organic compounds
Methyl 3,5-dibromo-4-methylbenzoate
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, and cRiphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
*Correspondence e-mail: aamersaeed@yahoo.com
In the title compound, C9H8Br2O2, the molecule is essentially planar with an r.m.s. deviation of 0.0652 Å from the mean plane through all non-H atoms and a dihedral angle of 7.1 (2)° between the benzene ring plane and the carboxylate substituent. In the weak C—H⋯Br hydrogen bonds and weak intermolecular O⋯Br contacts [3.095 (2) Å], link adjacent molecules into layers parallel to (102). Additional weak intermolecular C—H⋯O hydrogen bond interactions stack the layers above and below the molecular plane and down the a axis.
Related literature
For use of the title compound in the synthesis of natural products, see: Gray & Whalley (1971); Saeed & Rama (1994); Harris & Mantle (2001); Simpson (1978). For related structures, see: Moorthy et al. (2002); Fan et al. (2005). For intermolecular O⋯Br contacts, see: Choi et al. (2010a,b); Politzer et al. (2007). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536810011062/jj2027sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810011062/jj2027Isup2.hkl
Anhydrous aluminum chloride (1.60 mmol) was added portionwise to stirred methyl 4-methylbenzoate (0.6 mmol) at 0°C under a nitrogen atmosphere. Bromine was added over 45 min. and the mixture was further stirred for 30 min at room temperature and at 80 °C for 1 h. The mixture was cooled to room temperature, treated with cold methanol (100 ml) and then stirred overnight. The crude product was filtered and washed with methanol at 30°C then recrystallized from methanol at 10°C to to afford the title compound (86%) as colourless crystals: Anal. calcd. for C9H8Br2O2: C, 35.10; H, 2.62; found: C, 35.23; H, 2.67 %
H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic and d(C—H) = 0.98 Å, Uiso = 1.5Ueq (C) for methyl C atoms.
Data collection: APEX2 (Bruker, 2006); cell
APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C9H8Br2O2 | F(000) = 592 |
Mr = 307.97 | Dx = 2.093 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 4848 reflections |
a = 3.9716 (2) Å | θ = 2.8–30.4° |
b = 14.2359 (7) Å | µ = 8.26 mm−1 |
c = 17.2893 (8) Å | T = 89 K |
V = 977.52 (8) Å3 | Rectangular plate, colourless |
Z = 4 | 0.64 × 0.14 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3471 independent reflections |
Radiation source: fine-focus sealed tube | 2922 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 33.3°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −6→4 |
Tmin = 0.295, Tmax = 1.000 | k = −21→21 |
17658 measured reflections | l = −25→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + 0.5972P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3471 reflections | Δρmax = 1.15 e Å−3 |
120 parameters | Δρmin = −1.09 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1659 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.039 (14) |
C9H8Br2O2 | V = 977.52 (8) Å3 |
Mr = 307.97 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 3.9716 (2) Å | µ = 8.26 mm−1 |
b = 14.2359 (7) Å | T = 89 K |
c = 17.2893 (8) Å | 0.64 × 0.14 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3471 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 2922 reflections with I > 2σ(I) |
Tmin = 0.295, Tmax = 1.000 | Rint = 0.061 |
17658 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.065 | Δρmax = 1.15 e Å−3 |
S = 1.09 | Δρmin = −1.09 e Å−3 |
3471 reflections | Absolute structure: Flack (1983), 1659 Friedel pairs |
120 parameters | Absolute structure parameter: 0.039 (14) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.86943 (10) | 0.87630 (2) | 0.134557 (17) | 0.01774 (7) | |
C1 | 0.7685 (7) | 0.7603 (2) | 0.18453 (18) | 0.0116 (6) | |
C2 | 0.8609 (8) | 0.67455 (19) | 0.15060 (16) | 0.0119 (5) | |
C21 | 1.0349 (8) | 0.6680 (2) | 0.07366 (19) | 0.0172 (7) | |
H21A | 1.2073 | 0.6188 | 0.0757 | 0.026* | |
H21B | 1.1411 | 0.7283 | 0.0615 | 0.026* | |
H21C | 0.8697 | 0.6525 | 0.0335 | 0.026* | |
C3 | 0.7704 (8) | 0.5947 (2) | 0.19236 (18) | 0.0120 (6) | |
Br2 | 0.86513 (9) | 0.47350 (2) | 0.151431 (17) | 0.01548 (7) | |
C4 | 0.6050 (9) | 0.59686 (19) | 0.26311 (17) | 0.0128 (5) | |
H4 | 0.5508 | 0.5404 | 0.2897 | 0.015* | |
C5 | 0.5202 (7) | 0.6844 (2) | 0.29418 (19) | 0.0122 (6) | |
C6 | 0.6011 (9) | 0.7667 (2) | 0.25473 (17) | 0.0138 (6) | |
H6 | 0.5426 | 0.8262 | 0.2756 | 0.017* | |
C7 | 0.3351 (8) | 0.69264 (19) | 0.36902 (17) | 0.0133 (5) | |
O1 | 0.2258 (6) | 0.76517 (15) | 0.39530 (14) | 0.0181 (5) | |
O2 | 0.3030 (6) | 0.60888 (15) | 0.40440 (12) | 0.0163 (5) | |
C8 | 0.1345 (11) | 0.6119 (2) | 0.47902 (17) | 0.0214 (6) | |
H8A | 0.2618 | 0.6524 | 0.5144 | 0.032* | |
H8B | 0.1215 | 0.5483 | 0.5005 | 0.032* | |
H8C | −0.0933 | 0.6371 | 0.4725 | 0.032* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02028 (15) | 0.01578 (13) | 0.01716 (15) | −0.00211 (15) | 0.00154 (16) | 0.00416 (11) |
C1 | 0.0112 (13) | 0.0118 (13) | 0.0118 (14) | −0.0026 (10) | −0.0006 (11) | 0.0039 (11) |
C2 | 0.0084 (10) | 0.0148 (11) | 0.0126 (13) | −0.0006 (13) | −0.0016 (14) | 0.0007 (10) |
C21 | 0.0153 (14) | 0.0231 (16) | 0.0131 (16) | 0.0021 (13) | 0.0022 (12) | 0.0006 (12) |
C3 | 0.0122 (14) | 0.0129 (13) | 0.0109 (14) | −0.0004 (11) | −0.0019 (11) | −0.0009 (10) |
Br2 | 0.01713 (14) | 0.01478 (12) | 0.01454 (14) | 0.00131 (14) | 0.00229 (15) | −0.00278 (10) |
C4 | 0.0103 (13) | 0.0151 (12) | 0.0131 (13) | −0.0003 (13) | −0.0004 (13) | −0.0003 (10) |
C5 | 0.0090 (12) | 0.0176 (14) | 0.0099 (14) | −0.0004 (11) | −0.0032 (11) | −0.0003 (12) |
C6 | 0.0122 (14) | 0.0139 (13) | 0.0152 (13) | −0.0009 (13) | −0.0006 (13) | 0.0002 (10) |
C7 | 0.0139 (14) | 0.0161 (13) | 0.0099 (12) | −0.0001 (11) | −0.0028 (12) | −0.0013 (10) |
O1 | 0.0206 (12) | 0.0177 (11) | 0.0160 (11) | 0.0043 (9) | 0.0027 (9) | −0.0009 (9) |
O2 | 0.0208 (13) | 0.0181 (10) | 0.0098 (10) | −0.0014 (9) | 0.0048 (9) | 0.0003 (8) |
C8 | 0.0235 (16) | 0.0295 (16) | 0.0113 (14) | −0.0020 (18) | 0.0063 (16) | 0.0020 (12) |
Br1—C1 | 1.907 (3) | C4—H4 | 0.9500 |
C1—C6 | 1.387 (4) | C5—C6 | 1.393 (4) |
C1—C2 | 1.403 (4) | C5—C7 | 1.493 (4) |
C2—C3 | 1.394 (4) | C6—H6 | 0.9500 |
C2—C21 | 1.502 (4) | C7—O1 | 1.209 (3) |
C21—H21A | 0.9800 | C7—O2 | 1.346 (3) |
C21—H21B | 0.9800 | O1—Br2i | 3.095 (2) |
C21—H21C | 0.9800 | O2—C8 | 1.454 (4) |
C3—C4 | 1.389 (4) | C8—H8A | 0.9800 |
C3—Br2 | 1.902 (3) | C8—H8B | 0.9800 |
C4—C5 | 1.398 (4) | C8—H8C | 0.9800 |
C6—C1—C2 | 123.3 (3) | C6—C5—C4 | 120.4 (3) |
C6—C1—Br1 | 116.1 (2) | C6—C5—C7 | 118.2 (3) |
C2—C1—Br1 | 120.6 (2) | C4—C5—C7 | 121.4 (3) |
C3—C2—C1 | 115.2 (3) | C1—C6—C5 | 119.0 (3) |
C3—C2—C21 | 121.8 (3) | C1—C6—H6 | 120.5 |
C1—C2—C21 | 123.0 (3) | C5—C6—H6 | 120.5 |
C2—C21—H21A | 109.5 | O1—C7—O2 | 123.5 (3) |
C2—C21—H21B | 109.5 | O1—C7—C5 | 124.7 (3) |
H21A—C21—H21B | 109.5 | O2—C7—C5 | 111.8 (2) |
C2—C21—H21C | 109.5 | C7—O1—Br2i | 139.7 (2) |
H21A—C21—H21C | 109.5 | C7—O2—C8 | 114.9 (2) |
H21B—C21—H21C | 109.5 | O2—C8—H8A | 109.5 |
C4—C3—C2 | 124.0 (3) | O2—C8—H8B | 109.5 |
C4—C3—Br2 | 116.2 (2) | H8A—C8—H8B | 109.5 |
C2—C3—Br2 | 119.7 (2) | O2—C8—H8C | 109.5 |
C3—C4—C5 | 118.2 (3) | H8A—C8—H8C | 109.5 |
C3—C4—H4 | 120.9 | H8B—C8—H8C | 109.5 |
C5—C4—H4 | 120.9 | ||
C6—C1—C2—C3 | 0.4 (4) | C2—C1—C6—C5 | 0.2 (5) |
Br1—C1—C2—C3 | −179.4 (2) | Br1—C1—C6—C5 | −180.0 (2) |
C6—C1—C2—C21 | 178.5 (3) | C4—C5—C6—C1 | −0.4 (4) |
Br1—C1—C2—C21 | −1.3 (4) | C7—C5—C6—C1 | −179.0 (3) |
C1—C2—C3—C4 | −0.9 (5) | C6—C5—C7—O1 | 6.2 (5) |
C21—C2—C3—C4 | −179.0 (3) | C4—C5—C7—O1 | −172.5 (3) |
C1—C2—C3—Br2 | 177.7 (2) | C6—C5—C7—O2 | −173.9 (3) |
C21—C2—C3—Br2 | −0.4 (4) | C4—C5—C7—O2 | 7.5 (4) |
C2—C3—C4—C5 | 0.7 (5) | O2—C7—O1—Br2i | −172.96 (18) |
Br2—C3—C4—C5 | −177.9 (2) | C5—C7—O1—Br2i | 7.0 (5) |
C3—C4—C5—C6 | −0.1 (4) | O1—C7—O2—C8 | −2.0 (4) |
C3—C4—C5—C7 | 178.6 (3) | C5—C7—O2—C8 | 178.1 (3) |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8C···O2ii | 0.98 | 2.70 | 3.546 (5) | 145 |
C6—H6···Br2i | 0.95 | 2.93 | 3.838 (3) | 159 |
C8—H8A···O1iii | 0.98 | 2.69 | 3.647 (4) | 167 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) x+1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C9H8Br2O2 |
Mr | 307.97 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 89 |
a, b, c (Å) | 3.9716 (2), 14.2359 (7), 17.2893 (8) |
V (Å3) | 977.52 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.26 |
Crystal size (mm) | 0.64 × 0.14 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.295, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17658, 3471, 2922 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.773 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.065, 1.09 |
No. of reflections | 3471 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.15, −1.09 |
Absolute structure | Flack (1983), 1659 Friedel pairs |
Absolute structure parameter | 0.039 (14) |
Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8C···O2i | 0.98 | 2.70 | 3.546 (5) | 144.6 |
C6—H6···Br2ii | 0.95 | 2.93 | 3.838 (3) | 159.3 |
C8—H8A···O1iii | 0.98 | 2.69 | 3.647 (4) | 166.7 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2; (iii) x+1/2, −y+3/2, −z+1. |
Acknowledgements
The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan, project No. 20-Miscel/R&D/00/3834. We also thank the University of Otago for purchase of the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o104. Web of Science CSD CrossRef IUCr Journals Google Scholar
Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fan, N.-J., Wei, Y.-B., Pu, X.-H. & Guo, W. (2005). Acta Cryst. E61, o2393–o2394. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gray, R. W. & Whalley, W. B. (1971). J. Chem. Soc. C, pp. 3575–3577. Google Scholar
Harris, J. P. & Mantle, P. G. (2001). Phytochemistry, 58, 709–716. Web of Science CrossRef PubMed CAS Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem Soc. 124, 6530–6531. Web of Science CSD CrossRef PubMed CAS Google Scholar
Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311. Web of Science CrossRef PubMed CAS Google Scholar
Saeed, A. & Rama, N. H. (1994). J. Sci. Iran, 5, 173–175. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Simpson, T. J. (1978). J. Chem. Soc. Chem. Commun. pp. 627–628. CrossRef Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title ester, (I), Fig. 1, is an important intermediate towards synthesis of 3,5-dimethoxyphenylacetic acid, a key intermediate in the synthesis of a variety of natural products. These include the sclerotiorin group of fungal metabolites (Gray & Whalley, 1971), isochromans related to sclerotiorin pigments (Saeed & Rama, 1994) and isocoumarins like 7-methylmellein (Harris & Mantle, 2001) and stellatin (Simpson, 1978). C9H8O2Br2, (I), was prepared by bromination of methyl 4-methylbenzoate in presence of anhydrous aluminum chloride using an excess of calalyst and no solvent.
The molecule is essentially flat with an rms deviation of 0.0652 Å from the mean plane through all non-hydrogen atoms. The dihedral angle between the C1···C6 ring plane and that of the C7/O1/O2/C8 carboxylate unit is 7.1 (2)°. Bond distances in the molecule are normal (Allen et al., 1987) and comparable to those in related structures (Moorthy et al., 2002; Fan et al., 2005).
In the crystal structure weak intermolecular C6—H6···Br2 hydrogen bonds and weak O1···Br2 contacts at 3.095 (2)Å (Choi et al., 2010a,b; Politzer et al., 2007) link adjacent molecules into layers parallel to the (102) plane. Additional weak intermolecular C8–H8A···O1 and C8–H8C···O2 hydrogen bond interactions involving the carboxylate methyl group stack these layers above and below the molecular plane and down the a axis, Table 1, Fig. 2.