metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Disulfur dinitrido)tri­phenyl­anti­mony(V)

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-and.ac.uk

(Received 11 March 2010; accepted 12 March 2010; online 17 March 2010)

The title compound, [Sb(C6H5)3(N2S2)], contains a molecular entity that is very similar to that of the known polymorph of Sb(S2N2)Ph3 [Kunkel et al. (1997[Kunkel, F., Harms, K., Kang, H. C., Massa, W. & Dehnicke, K. (1997). Z. Naturforsch. Teil B, 52, 193-198.]). Z. Naturforsch. Teil B, 52, 193–198], differing only in the orientation of the phenyl rings. The bond order in the SNSN unit is S—N=S=N, consisting of one long S—N bond, an inter­mediate length N=S bond and a short S=N bond.

Related literature

For the polymorph crystallizing in space group P21/n, see: Kunkel et al. (1997[Kunkel, F., Harms, K., Kang, H. C., Massa, W. & Dehnicke, K. (1997). Z. Naturforsch. Teil B, 52, 193-198.]). For Pt(S2N2)(PR3)2 complexes with a similar bond order in the SNSN unit, see: Bates et al. (1986[Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367-2370.]); Read et al. (2007[Read, B. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m751-m752.]).

[Scheme 1]

Experimental

Crystal data
  • [Sb(C6H5)3(N2S2)]

  • Mr = 445.20

  • Monoclinic, C 2/c

  • a = 16.997 (3) Å

  • b = 11.587 (2) Å

  • c = 18.166 (3) Å

  • β = 99.732 (7)°

  • V = 3526.3 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 93 K

  • 0.08 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.741, Tmax = 0.914

  • 11155 measured reflections

  • 3094 independent reflections

  • 2826 reflections with F2 > 2σ(F2)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.113

  • S = 1.37

  • 3094 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 3.38 e Å−3

  • Δρmin = −1.67 e Å−3

Table 1
Selected bond lengths (Å)

Sb1—C7 2.098 (6)
Sb1—C1 2.123 (6)
Sb1—C13 2.172 (5)
Sb1—N1 2.180 (5)
Sb1—S2 2.5030 (17)
S1—N1 1.510 (6)
S1—N2 1.589 (6)
S2—N2 1.656 (6)

Data collection: SCXMini (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: SCXMini; data reduction: SCXMini; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2009[Rigaku (2009). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Previously the title compound has been prepared from tetrasulfurteranitride. The synthesis described here uses a non explosive S—N starting material.

Related literature top

For an isostructural compound, see: Kunkel et al. (1997). For Pt(S2N2)(PR3)2 complexes [R = ????] with a similar bond order in the SNSN unit, see: Bates et al. (1986); Read et al. (2007).

Experimental top

Liquid ammonia (30 ml) was condensed under nitrogen using an ammonia condenser filled with dry ice and acetone into a dry Schlenk tube in a dry ice/acetone bath. To this, 0.102 g (0.5 mmol) [S4N3]Cl was added. After stirring for 30 min s, 0.212 g (0.5 mmol) of triphenylstibenedichloride was added rapidly. The solution was then allowed to warm to room temperature and the ammonia gas blown off under a stream of nitrogen. The residue was placed under vacuum to remove any excess ammonia, before being dissolved in dichloromethane and filtered through celite. The product was precipitated by slow addition of hexane to give a yellow powder. Crystals were grown via slow diffusion of hexane into a solution of the product in dichloromethane.

Refinement top

All H atoms were included in calculated positions and refined as riding atoms with Uĩso~(H) = 1.5 U~eq~. The highest peak in the difference map is 0.83 Å from atom Sb1

Computing details top

Data collection: SCXMini (Rigaku, 2006); cell refinement: SCXMini (Rigaku, 2006); data reduction: SCXMini (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (1) with displacement ellipsoids drawn at the 50% probability level, hydrogen atoms omitted for clarity.
(Disulfur dinitrido)triphenylantimony(V) top
Crystal data top
[Sb(C6H5)3(N2S2)]F(000) = 1760.00
Mr = 445.20Dx = 1.677 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 1987 reflections
a = 16.997 (3) Åθ = 2.1–25.4°
b = 11.587 (2) ŵ = 1.80 mm1
c = 18.166 (3) ÅT = 93 K
β = 99.732 (7)°Prism, yellow
V = 3526.3 (11) Å30.08 × 0.05 × 0.05 mm
Z = 8
Data collection top
Rigaku Mercury70 CCD
diffractometer
2826 reflections with F2 > 2σ(F2)
ω scansRint = 0.053
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
θmax = 25.4°
Tmin = 0.741, Tmax = 0.914h = 2019
11155 measured reflectionsk = 813
3094 independent reflectionsl = 2116
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.37 w = 1/[σ2(Fo2) + (0.0236P)2 + 20.1P]
where P = (Fo2 + 2Fc2)/3
3094 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 3.38 e Å3
0 restraintsΔρmin = 1.67 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Sb(C6H5)3(N2S2)]V = 3526.3 (11) Å3
Mr = 445.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.997 (3) ŵ = 1.80 mm1
b = 11.587 (2) ÅT = 93 K
c = 18.166 (3) Å0.08 × 0.05 × 0.05 mm
β = 99.732 (7)°
Data collection top
Rigaku Mercury70 CCD
diffractometer
3094 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2826 reflections with F2 > 2σ(F2)
Tmin = 0.741, Tmax = 0.914Rint = 0.053
11155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.37 w = 1/[σ2(Fo2) + (0.0236P)2 + 20.1P]
where P = (Fo2 + 2Fc2)/3
3094 reflectionsΔρmax = 3.38 e Å3
208 parametersΔρmin = 1.67 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb(1)0.22035 (2)0.02024 (4)0.064344 (19)0.0189
S(1)0.39390 (10)0.02791 (16)0.16524 (9)0.0317
S(2)0.34568 (10)0.05730 (17)0.01298 (9)0.0326
N(1)0.3060 (3)0.0161 (5)0.1682 (3)0.0320
N(2)0.4187 (4)0.0478 (6)0.0857 (3)0.0402
C(1)0.1547 (4)0.1472 (5)0.1125 (3)0.0176
C(2)0.1924 (4)0.2490 (5)0.1401 (3)0.0187
C(3)0.1493 (4)0.3314 (6)0.1715 (3)0.0245
C(4)0.0709 (4)0.3115 (6)0.1773 (3)0.0283
C(5)0.0330 (4)0.2102 (6)0.1503 (3)0.0299
C(6)0.0750 (4)0.1279 (6)0.1179 (3)0.0242
C(7)0.1724 (4)0.1403 (5)0.0867 (3)0.0210
C(8)0.1975 (4)0.1975 (6)0.1561 (4)0.0266
C(9)0.1631 (4)0.2976 (6)0.1714 (4)0.0327
C(10)0.1015 (4)0.3454 (6)0.1208 (4)0.0312
C(11)0.0752 (4)0.2915 (6)0.0538 (4)0.0319
C(12)0.1128 (4)0.1908 (5)0.0364 (3)0.0223
C(13)0.1639 (4)0.0371 (5)0.0517 (3)0.0192
C(14)0.1094 (4)0.1244 (5)0.0747 (3)0.0202
C(15)0.0780 (4)0.1359 (6)0.1512 (3)0.0266
C(16)0.1023 (4)0.0618 (6)0.2029 (3)0.0271
C(17)0.1570 (4)0.0245 (6)0.1798 (3)0.0295
C(18)0.1880 (4)0.0367 (6)0.1046 (3)0.0257
H(2)0.24710.26160.13740.022*
H(3)0.17400.40200.18900.029*
H(4)0.04230.36780.20020.034*
H(5)0.02140.19760.15400.036*
H(6)0.04960.05830.09920.029*
H(8)0.23880.16490.19190.032*
H(9)0.18130.33580.21740.039*
H(10)0.07740.41550.13250.037*
H(11)0.03190.32260.01970.038*
H(12)0.09700.15630.01130.027*
H(14)0.09340.17580.03930.024*
H(15)0.04000.19460.16740.032*
H(16)0.08130.07050.25450.033*
H(17)0.17340.07530.21540.035*
H(18)0.22590.09570.08890.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb(1)0.02040.02060.01520.00390.00130.0005
S(1)0.02310.03600.03320.00130.00350.0030
S(2)0.02450.04620.02800.00550.00720.0023
N(1)0.02910.03980.02550.00140.00010.0023
N(2)0.02660.05760.03630.00080.00530.0008
C(1)0.01860.02330.01140.00190.00400.0012
C(2)0.01360.02340.02010.00210.00570.0017
C(3)0.02730.02420.02070.00280.00040.0023
C(4)0.03450.03280.01790.01220.00500.0038
C(5)0.01430.04930.02750.00210.00770.0031
C(6)0.02160.02890.02300.00160.00620.0022
C(7)0.01990.02030.02400.00140.00720.0010
C(8)0.02130.01910.03620.00450.00430.0004
C(9)0.03010.03480.03390.00660.00760.0102
C(10)0.02400.02730.04580.00190.01600.0052
C(11)0.02480.02700.04460.00520.00750.0039
C(12)0.03070.01860.01670.00610.00100.0043
C(13)0.02030.01880.01800.00180.00170.0019
C(14)0.01740.02430.01840.00100.00140.0010
C(15)0.02130.03130.02550.00300.00130.0053
C(16)0.02460.04110.01410.00560.00090.0033
C(17)0.02360.04290.02200.00540.00370.0067
C(18)0.02350.03580.01780.00510.00290.0016
Geometric parameters (Å, º) top
Sb1—C72.098 (6)C8—C91.350 (9)
Sb1—C12.123 (6)C8—H80.9500
Sb1—C132.172 (5)C9—C101.387 (10)
Sb1—N12.180 (5)C9—H90.9500
Sb1—S22.5030 (17)C10—C111.375 (9)
S1—N11.510 (6)C10—H100.9500
S1—N21.589 (6)C11—C121.392 (9)
S2—N21.656 (6)C11—H110.9500
C1—C61.392 (8)C12—H120.9500
C1—C21.395 (8)C13—C141.387 (8)
C2—C31.383 (8)C13—C181.398 (8)
C2—H20.9500C14—C151.407 (8)
C3—C41.374 (9)C14—H140.9500
C3—H30.9500C15—C161.387 (9)
C4—C51.388 (10)C15—H150.9500
C4—H40.9500C16—C171.381 (10)
C5—C61.382 (9)C16—H160.9500
C5—H50.9500C17—C181.385 (8)
C6—H60.9500C17—H170.9500
C7—C121.375 (9)C18—H180.9500
C7—C81.425 (8)
C7—Sb1—C1106.6 (2)C8—C7—Sb1121.1 (5)
C7—Sb1—C1398.3 (2)C9—C8—C7120.5 (6)
C1—Sb1—C1399.3 (2)C9—C8—H8119.8
C7—Sb1—N192.2 (2)C7—C8—H8119.8
C1—Sb1—N188.8 (2)C8—C9—C10120.8 (6)
C13—Sb1—N1164.3 (2)C8—C9—H9119.6
C7—Sb1—S2127.40 (17)C10—C9—H9119.6
C1—Sb1—S2125.09 (17)C11—C10—C9120.1 (7)
C13—Sb1—S283.53 (16)C11—C10—H10120.0
N1—Sb1—S280.79 (15)C9—C10—H10120.0
N1—S1—N2117.5 (3)C10—C11—C12119.3 (6)
N2—S2—Sb1105.2 (2)C10—C11—H11120.3
S1—N1—Sb1119.2 (3)C12—C11—H11120.3
S1—N2—S2117.1 (4)C7—C12—C11121.4 (6)
C6—C1—C2120.3 (5)C7—C12—H12119.3
C6—C1—Sb1120.2 (4)C11—C12—H12119.3
C2—C1—Sb1119.5 (4)C14—C13—C18119.8 (5)
C3—C2—C1119.2 (6)C14—C13—Sb1121.4 (4)
C3—C2—H2120.4C18—C13—Sb1118.7 (4)
C1—C2—H2120.4C13—C14—C15119.3 (6)
C4—C3—C2120.3 (6)C13—C14—H14120.4
C4—C3—H3119.8C15—C14—H14120.4
C2—C3—H3119.8C16—C15—C14120.2 (6)
C3—C4—C5120.9 (6)C16—C15—H15119.9
C3—C4—H4119.6C14—C15—H15119.9
C5—C4—H4119.6C17—C16—C15120.3 (5)
C6—C5—C4119.5 (6)C17—C16—H16119.8
C6—C5—H5120.3C15—C16—H16119.8
C4—C5—H5120.3C16—C17—C18119.8 (6)
C5—C6—C1119.8 (6)C16—C17—H17120.1
C5—C6—H6120.1C18—C17—H17120.1
C1—C6—H6120.1C17—C18—C13120.6 (6)
C12—C7—C8117.8 (6)C17—C18—H18119.7
C12—C7—Sb1121.0 (4)C13—C18—H18119.7
C7—Sb1—S2—N281.8 (3)S2—Sb1—C7—C1297.6 (5)
C1—Sb1—S2—N285.8 (3)C1—Sb1—C7—C883.7 (5)
C13—Sb1—S2—N2177.4 (3)C13—Sb1—C7—C8174.0 (5)
N1—Sb1—S2—N23.8 (3)N1—Sb1—C7—C85.7 (5)
N2—S1—N1—Sb12.4 (5)S2—Sb1—C7—C885.8 (5)
C7—Sb1—N1—S1124.0 (4)C12—C7—C8—C90.4 (9)
C1—Sb1—N1—S1129.4 (4)Sb1—C7—C8—C9176.4 (5)
C13—Sb1—N1—S18.1 (11)C7—C8—C9—C101.5 (10)
S2—Sb1—N1—S13.6 (3)C8—C9—C10—C110.7 (10)
N1—S1—N2—S21.6 (6)C9—C10—C11—C122.1 (10)
Sb1—S2—N2—S13.9 (5)C8—C7—C12—C113.2 (10)
C7—Sb1—C1—C630.4 (5)Sb1—C7—C12—C11173.6 (5)
C13—Sb1—C1—C671.2 (5)C10—C11—C12—C74.1 (10)
N1—Sb1—C1—C6122.3 (5)C7—Sb1—C13—C14115.8 (5)
S2—Sb1—C1—C6159.8 (4)C1—Sb1—C13—C147.3 (5)
C7—Sb1—C1—C2148.3 (4)N1—Sb1—C13—C14112.8 (8)
C13—Sb1—C1—C2110.0 (4)S2—Sb1—C13—C14117.3 (5)
N1—Sb1—C1—C256.4 (4)C7—Sb1—C13—C1869.1 (5)
S2—Sb1—C1—C221.5 (5)C1—Sb1—C13—C18177.6 (5)
C6—C1—C2—C31.2 (8)N1—Sb1—C13—C1862.3 (10)
Sb1—C1—C2—C3180.0 (4)S2—Sb1—C13—C1857.9 (5)
C1—C2—C3—C41.9 (9)C18—C13—C14—C151.2 (9)
C2—C3—C4—C51.7 (9)Sb1—C13—C14—C15176.2 (4)
C3—C4—C5—C60.8 (9)C13—C14—C15—C161.0 (9)
C4—C5—C6—C10.1 (9)C14—C15—C16—C170.6 (10)
C2—C1—C6—C50.3 (9)C15—C16—C17—C180.3 (10)
Sb1—C1—C6—C5179.1 (4)C16—C17—C18—C130.5 (10)
C1—Sb1—C7—C1293.0 (5)C14—C13—C18—C170.9 (10)
C13—Sb1—C7—C129.4 (6)Sb1—C13—C18—C17176.1 (5)
N1—Sb1—C7—C12177.6 (5)

Experimental details

Crystal data
Chemical formula[Sb(C6H5)3(N2S2)]
Mr445.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)16.997 (3), 11.587 (2), 18.166 (3)
β (°) 99.732 (7)
V3)3526.3 (11)
Z8
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.08 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.741, 0.914
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
11155, 3094, 2826
Rint0.053
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.113, 1.37
No. of reflections3094
No. of parameters208
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0236P)2 + 20.1P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.38, 1.67

Computer programs: SCXMini (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Selected bond lengths (Å) top
Sb1—C72.098 (6)Sb1—S22.5030 (17)
Sb1—C12.123 (6)S1—N11.510 (6)
Sb1—C132.172 (5)S1—N21.589 (6)
Sb1—N12.180 (5)S2—N21.656 (6)
 

References

First citationBates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367–2370.  CSD CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKunkel, F., Harms, K., Kang, H. C., Massa, W. & Dehnicke, K. (1997). Z. Naturforsch. Teil B, 52, 193–198.  CAS Google Scholar
First citationRead, B. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m751–m752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2009). Crystal Structure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds