organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-p-terphen­yl

aSubdivision of Food Science, Kyungnam College of Information and Technology, Busan 616-701, Republic of Korea, and bDivision of Science Education, Kangwon National University, Chuncheon 200-701, Republic of Korea
*Correspondence e-mail: kangy@kangwon.ac.kr

(Received 12 February 2010; accepted 26 February 2010; online 3 March 2010)

In the title compound, C18H13Br, the dihedral angles between the mean planes of the central benzene ring and the mean planes of the outer phenyl and bromo­phenyl rings are 33.47 (8) and 66.35 (8)°, respectively. In the crystal, weak C—H⋯π and inter­molecular Br⋯Br [3.5503 (15) Å] inter­actions contribute to the stabilization of the packing.

Related literature

For the synthesis, see: France et al. (1938[France, H., Heilbron, I. M. & Hey, D. H. (1938). J. Chem. Soc. pp. 1364-1375.]); Tadashi et al. (1962[Tadashi, N. & Yuhei, H. (1962). Bull. Chem. Soc. Jpn, 35, 1783-1787.]). For the Suzuki coupling reaction, see: Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]). For cross-coupling reactions of o-halogenated arenes, see: Ishikawa & Manabe (2007[Ishikawa, S. & Manabe, K. (2007). Chem. Lett. 36, 1304-1305.]). For organic light-emitting diodes, see: Kim et al. (2008[Kim, D.-H., Hong, C.-K., Lee, P. H. & Kang, Y. (2008). Bull. Korean Chem. Soc. 29, 2270-2272.]). For related structures, see: Jones et al. (2005[Jones, P. G., Kuś, P. & Pasewicz, A. (2005). Acta Cryst. E61, o1895-o1896.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]); MacNeil & Decken (1999[MacNeil, D. D. & Decken, A. (1999). Acta Cryst. C55, 628-630.]); Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Br

  • Mr = 309.19

  • Monoclinic, C 2/c

  • a = 27.039 (10) Å

  • b = 7.597 (3) Å

  • c = 18.907 (7) Å

  • β = 133.650 (5)°

  • V = 2810 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.476, Tmax = 0.594

  • 13933 measured reflections

  • 3503 independent reflections

  • 2246 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.02

  • 3503 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
C—H⋯π inter­actions (Å, °)

Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.93 2.84 3.778 (4) 148
C14—H14⋯Cg2ii 0.93 2.97 3.658 (5) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker. (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker. (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Palladium-catalyzed cross-coupling reactions of aryl halides with arylboronic acids, often referred as Suzuki coupling reactions, are versatile synthetic methods for the preparation of unsymmetrical biaryls. The Suzuki coupling reactions have been applied extensively in the synthesis of natural products, nucleoside analogues, and pharmaceuticals (Miyaura & Suzuki, 1995). Cross-coupling reactions of o-halogenated arenes are very useful synthetically, if the halogen atom is converted to other functional groups, such as carbazole, anthracene and fluorene (Ishikawa & Manabe, 2007). Anthracene based terphenyl derivatives are widely used as emitting and/or host materials in organic light-emitting diodes (OLEDs) (Kim et al., 2008). To be good host materials in OLEDs, the host must have larger energy gap between the HOMO (Highest Occupied Molecular Orbital) and the LUMO (Lowest Unoccupied Molecular orbital) than in a dopant, because energy transfer occurs from host to dopant.

The introduction of substituents at the ortho-position of biary and terphenyl groups is often used in the preparation of an efficient host with a wide band gap, because the substitients suppress effective π-conjugation throughout the whole molecule. Therefore, the structures of biaryl and terphenyl derivatives bearing a halogen atom at the ortho -position are attractive as good precursors to materials oriented chemists and physicists. The title compound, C18H13Br,(I), was synthesized by the Pd-catalyzed cross coupling of 4-biphenylboronic acid with 1-bromo-2-iodobenzene in the presence of base (Na2CO3).

The dihedral angles between the mean planes of the central phenyl ring (C7-C12) and the mean planes of the outer phenyl (C13-C18) and the brominated phenyl (C1-C6) rings, are 33.47 (8)° and 66.35 (8)°, respectively (Fig. 1). All bond lengths and bond angles are normal and comparable to those observed in similar structures (MacNeil & Decken, 1999; Jones et al., 2005).

Weak C–H···Cg π-ring interactions are observed [C2–H2···Cg3; H2···Cg3 = Å; C2–H2···Cg = 148°, C2···Cg3-H2 = 3.778 (4) Å; 1/2+x,1/2-y,1/2+z and C14–H14···Cg2; H14···Cg2 = 2.97 Å; C14–H14···Cg2 = 147°, C14···Cg2–H14 = 3.658 (5) Å; 1-x,y,1/2-z; where Cg2 and Cg3 are the centroids of C7—C12 and C13—C18, respectively] (Fig. 2). Weak Br1···Br1 interactions also exist (3.5503 (15) Å; Politzer et al., 2007; Liang, 2008) and along with C–H···Cg π-ring interactions contribute to the stabilization of crystal packing.

Related literature top

For the synthesis, see: France et al. (1938); Tadashi et al. (1962). For the Suzuki coupling reaction, see: Miyaura & Suzuki (1995). For cross-coupling reactions of o-halogenated arenes, see: Ishikawa & Manabe (2007). For organic light-emitting diodes, see: Kim et al. (2008). For related structures, see: Jones et al. (2005); Liang (2008); MacNeil & Decken (1999); Politzer et al. (2007).

Experimental top

A mixture of 4-biphenyboronicacid (0.1 mol), 1-bromo-2iodobenzene (0.1 mol), Na2CO3 (0.6 mol, 2M in H2O), and Pd(PPh3)4 (5% mol) was refluxed for 12 h. After being cooled to room temperature, the reaction mixture was quenched by water. The aqueous layer was extracted with CH2Cl2, and the combined organic layers were sequentially washed with saturated aqueous NaCl (20 mL), dried with MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using CH2Cl2 and hexane to give the titled compound as a colorless solid. Analytical data (France, et al., 1938; Tadashi, et al., 1962). 1H NMR (CDCl3, 300 MHz): 7.65 (m, 5H), 7.51 (m, 4H), 7.40 (m, 3H), 7.21 (m, 1H); MS(EI, m/z): 309 [M+]. Slow evaporation of CH2Cl2 gave suitable single crystals for X-ray analysis.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Weak Br···Br and C—H···Cg π-ring interactions (dashed lines) in the title compound.
2-Bromo-p-terphenyl top
Crystal data top
C18H13BrF(000) = 1248
Mr = 309.19Dx = 1.462 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3654 reflections
a = 27.039 (10) Åθ = 2.1–28.4°
b = 7.597 (3) ŵ = 2.91 mm1
c = 18.907 (7) ÅT = 293 K
β = 133.650 (5)°Block, colorless
V = 2810 (2) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3503 independent reflections
Radiation source: fine-focus sealed tube2246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 3436
Tmin = 0.476, Tmax = 0.594k = 910
13933 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0341P)2 + 2.6031P]
where P = (Fo2 + 2Fc2)/3
3503 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C18H13BrV = 2810 (2) Å3
Mr = 309.19Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.039 (10) ŵ = 2.91 mm1
b = 7.597 (3) ÅT = 293 K
c = 18.907 (7) Å0.30 × 0.25 × 0.20 mm
β = 133.650 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3503 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2246 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 0.594Rint = 0.028
13933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
3503 reflectionsΔρmin = 0.65 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.721104 (15)0.25216 (4)0.56047 (2)0.07170 (13)
C10.69010 (12)0.4341 (3)0.59063 (16)0.0458 (5)
C20.73645 (13)0.5631 (3)0.65377 (18)0.0565 (6)
H20.78070.55900.67970.068*
C30.71685 (15)0.6982 (3)0.67834 (19)0.0613 (7)
H30.74780.78610.72100.074*
C40.65143 (16)0.7030 (3)0.6398 (2)0.0616 (7)
H40.63840.79300.65750.074*
C50.60498 (13)0.5756 (3)0.57514 (18)0.0552 (6)
H50.56060.58190.54890.066*
C60.62281 (11)0.4369 (3)0.54788 (15)0.0434 (5)
C70.57071 (12)0.3039 (3)0.47552 (17)0.0446 (5)
C80.51546 (12)0.3516 (3)0.37957 (17)0.0519 (6)
H80.51040.46840.36090.062*
C90.46779 (12)0.2289 (3)0.31111 (18)0.0522 (6)
H90.43100.26480.24720.063*
C100.47356 (11)0.0529 (3)0.33573 (16)0.0441 (5)
C110.52859 (12)0.0067 (3)0.43275 (16)0.0520 (6)
H110.53340.10970.45190.062*
C120.57609 (13)0.1291 (3)0.50101 (17)0.0524 (6)
H120.61240.09400.56530.063*
C130.42539 (11)0.0832 (3)0.26121 (16)0.0453 (5)
C140.39663 (13)0.0664 (4)0.16585 (18)0.0592 (6)
H140.40620.03280.14830.071*
C150.35413 (16)0.1948 (4)0.0972 (2)0.0730 (8)
H150.33590.18240.03400.088*
C160.33855 (14)0.3410 (4)0.1214 (2)0.0703 (8)
H160.30980.42730.07490.084*
C170.36580 (13)0.3588 (3)0.2151 (2)0.0598 (7)
H170.35500.45690.23160.072*
C180.40904 (13)0.2318 (3)0.28455 (19)0.0519 (6)
H180.42750.24570.34770.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0723 (2)0.0729 (2)0.0885 (2)0.00301 (14)0.0625 (2)0.01335 (15)
C10.0545 (14)0.0446 (12)0.0456 (13)0.0024 (11)0.0373 (12)0.0014 (10)
C20.0533 (14)0.0587 (15)0.0542 (14)0.0045 (12)0.0358 (13)0.0008 (12)
C30.0735 (19)0.0519 (14)0.0538 (16)0.0128 (13)0.0421 (15)0.0089 (12)
C40.085 (2)0.0461 (14)0.0686 (17)0.0016 (13)0.0585 (17)0.0044 (12)
C50.0604 (15)0.0474 (14)0.0635 (16)0.0056 (12)0.0449 (14)0.0019 (12)
C60.0498 (13)0.0417 (12)0.0408 (12)0.0028 (10)0.0320 (11)0.0049 (9)
C70.0478 (13)0.0444 (12)0.0457 (13)0.0023 (10)0.0338 (12)0.0007 (10)
C80.0521 (14)0.0397 (13)0.0531 (15)0.0063 (11)0.0322 (13)0.0065 (11)
C90.0461 (13)0.0519 (15)0.0438 (13)0.0079 (11)0.0254 (11)0.0078 (11)
C100.0424 (12)0.0472 (12)0.0451 (12)0.0016 (10)0.0312 (11)0.0007 (10)
C110.0570 (15)0.0439 (13)0.0462 (14)0.0000 (11)0.0323 (13)0.0063 (11)
C120.0528 (14)0.0498 (14)0.0406 (12)0.0006 (11)0.0270 (12)0.0044 (11)
C130.0404 (12)0.0480 (13)0.0467 (13)0.0030 (10)0.0298 (11)0.0010 (10)
C140.0581 (15)0.0671 (17)0.0520 (15)0.0102 (13)0.0378 (13)0.0029 (13)
C150.0733 (19)0.085 (2)0.0504 (16)0.0171 (16)0.0388 (16)0.0123 (15)
C160.0628 (18)0.0634 (18)0.0646 (19)0.0129 (14)0.0363 (16)0.0165 (14)
C170.0541 (15)0.0479 (14)0.0654 (17)0.0005 (12)0.0367 (14)0.0014 (13)
C180.0493 (13)0.0500 (14)0.0504 (14)0.0041 (11)0.0322 (12)0.0047 (11)
Geometric parameters (Å, º) top
Br1—C11.897 (2)C9—H90.9300
C1—C21.375 (3)C10—C111.391 (3)
C1—C61.391 (3)C10—C131.489 (3)
C2—C31.375 (4)C11—C121.376 (3)
C2—H20.9300C11—H110.9300
C3—C41.372 (4)C12—H120.9300
C3—H30.9300C13—C181.390 (3)
C4—C51.374 (4)C13—C141.391 (3)
C4—H40.9300C14—C151.378 (4)
C5—C61.397 (3)C14—H140.9300
C5—H50.9300C15—C161.374 (4)
C6—C71.489 (3)C15—H150.9300
C7—C81.383 (3)C16—C171.377 (4)
C7—C121.386 (3)C16—H160.9300
C8—C91.379 (3)C17—C181.380 (3)
C8—H80.9300C17—H170.9300
C9—C101.389 (3)C18—H180.9300
C2—C1—C6122.4 (2)C9—C10—C11117.1 (2)
C2—C1—Br1116.95 (18)C9—C10—C13121.9 (2)
C6—C1—Br1120.61 (17)C11—C10—C13120.9 (2)
C3—C2—C1119.5 (2)C12—C11—C10121.5 (2)
C3—C2—H2120.2C12—C11—H11119.2
C1—C2—H2120.2C10—C11—H11119.2
C4—C3—C2119.8 (2)C11—C12—C7121.1 (2)
C4—C3—H3120.1C11—C12—H12119.5
C2—C3—H3120.1C7—C12—H12119.5
C3—C4—C5120.4 (2)C18—C13—C14118.1 (2)
C3—C4—H4119.8C18—C13—C10121.7 (2)
C5—C4—H4119.8C14—C13—C10120.2 (2)
C4—C5—C6121.5 (2)C15—C14—C13120.8 (3)
C4—C5—H5119.2C15—C14—H14119.6
C6—C5—H5119.2C13—C14—H14119.6
C1—C6—C5116.3 (2)C16—C15—C14120.4 (3)
C1—C6—C7123.5 (2)C16—C15—H15119.8
C5—C6—C7120.2 (2)C14—C15—H15119.8
C8—C7—C12117.8 (2)C15—C16—C17119.6 (3)
C8—C7—C6120.5 (2)C15—C16—H16120.2
C12—C7—C6121.7 (2)C17—C16—H16120.2
C9—C8—C7121.2 (2)C16—C17—C18120.4 (3)
C9—C8—H8119.4C16—C17—H17119.8
C7—C8—H8119.4C18—C17—H17119.8
C8—C9—C10121.3 (2)C17—C18—C13120.8 (2)
C8—C9—H9119.3C17—C18—H18119.6
C10—C9—H9119.3C13—C18—H18119.6
C6—C1—C2—C31.8 (4)C8—C9—C10—C13175.5 (2)
Br1—C1—C2—C3179.94 (19)C9—C10—C11—C121.3 (3)
C1—C2—C3—C40.0 (4)C13—C10—C11—C12175.5 (2)
C2—C3—C4—C51.4 (4)C10—C11—C12—C70.2 (4)
C3—C4—C5—C61.0 (4)C8—C7—C12—C111.0 (4)
C2—C1—C6—C52.2 (3)C6—C7—C12—C11178.2 (2)
Br1—C1—C6—C5179.65 (16)C9—C10—C13—C18149.7 (2)
C2—C1—C6—C7176.8 (2)C11—C10—C13—C1833.6 (3)
Br1—C1—C6—C71.4 (3)C9—C10—C13—C1431.9 (3)
C4—C5—C6—C10.8 (3)C11—C10—C13—C14144.8 (2)
C4—C5—C6—C7178.2 (2)C18—C13—C14—C151.1 (4)
C1—C6—C7—C8113.1 (3)C10—C13—C14—C15177.4 (3)
C5—C6—C7—C865.9 (3)C13—C14—C15—C161.0 (5)
C1—C6—C7—C1266.1 (3)C14—C15—C16—C170.1 (5)
C5—C6—C7—C12115.0 (3)C15—C16—C17—C180.7 (4)
C12—C7—C8—C90.9 (4)C16—C17—C18—C130.6 (4)
C6—C7—C8—C9178.2 (2)C14—C13—C18—C170.3 (3)
C7—C8—C9—C100.3 (4)C10—C13—C18—C17178.2 (2)
C8—C9—C10—C111.4 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.843.778 (4)148
C14—H14···Cg2ii0.932.973.658 (5)147
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H13Br
Mr309.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.039 (10), 7.597 (3), 18.907 (7)
β (°) 133.650 (5)
V3)2810 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.476, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
13933, 3503, 2246
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.02
No. of reflections3503
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.65

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg3i0.932.843.778 (4)148
C14—H14···Cg2ii0.932.973.658 (5)147
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1/2.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education, Science and Technology. (2009-0072468)

References

First citationBruker. (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrance, H., Heilbron, I. M. & Hey, D. H. (1938). J. Chem. Soc. pp. 1364–1375.  CrossRef Google Scholar
First citationIshikawa, S. & Manabe, K. (2007). Chem. Lett. 36, 1304–1305.  Web of Science CrossRef CAS Google Scholar
First citationJones, P. G., Kuś, P. & Pasewicz, A. (2005). Acta Cryst. E61, o1895–o1896.  CSD CrossRef IUCr Journals Google Scholar
First citationKim, D.-H., Hong, C.-K., Lee, P. H. & Kang, Y. (2008). Bull. Korean Chem. Soc. 29, 2270–2272.  CAS Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacNeil, D. D. & Decken, A. (1999). Acta Cryst. C55, 628–630.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadashi, N. & Yuhei, H. (1962). Bull. Chem. Soc. Jpn, 35, 1783–1787.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds