 3339 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 0.95

  • 5137 reflections

  • 236 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1i 0.97 2.59 3.443 (4) 147
O1W—H1WA⋯O3ii 0.98 1.77 2.716 (3) 163
O1W—H1WB⋯O2iii 0.98 2.00 2.917 (3) 155
Symmetry codes: (i) -x-1, -y+1, -z+2; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbacylamidophosphate compounds have been attracting substantial interest and are widely used to date. These compounds have been employed in pharmacology as potential novel antibacterial agents and prodrugs (Adams et al., 2002, Kimberly D. Grimes et al., 2008); some carbacylamidophosphates are effective pesticides (Barak et al., 2000). The ability of carbacylamidophosphates to form stable complexes both with transition and non-transition metals via their =P(O)N(H)C(O)- moiety has been investigated extensively by Amirkhanov et al., 1996, Trush et al., 2005, Ovchinnikov et al., 2001, Gholivand et al., 2006, Wenjun Zhang et al., 1992. This paper is devoted to the crystal structure of the sodium salt of 2,2,2-trichloro-N-(dimorpholin-4-yl-phosphoryl)acetamide (HL) NaL and the first fact of bridging coordination of CAPh ligand via carbonyl oxygen. Coordination compounds of 4f-metal ions with HL have been reported earlier (Ovchynnikov et al., 2000, Trush et al., 2002, Trush et al., 2003).

The molecular structure of the title compound is shown in Fig. 1. The structure is build up of [C10H18Cl3N3NaO5P]n chains along [001]. The polymeric chain contains Na atoms, which are five-coordinated by three O atoms of 2 HL molecules and two O atoms of water. Each CAPh ligand links Na+ centers via its phosphoryl and carbonyl groups in a chelating manner. Oxygen atom of carbonyl group is a bridging atom between two sodium ions. The value of the trigonality index τ (τ = (β-α)/60, where α and β are the largest coordination angles) (Addison et al., 1984) is 0,049 for Na(1) [α = O(4)—Na(1)—O(1 W) = 140,69°, β = O(3)—Na(1)—O(4) = 143,63°]. It indicates that sodium (I) ion is in a distorted trigonal bipyramidal coordination geometry. One of the equatorial distances is significantly longer [Na(1)—O(1 W) = 3,022 Å] than all other Na—O distances, which are almost equivalent. The values of the O—Na—O angles also reveal the strong deviation of the sodium (I) atom environment from the ideal trigonal- bipyramidal geometry. The P=O and C=O distances in the chelate ring and P—N distances in the morpholine substituents of L- in the sodium salt are longer than in the free ligand (i. e. uncoordinated) (Table 1). But the P—Namide distance is shortened upon coordination, indicating the presence of π-conjugation in the coordinated anion. Carbonyl group oxygen forms two types of bonds with Na: intrachelating bond O—Na is some longer, than bond with other Na atom. The bridging water molecules are involved in hydrogen bonding interactions (Table 1). Intramolecular hydrogen bonds stabilize the two-dimensional structure of the title compound. They are oriented towards the neighboring oxygen atom O(2) of the morpholine rings. The other H atom of the water molecule makes a strong intermolecular H bond to O(3) of P=O group of neighboring L- molecule. The intermolecular hydrogen bonds are arranged in inversion symmetric pairs that connect molecules along the c-axis leading to strongly hydrogen bonded strings of the molecules along that axis (Figure 2).

Related literature top

For the pharmacological and biological properties of carbacylamidophosphate (CAPh) derivatives, see: Barak et al. (2000); Grimes et al. (2008); Adams et al. (2002); For structural analogues of phosphorylated carbacylamides and their coordination properties, see: Amirkhanov et al. (1996); Rebrova et al. (1982); Gubina et al. (1999); Ovchinnikov et al. (2001); Gholivand et al. (2006); Trush et al. (2005); Zhang et al. (1992). For details of the synthesis, see: Kirsanov & Derkach (1956). For the synthesis of the 2,2,2-trichloro-N-(dimorpholin-4-yl-phosphoryl)acetamide (HL) ligand, see: Ovchynnikov et al. (1998). For coordination compounds of HL, see: Ovchynnikov et al. (2000); Trush et al. (2002, 2003). For the trigonality index τ, see: Addison et al. (1984).

Experimental top

The synthesis of HL was carried out according to the method described early (Ovchynnikov et al., 1998).

HL (0,38 g, 1 mmol) was dissolved in methanol (10 ml) and added to 10 ml of sodium methoxide (0,023 g, 1 mmol of Na in methanol). After 20 min the solution was evaporated and the residue was dissolved in water. The resulting clear solution was left at ambient temperature for crystallization in air. The crystals were separated by filtration after 48 h and dried in air. Yield: 95-98%. IR (KBr pellet, cm-1): 1605 (s, CO), 1344 (Amide II), 1152 (s, PO).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of polymeric chain of the title compound, showing the 30% probability displacement ellipsoids and atomic numbering [symmetry codes: ]. H atoms of L- and Cl atoms of trychlormethyl groups have been omitted for clarity.
[Figure 2] Fig. 2. A schematic view of packing diagram from [Na(L)(H2O)]n (projection along the y direction). H atoms and Cl atoms of trychlormethyl groups have been omitted for clarity.
catena-Poly[sodium-di-µ-aqua-sodium-bis[µ-2,2,2-trichloro-N- (dimorpholinophosphoryl)acetamide]] top
Crystal data top
[Na2(C10H16Cl3N3O4P)2(H2O)2]Z = 1
Mr = 841.17F(000) = 432
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.522 (5) ÅCell parameters from 2305 reflections
b = 10.329 (4) Åθ = 2.9–32.1°
c = 12.451 (5) ŵ = 0.65 mm1
α = 84.17 (4)°T = 294 K
β = 80.89 (4)°Block, colourless
γ = 70.16 (5)°0.40 × 0.30 × 0.20 mm
V = 897.3 (8) Å3
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
5137 independent reflections
Radiation source: Enhance (Mo) X-ray Source3339 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1414
Tmin = 0.782, Tmax = 0.938l = 1717
10258 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.121H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0695P)2]
where P = (Fo2 + 2Fc2)/3
5137 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Na2(C10H16Cl3N3O4P)2(H2O)2]γ = 70.16 (5)°
Mr = 841.17V = 897.3 (8) Å3
Triclinic, P1Z = 1
a = 7.522 (5) ÅMo Kα radiation
b = 10.329 (4) ŵ = 0.65 mm1
c = 12.451 (5) ÅT = 294 K
α = 84.17 (4)°0.40 × 0.30 × 0.20 mm
β = 80.89 (4)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer
5137 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3339 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.938Rint = 0.027
10258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.95Δρmax = 0.44 e Å3
5137 reflectionsΔρmin = 0.55 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.74853 (12)0.02122 (8)0.49141 (6)0.0462 (2)
P10.14168 (7)0.19927 (5)0.73292 (4)0.03306 (13)
Cl10.7919 (6)0.0374 (6)0.7663 (5)0.0975 (19)0.30
Cl20.5558 (14)0.1440 (9)0.9126 (2)0.082 (3)0.30
Cl30.6925 (9)0.2632 (4)0.7073 (5)0.109 (2)0.30
Cl1A0.8282 (3)0.0794 (3)0.7362 (2)0.1334 (12)0.70
Cl2A0.5706 (5)0.1301 (4)0.91551 (8)0.0708 (8)0.70
Cl3A0.6346 (6)0.26558 (18)0.7220 (3)0.1413 (14)0.70
N10.0076 (2)0.25733 (16)0.84197 (13)0.0387 (4)
N20.2136 (2)0.33001 (16)0.68794 (12)0.0376 (3)
N30.3105 (2)0.07308 (16)0.78548 (13)0.0398 (4)
O10.2764 (2)0.36756 (19)1.02222 (14)0.0712 (5)
O20.3238 (3)0.55916 (17)0.61132 (14)0.0605 (4)
O30.05740 (19)0.16343 (14)0.64384 (11)0.0436 (3)
O40.4863 (2)0.00857 (16)0.61885 (11)0.0492 (4)
C10.0371 (3)0.1708 (2)0.93747 (19)0.0533 (5)
H1B0.08210.09870.94810.064*
H1A0.12850.12740.92680.064*
C20.1092 (4)0.2545 (3)1.03586 (19)0.0689 (7)
H2A0.13600.19621.09800.083*
H2B0.01080.28851.05110.083*
C30.2430 (4)0.4527 (2)0.9306 (2)0.0621 (6)
H3A0.14570.49020.94210.074*
H3B0.35900.52920.92220.074*
C40.1799 (3)0.3747 (2)0.82922 (18)0.0517 (5)
H4B0.28020.34230.81460.062*
H4A0.15440.43470.76800.062*
C50.3079 (4)0.3877 (2)0.75538 (18)0.0520 (5)
H5B0.44450.34030.74430.062*
H5A0.26180.37530.83170.062*
C60.2665 (4)0.5365 (3)0.7248 (2)0.0583 (6)
H6A0.13090.58430.74210.070*
H6B0.33320.57440.76710.070*
C70.2333 (4)0.5012 (2)0.54594 (19)0.0577 (6)
H7A0.27770.51580.46960.069*
H7B0.09660.54770.55780.069*
C80.2748 (3)0.3510 (2)0.57246 (16)0.0462 (5)
H8B0.20740.31480.52930.055*
H8A0.41030.30270.55560.055*
C90.4531 (3)0.00130 (18)0.71992 (15)0.0344 (4)
C100.61717 (19)0.11305 (14)0.77559 (8)0.0466 (5)
O1W0.8336 (3)0.16719 (17)0.49163 (14)0.0647 (5)
H1WA0.89080.17320.55560.097*
H1WB0.78210.26730.47840.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0504 (5)0.0472 (5)0.0453 (4)0.0219 (4)0.0012 (4)0.0133 (4)
P10.0316 (2)0.0281 (2)0.0357 (2)0.00463 (17)0.00432 (19)0.00264 (18)
Cl10.064 (3)0.116 (3)0.139 (5)0.054 (3)0.054 (3)0.027 (3)
Cl20.101 (5)0.052 (2)0.050 (3)0.014 (2)0.008 (3)0.025 (2)
Cl30.134 (3)0.065 (3)0.057 (2)0.067 (2)0.013 (2)0.0271 (19)
Cl1A0.0365 (6)0.226 (3)0.1052 (14)0.0258 (11)0.0134 (7)0.0845 (18)
Cl2A0.0624 (10)0.0851 (18)0.0385 (10)0.0109 (10)0.0100 (8)0.0020 (9)
Cl3A0.274 (4)0.0300 (8)0.0826 (14)0.0019 (12)0.0180 (19)0.0110 (7)
N10.0328 (8)0.0308 (8)0.0405 (8)0.0016 (6)0.0014 (7)0.0008 (7)
N20.0426 (8)0.0367 (8)0.0346 (8)0.0143 (7)0.0067 (7)0.0013 (7)
N30.0375 (8)0.0341 (8)0.0377 (8)0.0006 (6)0.0022 (7)0.0033 (7)
O10.0557 (10)0.0682 (11)0.0529 (10)0.0173 (8)0.0118 (8)0.0019 (9)
O20.0806 (12)0.0514 (9)0.0615 (10)0.0379 (9)0.0111 (9)0.0026 (8)
O30.0414 (7)0.0408 (7)0.0504 (8)0.0124 (6)0.0115 (7)0.0057 (6)
O40.0415 (7)0.0600 (9)0.0353 (7)0.0027 (7)0.0040 (6)0.0034 (6)
C10.0492 (12)0.0393 (11)0.0546 (13)0.0023 (9)0.0071 (11)0.0079 (10)
C20.0613 (15)0.0683 (17)0.0442 (12)0.0153 (12)0.0022 (12)0.0038 (12)
C30.0486 (12)0.0448 (13)0.0688 (16)0.0101 (10)0.0054 (12)0.0041 (11)
C40.0375 (10)0.0479 (12)0.0509 (12)0.0067 (9)0.0033 (9)0.0057 (10)
C50.0600 (13)0.0602 (14)0.0483 (12)0.0318 (12)0.0184 (11)0.0008 (10)
C60.0734 (16)0.0563 (14)0.0560 (13)0.0320 (13)0.0115 (13)0.0104 (11)
C70.0838 (17)0.0493 (13)0.0477 (12)0.0317 (13)0.0145 (12)0.0066 (10)
C80.0576 (12)0.0406 (11)0.0377 (10)0.0158 (10)0.0021 (9)0.0047 (9)
C90.0346 (9)0.0284 (8)0.0369 (9)0.0060 (7)0.0045 (8)0.0019 (7)
C100.0432 (10)0.0420 (11)0.0400 (10)0.0017 (9)0.0003 (9)0.0005 (9)
O1W0.0899 (12)0.0424 (9)0.0748 (11)0.0292 (9)0.0365 (10)0.0044 (8)
Geometric parameters (Å, º) top
Na1—O1W2.2458 (19)O3—Na1i2.322 (2)
Na1—O42.280 (2)O4—C91.243 (2)
Na1—O3i2.322 (2)O4—Na1i2.366 (2)
Na1—O4i2.366 (2)C1—C21.493 (3)
Na1—Cl1A3.158 (3)C1—H1B0.9700
Na1—P1i3.3388 (19)C1—H1A0.9700
P1—O31.4949 (15)C2—H2A0.9700
P1—O31.4949 (15)C2—H2B0.9700
P1—N21.6358 (18)C3—C41.492 (4)
P1—N11.6401 (19)C3—H3A0.9700
P1—N31.645 (2)C3—H3B0.9700
P1—Na1i3.3388 (19)C4—H4B0.9700
Cl1—C101.7264 (14)C4—H4A0.9700
Cl2—C101.7219 (13)C5—C61.483 (3)
Cl3—C101.7222 (14)C5—H5B0.9700
Cl1A—C101.7246 (15)C5—H5A0.9700
Cl2A—C101.7248 (12)C6—H6A0.9700
Cl3A—C101.7290 (13)C6—H6B0.9700
N1—C11.448 (3)C7—C81.488 (3)
N1—C41.461 (3)C7—H7A0.9700
N2—C81.456 (2)C7—H7B0.9700
N2—C51.463 (3)C8—H8B0.9700
N3—C91.293 (3)C8—H8A0.9700
O1—C31.412 (3)C9—C101.586 (3)
O1—C21.416 (3)O1W—H1WA0.9800
O2—C71.427 (3)O1W—H1WB0.9800
O2—C61.430 (3)
O1W—Na1—O4106.11 (9)O1—C2—H2B109.2
O1W—Na1—O3i110.04 (8)C1—C2—H2B109.2
O4—Na1—O3i143.65 (7)H2A—C2—H2B107.9
O1W—Na1—O4i117.21 (8)O1—C3—C4111.4 (2)
O4—Na1—O4i78.92 (7)O1—C3—H3A109.4
O3i—Na1—O4i81.39 (7)C4—C3—H3A109.4
O1W—Na1—Cl1A86.78 (8)O1—C3—H3B109.4
O4—Na1—Cl1A64.22 (7)C4—C3—H3B109.4
O3i—Na1—Cl1A121.01 (9)H3A—C3—H3B108.0
O4i—Na1—Cl1A140.84 (6)N1—C4—C3109.77 (19)
O1W—Na1—P1i119.98 (7)N1—C4—H4B109.7
O4—Na1—P1i127.30 (6)C3—C4—H4B109.7
O3i—Na1—P1i22.70 (4)N1—C4—H4A109.7
O4i—Na1—P1i58.77 (6)C3—C4—H4A109.7
Cl1A—Na1—P1i137.07 (7)H4B—C4—H4A108.2
O1W—Na1—Na1i118.55 (8)N2—C5—C6108.99 (19)
O4—Na1—Na1i40.33 (5)N2—C5—H5B109.9
O3i—Na1—Na1i114.40 (6)C6—C5—H5B109.9
O4i—Na1—Na1i38.58 (5)N2—C5—H5A109.9
Cl1A—Na1—Na1i103.59 (6)C6—C5—H5A109.9
P1i—Na1—Na1i92.48 (5)H5B—C5—H5A108.3
O1W—Na1—Na1ii48.58 (7)O2—C6—C5111.5 (2)
O4—Na1—Na1ii130.58 (6)O2—C6—H6A109.3
O3i—Na1—Na1ii78.91 (6)C5—C6—H6A109.3
O4i—Na1—Na1ii147.34 (6)O2—C6—H6B109.3
Cl1A—Na1—Na1ii71.78 (5)C5—C6—H6B109.3
P1i—Na1—Na1ii100.05 (5)H6A—C6—H6B108.0
Na1i—Na1—Na1ii165.63 (5)O2—C7—C8111.4 (2)
O3—P1—N2107.86 (9)O2—C7—H7A109.3
O3—P1—N2107.86 (9)C8—C7—H7A109.3
O3—P1—N1115.65 (9)O2—C7—H7B109.3
O3—P1—N1115.65 (9)C8—C7—H7B109.3
N2—P1—N1102.81 (9)H7A—C7—H7B108.0
O3—P1—N3116.42 (9)N2—C8—C7108.85 (18)
O3—P1—N3116.42 (9)N2—C8—H8B109.9
N2—P1—N3111.58 (10)C7—C8—H8B109.9
N1—P1—N3101.70 (9)N2—C8—H8A109.9
N2—P1—Na1i100.79 (7)C7—C8—H8A109.9
N1—P1—Na1i149.19 (7)H8B—C8—H8A108.3
N3—P1—Na1i87.59 (8)O4—C9—N3130.61 (18)
C10—Cl1A—Na191.55 (11)O4—C9—C10113.42 (15)
C1—N1—C4111.08 (17)N3—C9—C10115.95 (15)
C1—N1—P1123.56 (14)C9—C10—Cl2113.7 (3)
C4—N1—P1118.63 (14)C9—C10—Cl3110.5 (2)
C8—N2—C5111.34 (16)Cl2—C10—Cl3110.9 (4)
C8—N2—P1120.92 (13)C9—C10—Cl1A108.77 (14)
C5—N2—P1121.27 (14)Cl2—C10—Cl1A117.4 (4)
C9—N3—P1118.23 (14)Cl3—C10—Cl1A93.9 (3)
C3—O1—C2110.45 (18)C9—C10—Cl2A114.42 (16)
C7—O2—C6111.22 (16)Cl3—C10—Cl2A116.2 (3)
P1—O3—Na1i120.47 (9)Cl1A—C10—Cl2A111.12 (18)
C9—O4—Na1136.68 (13)C9—C10—Cl1102.9 (2)
C9—O4—Na1i121.40 (13)Cl2—C10—Cl1106.0 (5)
Na1—O4—Na1i101.08 (7)Cl3—C10—Cl1112.7 (3)
N1—C1—C2110.33 (19)Cl2A—C10—Cl198.9 (3)
N1—C1—H1B109.6C9—C10—Cl3A104.82 (15)
C2—C1—H1B109.6Cl2—C10—Cl3A102.2 (4)
N1—C1—H1A109.6Cl1A—C10—Cl3A109.0 (2)
C2—C1—H1A109.6Cl2A—C10—Cl3A108.5 (2)
H1B—C1—H1A108.1Cl1—C10—Cl3A127.7 (3)
O1—C2—C1112.3 (2)Na1—O1W—H1WA115.1
O1—C2—H2A109.2Na1—O1W—H1WB139.9
C1—C2—H2A109.2H1WA—O1W—H1WB94.1
O1W—Na1—Cl1A—C10133.78 (14)O1W—Na1—O4—Na1i115.37 (8)
O4—Na1—Cl1A—C1024.16 (11)O3i—Na1—O4—Na1i58.44 (12)
O3i—Na1—Cl1A—C10114.71 (13)O4i—Na1—O4—Na1i0.0
O4i—Na1—Cl1A—C102.8 (2)Cl1A—Na1—O4—Na1i166.44 (9)
P1i—Na1—Cl1A—C1093.81 (14)P1i—Na1—O4—Na1i35.57 (8)
Na1i—Na1—Cl1A—C1015.17 (14)Na1ii—Na1—O4—Na1i164.12 (7)
Na1ii—Na1—Cl1A—C10178.99 (14)C4—N1—C1—C253.9 (3)
O3—P1—N1—C194.71 (18)P1—N1—C1—C2155.41 (17)
O3—P1—N1—C194.71 (18)C3—O1—C2—C157.4 (3)
N2—P1—N1—C1148.03 (17)N1—C1—C2—O155.1 (3)
N3—P1—N1—C132.41 (19)C2—O1—C3—C458.7 (3)
Na1i—P1—N1—C172.9 (2)C1—N1—C4—C355.3 (3)
O3—P1—N1—C453.94 (18)P1—N1—C4—C3152.41 (17)
O3—P1—N1—C453.94 (18)O1—C3—C4—N157.7 (3)
N2—P1—N1—C463.32 (17)C8—N2—C5—C657.6 (3)
N3—P1—N1—C4178.94 (15)P1—N2—C5—C6150.46 (17)
Na1i—P1—N1—C475.8 (2)C7—O2—C6—C557.2 (3)
O3—P1—N2—C829.02 (18)N2—C5—C6—O256.6 (3)
O3—P1—N2—C829.02 (18)C6—O2—C7—C857.4 (3)
N1—P1—N2—C8151.68 (16)C5—N2—C8—C757.7 (2)
N3—P1—N2—C8100.04 (17)P1—N2—C8—C7150.24 (17)
Na1i—P1—N2—C88.36 (16)O2—C7—C8—N257.1 (3)
O3—P1—N2—C5178.34 (16)Na1—O4—C9—N3144.80 (18)
O3—P1—N2—C5178.34 (16)Na1i—O4—C9—N347.9 (3)
N1—P1—N2—C559.00 (19)Na1—O4—C9—C1033.5 (3)
N3—P1—N2—C549.28 (19)Na1i—O4—C9—C10133.83 (12)
Na1i—P1—N2—C5140.96 (16)P1—N3—C9—O41.7 (3)
O3—P1—N3—C952.00 (18)P1—N3—C9—C10176.53 (10)
O3—P1—N3—C952.00 (18)O4—C9—C10—Cl2169.7 (4)
N2—P1—N3—C972.38 (17)N3—C9—C10—Cl211.8 (4)
N1—P1—N3—C9178.63 (15)O4—C9—C10—Cl344.2 (3)
Na1i—P1—N3—C928.27 (15)N3—C9—C10—Cl3137.3 (3)
N2—P1—O3—O30.00 (17)O4—C9—C10—Cl1A57.5 (2)
N1—P1—O3—O30.00 (13)N3—C9—C10—Cl1A121.00 (19)
N3—P1—O3—O30.00 (14)O4—C9—C10—Cl2A177.6 (2)
Na1i—P1—O3—O30.00 (14)N3—C9—C10—Cl2A3.9 (3)
O3—P1—O3—Na1i0 (50)O4—C9—C10—Cl176.3 (3)
N2—P1—O3—Na1i84.15 (12)N3—C9—C10—Cl1102.3 (3)
N1—P1—O3—Na1i161.45 (8)O4—C9—C10—Cl3A58.9 (2)
N3—P1—O3—Na1i42.12 (12)N3—C9—C10—Cl3A122.6 (2)
O1W—Na1—O4—C975.7 (2)Na1—Cl1A—C10—C944.71 (14)
O3i—Na1—O4—C9110.5 (2)Na1—Cl1A—C10—Cl2175.6 (3)
O4i—Na1—O4—C9169.0 (2)Na1—Cl1A—C10—Cl368.4 (2)
Cl1A—Na1—O4—C92.54 (19)Na1—Cl1A—C10—Cl2A171.53 (16)
P1i—Na1—O4—C9133.41 (18)Na1—Cl1A—C10—Cl1119.3 (9)
Na1i—Na1—O4—C9169.0 (2)Na1—Cl1A—C10—Cl3A69.00 (16)
Na1ii—Na1—O4—C926.9 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1iii0.972.593.443 (4)147
O1W—H1WA···O3iv0.981.772.716 (3)163
O1W—H1WB···O2v0.982.002.917 (3)155
Symmetry codes: (iii) x1, y+1, z+2; (iv) x+1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Na2(C10H16Cl3N3O4P)2(H2O)2]
Mr841.17
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.522 (5), 10.329 (4), 12.451 (5)
α, β, γ (°)84.17 (4), 80.89 (4), 70.16 (5)
V3)897.3 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.782, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
10258, 5137, 3339
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 0.95
No. of reflections5137
No. of parameters236
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.55

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXTL (Sheldrick, 2008), XP in SHELXTL Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.972.593.443 (4)147.0
O1W—H1WA···O3ii0.981.772.716 (3)163
O1W—H1WB···O2iii0.982.002.917 (3)155
Symmetry codes: (i) x1, y+1, z+2; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

References

First citationAdams, L. A., Cox, R. J., Gibson, J. S., Mayo-Martin, M. B., Walter, M. & Whittingham, W. (2002). Chem. Commun. 18, 2004–2005.  Web of Science CrossRef Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAmirkhanov, V. M., Kapshuk, A. A., Ovchinnikov, V. A. & Skopenko, V. V. (1996). Zh. Neorg. Khim. 41, 1470–1474.  CAS Google Scholar
First citationBarak, D., Ordentlich, A., Kaplan, D., Barak, R., Mizrahi, D., Kronman, C., Segall, Y., Velan, B. & Shaerman, A. (2000). Biochemistry, 39, 1156–1161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGholivand, K. & Shariatinia, Z. (2006). J. Organomet. Chem. 691, 4215–4224.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrimes, K. D., Lu, Y. J., Zhang, Y. M., Luna, A. V., Hurdle, J. G., Carson, E. I., Qi, J., Kudrimoti, S., Rock, O. C. & Lee, R. E. (2008). ChemMedChem, 3, 1936–1945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGubina, K., Ovchynnikov, V., Amirkhanov, V., Sliva, T., Skopenko, V., Glowiak, T. & Kozlowski, H. (1999). Z. Naturforsch. Teil B, 54, 1357–1359.  CAS Google Scholar
First citationKirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009–2014.  CAS Google Scholar
First citationOvchinnikov, V. A., Amirkhanov, V. M., Domasevich, K. V., Sieler, J. & Skopenko, V. V. (2001). Zh. Neorg. Khim. 46, 615–619.  CAS Google Scholar
First citationOvchynnikov, V. A., Amirkhanov, V. M., Timoshenko, T. P., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 481–484.  CAS Google Scholar
First citationOvchynnikov, V. A., Timoshenko, T. P., Amirkhanov, V. M., Sieler, J. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 262–268.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRebrova, O., Biyushkin, V., Malinovski, T., Ovrucki, V., Procenko, L., Dneprova, T. & Mazus, M. (1982). Dokl. Akad. Nauk. SSSR, 324, 103–108.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrush, E. A., Amirkhanov, V. M., Ovchynnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 9, 1221–1229.  Web of Science CSD CrossRef Google Scholar
First citationTrush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrush, E. A., Ovchynnikov, V. A., Domasevitch, K. V., Swiatek-Kozlowska, J., Zub, V. Ya. & Amirkhanov, V. M. (2002). Z. Naturforsch. Teil B, 57, 746–750.  CAS Google Scholar
First citationZhang, W., Tan, M., Liu, W. & Yu, K. (1992). Polyhedron, 11, 1581–1585.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m426-m427
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds