metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Potassium (1-meth­oxy­carbonyl-2-methyl­prop-2-en-2-yl­­idene)azinate

aDepartment für Chemie der Universität zu Köln, Greinstrasse 4, 50939 Köln, Germany
*Correspondence e-mail: schmalz@uni-koeln.de

(Received 18 February 2010; accepted 18 March 2010; online 27 March 2010)

In the title compound, K+·C6H8NO4, the K+ cations have a coordination number of seven and are surrounded by four bidentate azinate anions. The methyl­ene groups of the anions are always directed towards the coordinated potassium cations. The N—C—C—C torsion angle is 101.2 (2)°. The orthogonal non-conjugated nature of the salt confirms the supposed geometry and reactivity of this compound.

Related literature

For a short overview of peptidomimetics, see: Grauer et al. (2009[Grauer, A. & König, B. (2009). Eur. J. Org. Chem. 30, 5099-50111.]); Vagner et al. (2008[Vagner, J., Qu, H. & Hruby, V. J. (2008). Curr. Opin. Chem. Biol. 12, 292-296.]); Wu et al. (2008[Wu, Y.-D. & Gellman, S. (2008). Acc. Chem. Res. 41, 1231-1232.]). For the synthesis of peptidomimetics, amino-acid-based building blocks play a key role in the assembly of these structures, see: Kemp, Boyd & Muendel (1991[Kemp, D. S., Boyd, J. G. & Muendel, C. C. (1991). Nature (London), 352, 451-454.]); Kemp, Curran et al. (1991[Kemp, D. S., Curran, T. P., Boyd, J. G. & Allen, T. J. (1991). J. Org. Chem. 56, 6683-6697.]); Beal et al. (2000[Beal, L. M., Liu, B., Chu, W. & Moeller, K. D. (2000). Tetrahedron, 56, 10113-10125.]); Kühne et al. (2008[Kühne, R., Oschkinat, H., Brockmann, C. & Schmalz, H.-G. (2008). Ger. Patent WO 2008/040332 A1.]). A known deprotonation/proton­ation sequence (Bouveault & Wahl, 1901[Bouveault, L. & Wahl, A. (1901). Bull. Soc. Chim. Fr. 25, 800-817.]) was used in the synthesis of the title compound. The protonation of the title compound occurs exclusively at the α-position and no proton­ation of the methyl­ene group was observed (Baldwin et al., 1977[Baldwin, J. E., Haber, S. B., Hoskins, C. & Kruse, L. I. (1977). J. Org. Chem. 42, 1239-1241.]).

[Scheme 1]

Experimental

Crystal data
  • K+·C6H8NO4

  • Mr = 197.23

  • Monoclinic, C m 2/c

  • a = 23.9269 (13) Å

  • b = 5.2909 (2) Å

  • c = 14.2510 (7) Å

  • β = 113.361 (2)°

  • V = 1656.21 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 6264 measured reflections

  • 1810 independent reflections

  • 1416 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.061

  • S = 1.01

  • 1810 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

K1—O1i 2.7036 (10)
K1—O2ii 2.7539 (11)
K1—O3i 2.7988 (11)
K1—O1 2.7994 (11)
K1—O2 2.8896 (10)
K1—O3iii 2.8970 (12)
K1—O1iii 2.9080 (11)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and ORTEP (Davenport et al., 1999[Davenport, G., Hall, S. & Dreissig, W. (1999). ORTEP in Xtal3.7 System. Edited by S. R. Hall, D. J. du Boulay & R. Olthof-Hazekamp. University of Western Australia, Australia.]).

Supporting information


Comment top

In the last decade, interest in peptidomimetics has lead to a fast growing research field within organic chemistry (Grauer et al., 2009). Artificial peptide-like compounds are used to explore the principles of protein-protein interactions and their modulation (Vagner et al., 2008; Wu et al., 2008). In the synthesis of different peptidomimetics, amino acid based building blocks play a key role in the assembly of these structures (Kemp, Curran et al., 1991; Kemp, Boyd & Muendel, 1991; Beal et al., 2000; Kühne et al. 2008). In the context of our work we used an already known deprotonation/protonation sequence (Bouveault et al., 1901) to synthesize our compound. The protonation of the title compound occurs exclusively at the α-position whereas no protonation of the methylene group was observed (Baldwin et al., 1977).

In the title compound, C6H8KNO4, (I),(Fig. 1), the deconjugation within the molecule combined with the high basicity of the nitro enolate provides a convincing explanation for the high selectivity of this reaction (Fig. 2). The crystal structure supports the assumption made by Baldwin et al. about the geometry of this potassium salt. The potassium cations in the crystal stucture have a coordination number of seven and are surrounded by four azinate anions with K—O distances from 2.704 (1) to 2.908 (1) Å (Fig. 3). These can either bind via the carbonyl group or the nitrogen-bonded oxygen atoms whereas both motifs can be found as bridging units. The resulting polar layers of potassium cations surrounded by oxygen atoms are perfectly shielded by the methyl and methylene residues (Fig. 4). This results in loose interactions between the different layers and explains the facile mechanical fissility of the crystals.

Related literature top

For a short overview of peptidomimetics, see: Grauer et al. (2009); Vagner et al. (2008); Wu et al. (2008). For the synthesis of peptidomimetics, amino-acid-based building blocks play a key role in the assembly of these structures, see: Kemp, Boyd & Muendel (1991); Kemp, Curran et al. (1991); Beal et al. (2000); Kühne et al. (2008). A known deprotonation/protonation sequence (Bouveault & Wahl, 1901) was used in the synthesis of the title compound. The protonation of the title compound occurs exclusively at the α-position and no protonation of the methylene group was observed (Baldwin et al., 1977).

Experimental top

The title compound, C6H8KNO4, was prepared in good yield from methyl 3-methyl-2-nitrobut-2-enoate by deprotonation with potassium hydride. In a dry, argon-flushed 50 ml flask, 30.1 mmol of potassium hydride where suspended in 15 ml of dry THF. The suspension was cooled to 0 °C and a solution of 30.1 mmol methyl-3-methyl-2-nitrobut-2-enoate in 5 ml of THF was added via syringe over 30 min. After stirring for 5 h at room temperature a small amount of n-octanol was added at 0 °C to destroy the excess of potassium hydride. The paste was filtrated, washed three times with THF and dried in vacuo to give 4.950 g (25.1 mmol, 83%) of an ochre powder. A portion of the salt was recrystallized from MeOH/THF to give colourless prisms.

Refinement top

Hydrogen atoms were located in difference Fourier maps and refined at idealized positions (C—H = 0.98 Å for methyl H atoms and 0.95 Å for all other H Atoms) using a riding model. The U values of the hydrogens are constrained relative to Ueq of the parent carbon atom (1.2 x Ueq(C) for C—H2 and 1.5 x Ueq(C) for methyl H).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2010) and ORTEP (Davenport et al., 1999).

Figures top
[Figure 1] Fig. 1. A view of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Protonation of the title compound (I).
[Figure 3] Fig. 3. Coordination sphere of an isolated potassium Cation.
[Figure 4] Fig. 4. View of the unit cell along the b-axis.
Potassium (1-methoxycarbonyl-2-methylprop-2-en-2-ylidene)azinate top
Crystal data top
K+·C6H8NO4F(000) = 816
Mr = 197.23Dx = 1.582 Mg m3
Monoclinic, Cm2/cMelting point: 180.7(10) K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.9269 (13) ÅCell parameters from 6264 reflections
b = 5.2909 (2) Åθ = 1.9–27.0°
c = 14.2510 (7) ŵ = 0.62 mm1
β = 113.361 (2)°T = 100 K
V = 1656.21 (14) Å3Platlet, colourless
Z = 80.20 × 0.15 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
1416 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.0°, θmin = 1.9°
Phi/ω–Scans scansh = 3030
6264 measured reflectionsk = 66
1810 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0266P)2]
where P = (Fo2 + 2Fc2)/3
1810 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
K+·C6H8NO4V = 1656.21 (14) Å3
Mr = 197.23Z = 8
Monoclinic, Cm2/cMo Kα radiation
a = 23.9269 (13) ŵ = 0.62 mm1
b = 5.2909 (2) ÅT = 100 K
c = 14.2510 (7) Å0.20 × 0.15 × 0.03 mm
β = 113.361 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1416 reflections with I > 2σ(I)
6264 measured reflectionsRint = 0.041
1810 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
1810 reflectionsΔρmin = 0.27 e Å3
111 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.269013 (15)0.06555 (6)0.11206 (2)0.01586 (11)
O10.22159 (5)0.42337 (19)0.06333 (8)0.0183 (3)
O20.20272 (5)0.26997 (19)0.19103 (8)0.0172 (2)
O30.15057 (5)0.81224 (18)0.04385 (8)0.0194 (3)
O40.07200 (5)0.87761 (19)0.00265 (8)0.0191 (3)
N10.19003 (6)0.4306 (2)0.11777 (9)0.0144 (3)
C10.14436 (7)0.5975 (3)0.10141 (11)0.0142 (3)
C20.12553 (7)0.7664 (3)0.01413 (12)0.0155 (3)
C30.04879 (8)1.0606 (3)0.07901 (12)0.0213 (4)
H3A0.00891.12110.08440.032*
H3B0.04460.98130.14360.032*
H3C0.07711.20340.06440.032*
C40.11349 (7)0.5958 (3)0.17409 (12)0.0164 (3)
C50.12805 (8)0.7705 (3)0.24651 (12)0.0221 (4)
H5A0.15780.89470.25160.027*
H5B0.10870.77160.29330.027*
C60.06556 (8)0.3977 (3)0.15837 (14)0.0248 (4)
H6A0.03120.42720.09300.037*
H6B0.05140.40670.21410.037*
H6C0.08280.23000.15770.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01789 (19)0.0171 (2)0.01396 (19)0.00072 (15)0.00778 (15)0.00055 (14)
O10.0217 (6)0.0208 (6)0.0198 (6)0.0039 (5)0.0160 (5)0.0020 (5)
O20.0228 (6)0.0153 (6)0.0153 (6)0.0030 (5)0.0095 (5)0.0046 (5)
O30.0205 (6)0.0232 (6)0.0190 (6)0.0044 (5)0.0125 (5)0.0050 (5)
O40.0167 (6)0.0236 (6)0.0204 (6)0.0070 (5)0.0108 (5)0.0086 (5)
N10.0175 (7)0.0143 (7)0.0130 (7)0.0020 (6)0.0076 (6)0.0014 (6)
C10.0142 (8)0.0147 (8)0.0156 (8)0.0008 (6)0.0080 (7)0.0004 (6)
C20.0160 (9)0.0148 (8)0.0159 (8)0.0013 (7)0.0065 (7)0.0038 (7)
C30.0198 (9)0.0241 (9)0.0201 (9)0.0057 (8)0.0082 (8)0.0083 (7)
C40.0159 (8)0.0185 (9)0.0169 (9)0.0066 (7)0.0086 (7)0.0053 (7)
C50.0261 (10)0.0238 (9)0.0207 (9)0.0074 (7)0.0138 (8)0.0046 (7)
C60.0237 (10)0.0247 (9)0.0320 (10)0.0009 (7)0.0175 (9)0.0046 (8)
Geometric parameters (Å, º) top
K1—O1i2.7036 (10)O4—C21.3591 (18)
K1—O2ii2.7539 (11)O4—C31.4447 (18)
K1—O3i2.7988 (11)N1—C11.3516 (19)
K1—O12.7994 (11)N1—K1iv3.2874 (12)
K1—O22.8896 (10)C1—C21.451 (2)
K1—O3iii2.8970 (12)C1—C41.4917 (19)
K1—O1iii2.9080 (11)C1—K1iv3.4260 (15)
K1—C5ii3.0584 (16)C2—K1iv3.2747 (16)
K1—N13.2542 (13)C3—H3A0.9800
K1—C2iii3.2747 (16)C3—H3B0.9800
K1—N1iii3.2874 (12)C3—H3C0.9800
K1—C4ii3.3355 (16)C4—C51.325 (2)
O1—N11.2799 (14)C4—C61.503 (2)
O1—K1i2.7036 (10)C4—K1v3.3355 (16)
O1—K1iv2.9081 (11)C5—K1v3.0583 (16)
O2—N11.2856 (15)C5—H5A0.9500
O2—K1v2.7539 (11)C5—H5B0.9500
O3—C21.2219 (16)C6—H6A0.9800
O3—K1i2.7989 (11)C6—H6B0.9800
O3—K1iv2.8970 (12)C6—H6C0.9800
O1i—K1—O2ii162.38 (3)N1—K1—C4ii93.33 (4)
O1i—K1—O3i59.21 (3)C2iii—K1—C4ii145.11 (4)
O2ii—K1—O3i106.36 (3)N1iii—K1—C4ii118.00 (3)
O1i—K1—O171.80 (3)N1—O1—K1i146.87 (9)
O2ii—K1—O1117.16 (3)N1—O1—K198.95 (7)
O3i—K1—O1127.70 (3)K1i—O1—K1108.20 (3)
O1i—K1—O2116.67 (3)N1—O1—K1iv95.49 (7)
O2ii—K1—O275.42 (2)K1i—O1—K1iv78.14 (3)
O3i—K1—O2168.78 (3)K1—O1—K1iv135.94 (4)
O1—K1—O245.40 (3)N1—O2—K1v120.14 (8)
O1i—K1—O3iii76.57 (3)N1—O2—K194.53 (7)
O2ii—K1—O3iii118.77 (3)K1v—O2—K1129.79 (4)
O3i—K1—O3iii103.16 (3)C2—O3—K1i136.99 (9)
O1—K1—O3iii80.73 (3)C2—O3—K1iv96.80 (9)
O2—K1—O3iii85.11 (3)K1i—O3—K1iv76.84 (3)
O1i—K1—O1iii101.86 (3)C2—O4—C3115.46 (12)
O2ii—K1—O1iii82.21 (3)O1—N1—O2117.81 (11)
O3i—K1—O1iii74.94 (3)O1—N1—C1123.09 (12)
O1—K1—O1iii135.94 (4)O2—N1—C1119.10 (12)
O2—K1—O1iii116.22 (3)O1—N1—K158.18 (6)
O3iii—K1—O1iii55.87 (3)O2—N1—K162.27 (7)
O1i—K1—C5ii96.14 (4)C1—N1—K1163.88 (10)
O2ii—K1—C5ii72.78 (4)O1—N1—K1iv61.71 (6)
O3i—K1—C5ii90.87 (4)O2—N1—K1iv127.10 (9)
O1—K1—C5ii76.55 (4)C1—N1—K1iv84.21 (8)
O2—K1—C5ii79.00 (4)K1—N1—K1iv107.96 (4)
O3iii—K1—C5ii157.29 (4)N1—C1—C2120.36 (13)
O1iii—K1—C5ii146.51 (4)N1—C1—C4117.74 (13)
O1i—K1—N193.48 (3)C2—C1—C4121.88 (13)
O2ii—K1—N198.04 (3)N1—C1—K1iv72.68 (8)
O3i—K1—N1150.55 (3)C2—C1—K1iv71.72 (8)
O1—K1—N122.86 (3)C4—C1—K1iv129.38 (10)
O2—K1—N123.19 (3)O3—C2—O4121.61 (14)
O3iii—K1—N178.35 (3)O3—C2—C1129.29 (14)
O1iii—K1—N1125.49 (3)O4—C2—C1109.10 (12)
C5ii—K1—N180.70 (4)O3—C2—K1iv61.45 (8)
O1i—K1—C2iii97.99 (4)O4—C2—K1iv135.44 (9)
O2ii—K1—C2iii98.10 (4)C1—C2—K1iv83.41 (9)
O3i—K1—C2iii118.31 (4)O4—C3—H3A109.5
O1—K1—C2iii83.79 (3)O4—C3—H3B109.5
O2—K1—C2iii71.83 (3)H3A—C3—H3B109.5
O3iii—K1—C2iii21.75 (3)O4—C3—H3C109.5
O1iii—K1—C2iii53.27 (3)H3A—C3—H3C109.5
C5ii—K1—C2iii150.79 (4)H3B—C3—H3C109.5
N1—K1—C2iii73.06 (3)C5—C4—C1119.13 (14)
O1i—K1—N1iii120.52 (3)C5—C4—C6123.51 (14)
O2ii—K1—N1iii68.28 (3)C1—C4—C6117.33 (13)
O3i—K1—N1iii96.40 (3)C5—C4—K1v66.48 (9)
O1—K1—N1iii125.11 (3)C1—C4—K1v99.55 (9)
O2—K1—N1iii94.52 (3)C6—C4—K1v105.93 (10)
O3iii—K1—N1iii56.00 (3)C4—C5—K1v90.11 (10)
O1iii—K1—N1iii22.80 (3)C4—C5—H5A120.0
C5ii—K1—N1iii140.88 (4)K1v—C5—H5A88.2
N1—K1—N1iii107.96 (4)C4—C5—H5B120.0
C2iii—K1—N1iii43.50 (4)K1v—C5—H5B91.7
O1i—K1—C4ii115.12 (4)H5A—C5—H5B120.0
O2ii—K1—C4ii51.13 (3)C4—C6—H6A109.5
O3i—K1—C4ii89.44 (4)C4—C6—H6B109.5
O1—K1—C4ii95.85 (4)H6A—C6—H6B109.5
O2—K1—C4ii83.16 (3)C4—C6—H6C109.5
O3iii—K1—C4ii166.33 (3)H6A—C6—H6C109.5
O1iii—K1—C4ii124.33 (4)H6B—C6—H6C109.5
C5ii—K1—C4ii23.41 (4)
O1i—K1—O1—N1160.77 (10)O1iii—K1—N1—O1125.49 (9)
O2ii—K1—O1—N135.71 (9)C5ii—K1—N1—O177.40 (8)
O3i—K1—O1—N1178.51 (7)C2iii—K1—N1—O1115.56 (8)
O2—K1—O1—N110.30 (7)N1iii—K1—N1—O1141.94 (7)
O3iii—K1—O1—N181.97 (8)C4ii—K1—N1—O197.17 (8)
O1iii—K1—O1—N172.42 (10)O1i—K1—N1—O2179.41 (8)
C5ii—K1—O1—N198.01 (8)O2ii—K1—N1—O212.78 (9)
C2iii—K1—O1—N160.23 (8)O3i—K1—N1—O2158.75 (8)
N1iii—K1—O1—N145.79 (8)O1—K1—N1—O2161.15 (13)
C4ii—K1—O1—N184.68 (8)O3iii—K1—N1—O2105.08 (8)
O1i—K1—O1—K1i0.0O1iii—K1—N1—O273.36 (8)
O2ii—K1—O1—K1i163.52 (4)C5ii—K1—N1—O283.74 (8)
O3i—K1—O1—K1i20.72 (6)C2iii—K1—N1—O283.29 (8)
O2—K1—O1—K1i171.07 (6)N1iii—K1—N1—O256.91 (9)
O3iii—K1—O1—K1i78.80 (4)C4ii—K1—N1—O263.97 (8)
O1iii—K1—O1—K1i88.35 (6)O1i—K1—N1—C181.4 (3)
C5ii—K1—O1—K1i101.21 (5)O2ii—K1—N1—C1112.0 (3)
N1—K1—O1—K1i160.77 (10)O3i—K1—N1—C1102.0 (3)
C2iii—K1—O1—K1i100.54 (4)O1—K1—N1—C199.6 (4)
N1iii—K1—O1—K1i114.98 (4)O2—K1—N1—C199.2 (3)
C4ii—K1—O1—K1i114.55 (4)O3iii—K1—N1—C15.9 (3)
O1i—K1—O1—K1iv91.64 (6)O1iii—K1—N1—C125.9 (3)
O2ii—K1—O1—K1iv71.88 (6)C5ii—K1—N1—C1177.0 (3)
O3i—K1—O1—K1iv70.93 (7)C2iii—K1—N1—C115.9 (3)
O2—K1—O1—K1iv97.29 (7)N1iii—K1—N1—C142.3 (4)
O3iii—K1—O1—K1iv170.45 (6)C4ii—K1—N1—C1163.2 (3)
O1iii—K1—O1—K1iv180.0O1i—K1—N1—K1iv56.32 (4)
C5ii—K1—O1—K1iv9.57 (6)O2ii—K1—N1—K1iv110.31 (4)
N1—K1—O1—K1iv107.58 (10)O3i—K1—N1—K1iv35.66 (9)
C2iii—K1—O1—K1iv167.82 (6)O1—K1—N1—K1iv38.06 (7)
N1iii—K1—O1—K1iv153.38 (4)O2—K1—N1—K1iv123.09 (9)
C4ii—K1—O1—K1iv22.91 (6)O3iii—K1—N1—K1iv131.83 (4)
O1i—K1—O2—N10.66 (9)O1iii—K1—N1—K1iv163.55 (3)
O2ii—K1—O2—N1166.92 (9)C5ii—K1—N1—K1iv39.34 (4)
O3i—K1—O2—N166.31 (19)C2iii—K1—N1—K1iv153.62 (4)
O1—K1—O2—N110.16 (7)N1iii—K1—N1—K1iv180.0
O3iii—K1—O2—N171.65 (8)C4ii—K1—N1—K1iv59.12 (4)
O1iii—K1—O2—N1119.59 (8)O1—N1—C1—C25.1 (2)
C5ii—K1—O2—N192.06 (8)O2—N1—C1—C2174.70 (13)
C2iii—K1—O2—N189.27 (8)K1—N1—C1—C284.2 (4)
N1iii—K1—O2—N1126.92 (9)K1iv—N1—C1—C255.71 (13)
C4ii—K1—O2—N1115.38 (8)O1—N1—C1—C4176.54 (12)
O1i—K1—O2—K1v135.53 (5)O2—N1—C1—C43.7 (2)
O2ii—K1—O2—K1v30.73 (5)K1—N1—C1—C494.1 (3)
O3i—K1—O2—K1v69.88 (17)K1iv—N1—C1—C4125.94 (12)
O1—K1—O2—K1v126.03 (7)O1—N1—C1—K1iv50.60 (12)
O3iii—K1—O2—K1v152.16 (5)O2—N1—C1—K1iv129.60 (12)
O1iii—K1—O2—K1v104.22 (5)K1—N1—C1—K1iv139.9 (3)
C5ii—K1—O2—K1v44.14 (6)K1i—O3—C2—O4153.88 (10)
N1—K1—O2—K1v136.19 (11)K1iv—O3—C2—O4128.14 (13)
C2iii—K1—O2—K1v134.54 (6)K1i—O3—C2—C125.9 (3)
N1iii—K1—O2—K1v96.89 (5)K1iv—O3—C2—C152.12 (17)
C4ii—K1—O2—K1v20.81 (5)K1i—O3—C2—K1iv77.98 (12)
K1i—O1—N1—O2163.96 (11)C3—O4—C2—O32.9 (2)
K1—O1—N1—O218.87 (12)C3—O4—C2—C1177.36 (12)
K1iv—O1—N1—O2119.37 (11)C3—O4—C2—K1iv77.08 (17)
K1i—O1—N1—C115.8 (2)N1—C1—C2—O311.9 (2)
K1—O1—N1—C1160.93 (12)C4—C1—C2—O3169.81 (15)
K1iv—O1—N1—C160.82 (14)K1iv—C1—C2—O344.26 (15)
K1i—O1—N1—K1145.09 (16)N1—C1—C2—O4167.86 (13)
K1iv—O1—N1—K1138.24 (6)C4—C1—C2—O410.4 (2)
K1i—O1—N1—K1iv76.67 (13)K1iv—C1—C2—O4135.97 (11)
K1—O1—N1—K1iv138.24 (6)N1—C1—C2—K1iv56.16 (13)
K1v—O2—N1—O1123.95 (10)C4—C1—C2—K1iv125.55 (13)
K1—O2—N1—O118.09 (12)N1—C1—C4—C5101.20 (18)
K1v—O2—N1—C156.24 (15)C2—C1—C4—C580.5 (2)
K1—O2—N1—C1161.72 (11)K1iv—C1—C4—C511.4 (2)
K1v—O2—N1—K1142.04 (8)N1—C1—C4—C680.71 (18)
K1v—O2—N1—K1iv49.79 (12)C2—C1—C4—C697.62 (18)
K1—O2—N1—K1iv92.25 (8)K1iv—C1—C4—C6170.51 (10)
O1i—K1—N1—O118.26 (10)N1—C1—C4—K1v32.88 (14)
O2ii—K1—N1—O1148.37 (8)C2—C1—C4—K1v148.79 (12)
O3i—K1—N1—O12.40 (12)K1iv—C1—C4—K1v56.92 (11)
O2—K1—N1—O1161.15 (13)C1—C4—C5—K1v87.97 (13)
O3iii—K1—N1—O193.78 (8)C6—C4—C5—K1v94.06 (15)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaK+·C6H8NO4
Mr197.23
Crystal system, space groupMonoclinic, Cm2/c
Temperature (K)100
a, b, c (Å)23.9269 (13), 5.2909 (2), 14.2510 (7)
β (°) 113.361 (2)
V3)1656.21 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.20 × 0.15 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6264, 1810, 1416
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.061, 1.01
No. of reflections1810
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SCHAKAL99 (Keller, 1999), PLATON (Spek, 2009), publCIF (Westrip, 2010) and ORTEP (Davenport et al., 1999).

Selected bond lengths (Å) top
K1—O1i2.7036 (10)K1—O22.8896 (10)
K1—O2ii2.7539 (11)K1—O3iii2.8970 (12)
K1—O3i2.7988 (11)K1—O1iii2.9080 (11)
K1—O12.7994 (11)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (FG 806).

References

First citationBaldwin, J. E., Haber, S. B., Hoskins, C. & Kruse, L. I. (1977). J. Org. Chem. 42, 1239–1241.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBeal, L. M., Liu, B., Chu, W. & Moeller, K. D. (2000). Tetrahedron, 56, 10113–10125.  Web of Science CrossRef CAS Google Scholar
First citationBouveault, L. & Wahl, A. (1901). Bull. Soc. Chim. Fr. 25, 800–817.  CAS Google Scholar
First citationDavenport, G., Hall, S. & Dreissig, W. (1999). ORTEP in Xtal3.7 System. Edited by S. R. Hall, D. J. du Boulay & R. Olthof-Hazekamp. University of Western Australia, Australia.  Google Scholar
First citationGrauer, A. & König, B. (2009). Eur. J. Org. Chem. 30, 5099–50111.  Web of Science CrossRef Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationKemp, D. S., Boyd, J. G. & Muendel, C. C. (1991). Nature (London), 352, 451–454.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKemp, D. S., Curran, T. P., Boyd, J. G. & Allen, T. J. (1991). J. Org. Chem. 56, 6683–6697.  CrossRef CAS Web of Science Google Scholar
First citationKühne, R., Oschkinat, H., Brockmann, C. & Schmalz, H.-G. (2008). Ger. Patent WO 2008/040332 A1.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVagner, J., Qu, H. & Hruby, V. J. (2008). Curr. Opin. Chem. Biol. 12, 292–296.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWu, Y.-D. & Gellman, S. (2008). Acc. Chem. Res. 41, 1231–1232.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds