metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­propyl­ammonium) di-μ3-iodido-di-μ2-iodido-di­iodidodi­pyridine­tetra­copper(I)

aDepartment of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
*Correspondence e-mail: ehsan.jalilian@mmk.su.se

(Received 15 March 2010; accepted 18 March 2010; online 24 March 2010)

The title compound, (C12H28N)2[Cu3.194I6(C5H5N)2] was prepared from reaction of copper powder, copper(I) oxide, hydro­iodic acid, tetra­propyl­ammonium iodide and pyridine under hydro­thermal conditions. In the centrosymmetric Cu4I62− anion, one Cu site is in a trigonal-planar coordination while the second Cu site, which is only partially occupied [site occupancy of 0.5968 (16)], is surroundedby three iodine atoms and one pyridine molecule in a distorted tetrahedral coordination.

Related literature

For further structural motifs and the luminescence properties of copper(I)iodide with substituted pyridine, see Cariati et al. (2005[Cariati, E., Roberto, D., Ugo, R., Ford, P. C., Galli, S. & Sironi, A. (2005). Inorg. Chem. 44, 4077-4085.]). For the extinction correction, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H28N)2[Cu3.194I6(C5H5N)2]

  • Mr = 1495.3

  • Triclinic, [P \overline 1]

  • a = 8.8974 (2) Å

  • b = 11.8076 (3) Å

  • c = 12.2176 (2) Å

  • α = 73.2442 (18)°

  • β = 78.5398 (17)°

  • γ = 81.4137 (18)°

  • V = 1198.74 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 100 K

  • 0.47 × 0.17 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector

  • Absorption correction: Gaussian (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.209, Tmax = 0.623

  • 38326 measured reflections

  • 7574 independent reflections

  • 6526 reflections with I > 3σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.068

  • S = 1.02

  • 7574 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.]); program(s) used to refine structure: JANA2000 (Petříček et al., 2000[Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2000.

Supporting information


Comment top

Due to the wide variation in molecular structure, halocuprates(I) exhibit a very interesting structural chemistry. The most important factor to this structural diversity is the fact that Cu(I) can accept trigonal planar coordination, tetrahedral coordination as well as less defined intermediate arrangements. The further linkage of these units, triangles by corner-sharing or edge-sharing, tetrahedra also by face sharing yields further structural flexibility. Many different version of oligometric and polymeric species in Cu(I)X (X=Cl,Br, I) have been discovered in copper (I) halide based systems containing inflexible N- donor ligands. Stoichiometry and connectivity are dependent on the size and the coordination number of the cation that participate in the structure. The compound presented here 2[(C12 H28 N)+ [I3 Cu1.597 N C5 H5]- ] (I), is prepared from reaction between copper powder, copperoxide, tetra n-propylammoniumiodide, pyridine and hydroiodic acid. The anion in (I) has a range of Cu–I distances [ 2.5200 (3)–2.7752 (6) Å] while the I–Cu–I angles spread over large range [108.039 (16)–122.009 (14)°]. One of the two independent Cu positions is clearly under-occupied (Cu2, occ 0.6). This non-stoichiometry leads to local relaxations that can be seen as anomalously large and anisotropic thermal parameters on the surrounding I neighbours. The compound is light yellow in color, and it is well known that Cu cannot attain the divalent oxidation state in direct contact with iodide, and therefore we conclude that all Cu is in the monovalent state. The charge balance must instead be maintained by the protonation of either the pyridine unit or the Cu4-xI6 -cluster unit, a likely scenario since the synthesis is run at a low pH value.

The attached pyridine unit is a typical pyridine with N–C and C–C ranges [ 1.345 (3)–1.349 (3) Å and 1.359 (5)–1.398 (4)Å respectively] The angle C–N–C is 119.2 (2)° while (N/)C–C–C the angles ranges [ 118.4 (2)–120.8 (2)°]. The cation is a regular tetra propylammonium ion with N–C and C–C distances range [1.518 (3)–1.521 (3) Å and 1.516 (3)–1.542 (3)Å respectively], and the C–N–C, (N/)C–C–C angels range between [107.99 (16)–111.36 (15)° and 108.40 (19)–115.60 (18)°].

Related literature top

For further structural motifs and the luminescence properties of copper(I)iodide with substituted pyridine, see Cariati et al. (2005). For the extinction correction, see: Becker & Coppens (1974).

Experimental top

Copper powder (2.854 mmol), copper(I)oxide (2.827 mmol), hydroiodic acid (7.6 mmol) tetra n-propylammonium iodide (3.101 mmol) and pyridine (12.958 mmol) were put into an autoclave and heated at 165 °C for 19 h. It resulted in yellow crystals that luminesce vividly under UV light.

Refinement top

The structures were solved by charge-flipping, giving the I, Cu, P and a major part of the C positions. Subsequently the remaining C positions were found using difference Fourier analysis. All non-hydrogen positions were refined using full matrix least squares. The hydrogen atoms were located by geometrical methods and were allowed to ride, with C–H = 1.00 Å and Ueq = 1.2Uiso(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004); program(s) used to refine structure: JANA2000 (Petricek et al., 2000); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: JANA2000 (Petricek et al., 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure with atom labelling scheme for the I—Cu-Pyridine anion and the tetrapropeylammonium cation in (I). Non H atoms are shown as 50% probability displacement ellipsoids.
Bis(tetrapropylammonium) di-µ3-iodido-di-µ2-iodido-diiodidodipyridinetetracopper(I) top
Crystal data top
(C12H28N)2[Cu3.194I6(C5H5N)2]Z = 1
Mr = 1495.3F(000) = 708.8
Triclinic, P1Dx = 2.071 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.8974 (2) ÅCell parameters from 27591 reflections
b = 11.8076 (3) Åθ = 4.3–32.2°
c = 12.2176 (2) ŵ = 5.29 mm1
α = 73.2442 (18)°T = 100 K
β = 78.5398 (17)°Rodd, yellow
γ = 81.4137 (18)°0.47 × 0.17 × 0.13 mm
V = 1198.74 (5) Å3
Data collection top
Oxford Diffraction Xcalibur3
diffractometer with a Sapphire-3 CCD detector
7574 independent reflections
Radiation source: Enhance (Mo) X-ray source6526 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.5467 pixels mm-1θmax = 32.2°, θmin = 4.3°
ω scansh = 1313
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1717
Tmin = 0.209, Tmax = 0.623l = 1818
38326 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0025I2]
R[F2 > 2σ(F2)] = 0.023(Δ/σ)max = 0.048
wR(F2) = 0.068Δρmax = 1.05 e Å3
S = 1.02Δρmin = 0.53 e Å3
7574 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
219 parametersExtinction coefficient: 2863
H-atom parameters constrained
Crystal data top
(C12H28N)2[Cu3.194I6(C5H5N)2]γ = 81.4137 (18)°
Mr = 1495.3V = 1198.74 (5) Å3
Triclinic, P1Z = 1
a = 8.8974 (2) ÅMo Kα radiation
b = 11.8076 (3) ŵ = 5.29 mm1
c = 12.2176 (2) ÅT = 100 K
α = 73.2442 (18)°0.47 × 0.17 × 0.13 mm
β = 78.5398 (17)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer with a Sapphire-3 CCD detector
7574 independent reflections
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
6526 reflections with I > 3σ(I)
Tmin = 0.209, Tmax = 0.623Rint = 0.020
38326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023219 parameters
wR(F2) = 0.068H-atom parameters constrained
S = 1.02Δρmax = 1.05 e Å3
7574 reflectionsΔρmin = 0.53 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.975221 (18)0.302248 (12)0.020355 (12)0.01742 (5)
I20.969321 (19)0.432391 (12)0.321865 (12)0.01872 (5)
I31.283574 (19)0.118445 (12)0.272365 (13)0.01893 (5)
Cu11.07925 (4)0.28339 (3)0.20757 (2)0.01739 (9)
Cu20.91317 (6)0.49932 (4)0.10844 (4)0.01871 (17)0.5968 (16)
N1a0.8219 (2)0.88100 (15)0.30754 (15)0.0131 (5)
C110.7234 (3)0.96480 (18)0.37333 (18)0.0144 (6)
C120.7803 (3)1.0861 (2)0.3507 (2)0.0222 (8)
C130.6638 (3)1.1587 (2)0.42004 (19)0.0194 (7)
C210.7404 (3)0.76914 (19)0.33556 (19)0.0154 (6)
C220.7369 (3)0.69023 (19)0.45874 (19)0.0171 (7)
C230.6214 (3)0.5995 (2)0.4812 (2)0.0210 (7)
C310.9801 (3)0.85294 (18)0.34363 (18)0.0149 (6)
C321.0882 (3)0.7620 (2)0.29315 (19)0.0174 (7)
C331.2416 (3)0.7437 (2)0.3369 (2)0.0212 (8)
C410.8411 (3)0.93675 (19)0.17762 (17)0.0155 (6)
C420.6926 (3)0.9801 (3)0.1284 (2)0.0278 (9)
C430.7306 (3)1.0288 (2)0.0044 (2)0.0243 (8)
N2p0.6819 (3)0.53437 (19)0.11898 (18)0.0230 (7)
C1p0.6020 (4)0.4452 (2)0.1892 (2)0.0280 (9)
C2p0.4469 (4)0.4472 (2)0.1989 (2)0.0281 (9)
C3p0.3675 (3)0.5463 (3)0.1331 (2)0.0286 (9)
C4p0.4470 (3)0.6379 (2)0.0616 (2)0.0255 (8)
C5p0.6058 (3)0.6306 (2)0.0556 (2)0.0230 (8)
H1110.7096220.9249550.4583410.0172*
H1120.6153370.9753460.3576090.0172*
H1210.7888881.1276770.2661720.0267*
H1220.8826031.0758630.376370.0267*
H1310.7007031.2380770.4076040.0233*
H1320.5618531.1697420.3936710.0233*
H1330.6525061.1157080.5042950.0233*
H2110.6327510.7913090.3187820.0184*
H2120.7882470.7216780.2794210.0184*
H2210.7042590.7400920.5146690.0206*
H2220.8416040.6478340.4677630.0206*
H2310.6301170.5390990.5567940.0252*
H2320.5146420.6408550.4841020.0252*
H2330.6436910.5590550.4173810.0252*
H3111.0304840.9280780.3243560.0178*
H3120.9682610.8267340.4300990.0178*
H3211.1060570.7909990.2066620.0209*
H3221.0412110.6849150.3175450.0209*
H3311.3071750.6755290.3130240.0255*
H3321.2958050.8173790.3030060.0255*
H3331.2223320.7260260.4233430.0255*
H4110.9045640.8793470.1364880.0186*
H4120.9073791.0037090.1563620.0186*
H4210.6276160.9126460.1478520.0334*
H4220.6351121.0446460.1626930.0334*
H4310.6350191.069920.0352390.0292*
H4320.8098741.0864530.0241390.0292*
H4330.7715820.961560.0398390.0292*
H1p0.6592760.3744250.2362510.0336*
H2p0.3910050.3793490.2519160.0337*
H3p0.2533280.5501550.138090.0343*
H4p0.3915060.7094790.0141870.0306*
H5p0.6643060.6974850.0037190.0276*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01901 (9)0.01857 (7)0.01591 (7)0.00176 (5)0.00510 (6)0.00505 (5)
I20.02250 (10)0.01667 (7)0.01748 (7)0.00238 (5)0.00558 (6)0.00593 (5)
I30.02042 (9)0.01691 (7)0.02043 (7)0.00264 (5)0.00814 (6)0.00554 (5)
Cu10.01693 (16)0.01716 (12)0.01845 (13)0.00008 (10)0.00438 (11)0.00525 (10)
Cu20.0160 (3)0.0189 (2)0.0195 (2)0.00081 (17)0.00471 (19)0.00163 (17)
N1a0.0134 (10)0.0132 (7)0.0128 (7)0.0025 (6)0.0018 (7)0.0032 (6)
C110.0146 (11)0.0147 (8)0.0134 (8)0.0022 (7)0.0012 (7)0.0050 (7)
C120.0211 (14)0.0141 (9)0.0298 (12)0.0046 (8)0.0039 (10)0.0074 (8)
C130.0239 (14)0.0161 (9)0.0188 (10)0.0013 (8)0.0012 (9)0.0073 (8)
C210.0153 (12)0.0148 (9)0.0177 (9)0.0054 (8)0.0026 (8)0.0051 (7)
C220.0209 (13)0.0135 (9)0.0175 (9)0.0043 (8)0.0041 (8)0.0029 (7)
C230.0192 (13)0.0158 (9)0.0261 (11)0.0068 (8)0.0024 (9)0.0042 (8)
C310.0155 (12)0.0140 (8)0.0172 (9)0.0009 (7)0.0053 (8)0.0059 (7)
C320.0170 (12)0.0184 (9)0.0186 (9)0.0001 (8)0.0039 (8)0.0077 (8)
C330.0175 (13)0.0243 (11)0.0256 (11)0.0025 (9)0.0080 (9)0.0116 (9)
C410.0157 (12)0.0179 (9)0.0112 (8)0.0010 (8)0.0006 (8)0.0027 (7)
C420.0184 (14)0.0397 (14)0.0193 (11)0.0019 (11)0.0043 (10)0.0001 (10)
C430.0270 (15)0.0276 (12)0.0154 (10)0.0001 (10)0.0048 (9)0.0014 (8)
N2p0.0187 (12)0.0265 (10)0.0237 (10)0.0039 (8)0.0079 (8)0.0065 (8)
C1p0.0368 (17)0.0232 (11)0.0230 (11)0.0038 (10)0.0124 (11)0.0030 (9)
C2p0.0383 (17)0.0261 (12)0.0217 (11)0.0126 (11)0.0096 (11)0.0013 (9)
C3p0.0220 (15)0.0369 (14)0.0267 (12)0.0053 (11)0.0081 (11)0.0042 (10)
C4p0.0203 (14)0.0252 (11)0.0268 (12)0.0051 (9)0.0068 (10)0.0022 (9)
C5p0.0184 (13)0.0252 (11)0.0238 (11)0.0023 (9)0.0056 (10)0.0047 (9)
Geometric parameters (Å, º) top
I1—Cu12.5737 (4)C31—C321.515 (3)
I1—Cu22.7752 (6)C31—H3111.000
I2—Cu12.5223 (3)C31—H3121.000
I2—Cu22.6239 (5)C32—C331.526 (4)
I3—Cu12.5200 (3)C32—H3211.000
Cu1—Cu22.8208 (5)C32—H3221.000
Cu2—N2p2.023 (2)C33—H3311.000
N1a—C111.521 (3)C33—H3321.000
N1a—C211.521 (3)C33—H3331.000
N1a—C311.520 (3)C41—C421.518 (4)
N1a—C411.518 (3)C41—H4111.000
C11—C121.522 (3)C41—H4121.000
C11—H1111.000C42—C431.542 (3)
C11—H1121.000C42—H4211.000
C12—C131.527 (4)C42—H4221.000
C12—H1211.000C43—H4311.000
C12—H1221.000C43—H4321.000
C13—H1311.000C43—H4331.000
C13—H1321.000N2p—C1p1.345 (3)
C13—H1331.000N2p—C5p1.349 (3)
C21—C221.522 (3)C1p—C2p1.359 (5)
C21—H2111.000C1p—H1p1.000
C21—H2121.000C2p—C3p1.398 (4)
C22—C231.525 (4)C2p—H2p1.000
C22—H2211.000C3p—C4p1.368 (4)
C22—H2221.000C3p—H3p1.000
C23—H2311.000C4p—C5p1.391 (4)
C23—H2321.000C4p—H4p1.000
C23—H2331.000C5p—H5p1.000
Cu1—I1—Cu263.521 (13)C22—C23—H233109.5
Cu1—I2—Cu266.443 (13)H231—C23—H232109.5
I1—Cu1—I2118.078 (12)H231—C23—H233109.5
I1—Cu1—I3119.911 (13)H232—C23—H233109.5
I1—Cu1—Cu261.722 (14)N1a—C31—C32115.7 (2)
I2—Cu1—I3122.009 (14)N1a—C31—H311109.47
I2—Cu1—Cu258.506 (13)N1a—C31—H312109.47
I3—Cu1—Cu2165.993 (17)C32—C31—H311109.47
I1—Cu2—I2108.039 (16)C32—C31—H312109.47
I1—Cu2—Cu154.757 (12)H311—C31—H312102.4
I1—Cu2—N2p102.85 (8)C31—C32—C33109.6 (2)
I1i—Cu2—I1117.966 (18)C31—C32—H321109.47
I1i—Cu2—I2115.09 (2)C31—C32—H322109.5
I1i—Cu2—Cu1127.61 (2)C33—C32—H321109.5
I1i—Cu2—Cu2i61.601 (15)C33—C32—H322109.47
I1i—Cu2—N2p104.91 (6)H321—C32—H322109.4
I1i—Cu2—C1p130.33 (5)C32—C33—H331109.5
I1i—Cu2—H1p149.99 (2)C32—C33—H332109.5
I2—Cu2—Cu155.051 (12)C32—C33—H333109.5
I2—Cu2—Cu2i135.09 (2)H331—C33—H332109.5
I2—Cu2—N2p106.60 (6)H331—C33—H333109.5
Cu1—Cu2—N2p127.48 (6)H332—C33—H333109.5
C11—N1a—C21107.99 (16)N1a—C41—C42115.60 (18)
C11—N1a—C31109.17 (19)N1a—C41—H411109.47
C11—N1a—C41111.12 (15)N1a—C41—H412109.5
C21—N1a—C31111.36 (15)C42—C41—H411109.5
C21—N1a—C41108.49 (19)C42—C41—H412109.47
C31—N1a—C41108.72 (16)H411—C41—H412102.6
N1a—C11—C12116.13 (18)C41—C42—C43109.5 (2)
N1a—C11—H111109.47C41—C42—H421109.5
C12—C11—H112109.47C41—C42—H422109.5
H111—C11—H112101.87C43—C42—H421109.5
C11—C12—C13108.40 (19)C43—C42—H422109.5
C11—C12—H121109.5H421—C42—H422109.4
C11—C12—H122109.47C42—C43—H431109.5
C13—C12—H121109.47C42—C43—H432109.5
C13—C12—H122109.5C42—C43—H433109.5
H121—C12—H122110.5H431—C43—H432109.5
C12—C13—H131109.5H431—C43—H433109.5
C12—C13—H132109.5H432—C43—H433109.5
C12—C13—H133109.47Cu2—N2p—C1p114.07 (17)
H131—C13—H132109.5Cu2—N2p—C5p126.45 (17)
H131—C13—H133109.5C1p—N2p—C5p119.2 (2)
H132—C13—H133109.5N2p—C1p—C2p122.8 (2)
N1a—C21—C22115.4 (2)N2p—C1p—H1p118.6
N1a—C21—H211109.47C2p—C1p—H1p118.6
N1a—C21—H212109.47C1p—C2p—C3p118.4 (2)
C22—C21—H211109.47C1p—C2p—H2p120.8
C22—C21—H212109.47C3p—C2p—H2p120.8
H211—C21—H212102.9C2p—C3p—C4p119.5 (3)
C21—C22—C23108.7 (2)C2p—C3p—H3p120.2
C21—C22—H221109.47C4p—C3p—H3p120.2
C21—C22—H222109.47C3p—C4p—C5p119.3 (2)
C23—C22—H221109.5C3p—C4p—H4p120.3
C23—C22—H222109.47C5p—C4p—H4p120.3
H221—C22—H222110.3N2p—C5p—C4p120.8 (2)
C22—C23—H231109.5N2p—C5p—H5p119.6
C22—C23—H232109.5C4p—C5p—H5p119.6
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula(C12H28N)2[Cu3.194I6(C5H5N)2]
Mr1495.3
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8974 (2), 11.8076 (3), 12.2176 (2)
α, β, γ (°)73.2442 (18), 78.5398 (17), 81.4137 (18)
V3)1198.74 (5)
Z1
Radiation typeMo Kα
µ (mm1)5.29
Crystal size (mm)0.47 × 0.17 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur3
diffractometer with a Sapphire-3 CCD detector
Absorption correctionGaussian
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.209, 0.623
No. of measured, independent and
observed [I > 3σ(I)] reflections
38326, 7574, 6526
Rint0.020
(sin θ/λ)max1)0.750
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.068, 1.02
No. of reflections7574
No. of parameters219
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.53

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SUPERFLIP (Oszlányi & Sütő, 2004), JANA2000 (Petricek et al., 2000), DIAMOND (Brandenburg, 1999).

 

Acknowledgements

Financial support from the Swedish Research Council is gratefully acknowledged

References

First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCariati, E., Roberto, D., Ugo, R., Ford, P. C., Galli, S. & Sironi, A. (2005). Inorg. Chem. 44, 4077–4085.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds