organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o982-o983

Methyl 3,5-di­bromo-4-methyl­benzoate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, and cRiphah Institute of Pharmaceutical Sciences, Islamabad, Pakistan
*Correspondence e-mail: aamersaeed@yahoo.com

(Received 18 March 2010; accepted 24 March 2010; online 31 March 2010)

In the title compound, C9H8Br2O2, the mol­ecule is essentially planar with an r.m.s. deviation of 0.0652 Å from the mean plane through all non-H atoms and a dihedral angle of 7.1 (2)° between the benzene ring plane and the carboxyl­ate substituent. In the crystal structure, weak C—H⋯Br hydrogen bonds and weak inter­molecular O⋯Br contacts [3.095 (2) Å], link adjacent mol­ecules into layers parallel to (102). Additional weak inter­molecular C—H⋯O hydrogen bond inter­actions stack the layers above and below the mol­ecular plane and down the a axis.

Related literature

For use of the title compound in the synthesis of natural products, see: Gray & Whalley (1971[Gray, R. W. & Whalley, W. B. (1971). J. Chem. Soc. C, pp. 3575-3577.]); Saeed & Rama (1994[Saeed, A. & Rama, N. H. (1994). J. Sci. Iran, 5, 173-175.]); Harris & Mantle (2001[Harris, J. P. & Mantle, P. G. (2001). Phytochemistry, 58, 709-716.]); Simpson (1978[Simpson, T. J. (1978). J. Chem. Soc. Chem. Commun. pp. 627-628.]). For related structures, see: Moorthy et al. (2002[Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem Soc. 124, 6530-6531.]); Fan et al. (2005[Fan, N.-J., Wei, Y.-B., Pu, X.-H. & Guo, W. (2005). Acta Cryst. E61, o2393-o2394.]). For inter­molecular O⋯Br contacts, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o104.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o323.]); Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br2O2

  • Mr = 307.97

  • Orthorhombic, P 21 21 21

  • a = 3.9716 (2) Å

  • b = 14.2359 (7) Å

  • c = 17.2893 (8) Å

  • V = 977.52 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.26 mm−1

  • T = 89 K

  • 0.64 × 0.14 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.295, Tmax = 1.000

  • 17658 measured reflections

  • 3471 independent reflections

  • 2922 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.065

  • S = 1.09

  • 3471 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −1.09 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1659 Friedel pairs

  • Flack parameter: 0.039 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O2i 0.98 2.70 3.546 (5) 145
C6—H6⋯Br2ii 0.95 2.93 3.838 (3) 159
C8—H8A⋯O1iii 0.98 2.69 3.647 (4) 167
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title ester, (I), Fig. 1, is an important intermediate towards synthesis of 3,5-dimethoxyphenylacetic acid, a key intermediate in the synthesis of a variety of natural products. These include the sclerotiorin group of fungal metabolites (Gray & Whalley, 1971), isochromans related to sclerotiorin pigments (Saeed & Rama, 1994) and isocoumarins like 7-methylmellein (Harris & Mantle, 2001) and stellatin (Simpson, 1978). C9H8O2Br2, (I), was prepared by bromination of methyl 4-methylbenzoate in presence of anhydrous aluminum chloride using an excess of calalyst and no solvent.

The molecule is essentially flat with an rms deviation of 0.0652 Å from the mean plane through all non-hydrogen atoms. The dihedral angle between the C1···C6 ring plane and that of the C7/O1/O2/C8 carboxylate unit is 7.1 (2)°. Bond distances in the molecule are normal (Allen et al., 1987) and comparable to those in related structures (Moorthy et al., 2002; Fan et al., 2005).

In the crystal structure weak intermolecular C6—H6···Br2 hydrogen bonds and weak O1···Br2 contacts at 3.095 (2)Å (Choi et al., 2010a,b; Politzer et al., 2007) link adjacent molecules into layers parallel to the (102) plane. Additional weak intermolecular C8–H8A···O1 and C8–H8C···O2 hydrogen bond interactions involving the carboxylate methyl group stack these layers above and below the molecular plane and down the a axis, Table 1, Fig. 2.

Related literature top

For use of the title compound in the synthesis of natural products, see: Gray & Whalley (1971); Saeed & Rama (1994); Harris & Mantle (2001); Simpson (1978). For related structures, see: Moorthy et al. (2002); Fan et al. (2005). For intermolecular O···Br contacts, see: Choi et al. (2010a,b); Politzer et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

Anhydrous aluminum chloride (1.60 mmol) was added portionwise to stirred methyl 4-methylbenzoate (0.6 mmol) at 0°C under a nitrogen atmosphere. Bromine was added over 45 min. and the mixture was further stirred for 30 min at room temperature and at 80 °C for 1 h. The mixture was cooled to room temperature, treated with cold methanol (100 ml) and then stirred overnight. The crude product was filtered and washed with methanol at 30°C then recrystallized from methanol at 10°C to to afford the title compound (86%) as colourless crystals: Anal. calcd. for C9H8Br2O2: C, 35.10; H, 2.62; found: C, 35.23; H, 2.67 %

Refinement top

H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq (C) for aromatic and d(C—H) = 0.98 Å, Uiso = 1.5Ueq (C) for methyl C atoms.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for (I) viewed down the a axis with weak hydrogen bonds and weak O···Br contacts drawn as dashed lines.
Methyl 3,5-dibromo-4-methylbenzoate top
Crystal data top
C9H8Br2O2F(000) = 592
Mr = 307.97Dx = 2.093 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4848 reflections
a = 3.9716 (2) Åθ = 2.8–30.4°
b = 14.2359 (7) ŵ = 8.26 mm1
c = 17.2893 (8) ÅT = 89 K
V = 977.52 (8) Å3Rectangular plate, colourless
Z = 40.64 × 0.14 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3471 independent reflections
Radiation source: fine-focus sealed tube2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 33.3°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 64
Tmin = 0.295, Tmax = 1.000k = 2121
17658 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + 0.5972P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3471 reflectionsΔρmax = 1.15 e Å3
120 parametersΔρmin = 1.09 e Å3
0 restraintsAbsolute structure: Flack (1983), 1659 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.039 (14)
Crystal data top
C9H8Br2O2V = 977.52 (8) Å3
Mr = 307.97Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9716 (2) ŵ = 8.26 mm1
b = 14.2359 (7) ÅT = 89 K
c = 17.2893 (8) Å0.64 × 0.14 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3471 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
2922 reflections with I > 2σ(I)
Tmin = 0.295, Tmax = 1.000Rint = 0.061
17658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.065Δρmax = 1.15 e Å3
S = 1.09Δρmin = 1.09 e Å3
3471 reflectionsAbsolute structure: Flack (1983), 1659 Friedel pairs
120 parametersAbsolute structure parameter: 0.039 (14)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.86943 (10)0.87630 (2)0.134557 (17)0.01774 (7)
C10.7685 (7)0.7603 (2)0.18453 (18)0.0116 (6)
C20.8609 (8)0.67455 (19)0.15060 (16)0.0119 (5)
C211.0349 (8)0.6680 (2)0.07366 (19)0.0172 (7)
H21A1.20730.61880.07570.026*
H21B1.14110.72830.06150.026*
H21C0.86970.65250.03350.026*
C30.7704 (8)0.5947 (2)0.19236 (18)0.0120 (6)
Br20.86513 (9)0.47350 (2)0.151431 (17)0.01548 (7)
C40.6050 (9)0.59686 (19)0.26311 (17)0.0128 (5)
H40.55080.54040.28970.015*
C50.5202 (7)0.6844 (2)0.29418 (19)0.0122 (6)
C60.6011 (9)0.7667 (2)0.25473 (17)0.0138 (6)
H60.54260.82620.27560.017*
C70.3351 (8)0.69264 (19)0.36902 (17)0.0133 (5)
O10.2258 (6)0.76517 (15)0.39530 (14)0.0181 (5)
O20.3030 (6)0.60888 (15)0.40440 (12)0.0163 (5)
C80.1345 (11)0.6119 (2)0.47902 (17)0.0214 (6)
H8A0.26180.65240.51440.032*
H8B0.12150.54830.50050.032*
H8C0.09330.63710.47250.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02028 (15)0.01578 (13)0.01716 (15)0.00211 (15)0.00154 (16)0.00416 (11)
C10.0112 (13)0.0118 (13)0.0118 (14)0.0026 (10)0.0006 (11)0.0039 (11)
C20.0084 (10)0.0148 (11)0.0126 (13)0.0006 (13)0.0016 (14)0.0007 (10)
C210.0153 (14)0.0231 (16)0.0131 (16)0.0021 (13)0.0022 (12)0.0006 (12)
C30.0122 (14)0.0129 (13)0.0109 (14)0.0004 (11)0.0019 (11)0.0009 (10)
Br20.01713 (14)0.01478 (12)0.01454 (14)0.00131 (14)0.00229 (15)0.00278 (10)
C40.0103 (13)0.0151 (12)0.0131 (13)0.0003 (13)0.0004 (13)0.0003 (10)
C50.0090 (12)0.0176 (14)0.0099 (14)0.0004 (11)0.0032 (11)0.0003 (12)
C60.0122 (14)0.0139 (13)0.0152 (13)0.0009 (13)0.0006 (13)0.0002 (10)
C70.0139 (14)0.0161 (13)0.0099 (12)0.0001 (11)0.0028 (12)0.0013 (10)
O10.0206 (12)0.0177 (11)0.0160 (11)0.0043 (9)0.0027 (9)0.0009 (9)
O20.0208 (13)0.0181 (10)0.0098 (10)0.0014 (9)0.0048 (9)0.0003 (8)
C80.0235 (16)0.0295 (16)0.0113 (14)0.0020 (18)0.0063 (16)0.0020 (12)
Geometric parameters (Å, º) top
Br1—C11.907 (3)C4—H40.9500
C1—C61.387 (4)C5—C61.393 (4)
C1—C21.403 (4)C5—C71.493 (4)
C2—C31.394 (4)C6—H60.9500
C2—C211.502 (4)C7—O11.209 (3)
C21—H21A0.9800C7—O21.346 (3)
C21—H21B0.9800O1—Br2i3.095 (2)
C21—H21C0.9800O2—C81.454 (4)
C3—C41.389 (4)C8—H8A0.9800
C3—Br21.902 (3)C8—H8B0.9800
C4—C51.398 (4)C8—H8C0.9800
C6—C1—C2123.3 (3)C6—C5—C4120.4 (3)
C6—C1—Br1116.1 (2)C6—C5—C7118.2 (3)
C2—C1—Br1120.6 (2)C4—C5—C7121.4 (3)
C3—C2—C1115.2 (3)C1—C6—C5119.0 (3)
C3—C2—C21121.8 (3)C1—C6—H6120.5
C1—C2—C21123.0 (3)C5—C6—H6120.5
C2—C21—H21A109.5O1—C7—O2123.5 (3)
C2—C21—H21B109.5O1—C7—C5124.7 (3)
H21A—C21—H21B109.5O2—C7—C5111.8 (2)
C2—C21—H21C109.5C7—O1—Br2i139.7 (2)
H21A—C21—H21C109.5C7—O2—C8114.9 (2)
H21B—C21—H21C109.5O2—C8—H8A109.5
C4—C3—C2124.0 (3)O2—C8—H8B109.5
C4—C3—Br2116.2 (2)H8A—C8—H8B109.5
C2—C3—Br2119.7 (2)O2—C8—H8C109.5
C3—C4—C5118.2 (3)H8A—C8—H8C109.5
C3—C4—H4120.9H8B—C8—H8C109.5
C5—C4—H4120.9
C6—C1—C2—C30.4 (4)C2—C1—C6—C50.2 (5)
Br1—C1—C2—C3179.4 (2)Br1—C1—C6—C5180.0 (2)
C6—C1—C2—C21178.5 (3)C4—C5—C6—C10.4 (4)
Br1—C1—C2—C211.3 (4)C7—C5—C6—C1179.0 (3)
C1—C2—C3—C40.9 (5)C6—C5—C7—O16.2 (5)
C21—C2—C3—C4179.0 (3)C4—C5—C7—O1172.5 (3)
C1—C2—C3—Br2177.7 (2)C6—C5—C7—O2173.9 (3)
C21—C2—C3—Br20.4 (4)C4—C5—C7—O27.5 (4)
C2—C3—C4—C50.7 (5)O2—C7—O1—Br2i172.96 (18)
Br2—C3—C4—C5177.9 (2)C5—C7—O1—Br2i7.0 (5)
C3—C4—C5—C60.1 (4)O1—C7—O2—C82.0 (4)
C3—C4—C5—C7178.6 (3)C5—C7—O2—C8178.1 (3)
Symmetry code: (i) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O2ii0.982.703.546 (5)145
C6—H6···Br2i0.952.933.838 (3)159
C8—H8A···O1iii0.982.693.647 (4)167
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H8Br2O2
Mr307.97
Crystal system, space groupOrthorhombic, P212121
Temperature (K)89
a, b, c (Å)3.9716 (2), 14.2359 (7), 17.2893 (8)
V3)977.52 (8)
Z4
Radiation typeMo Kα
µ (mm1)8.26
Crystal size (mm)0.64 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.295, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17658, 3471, 2922
Rint0.061
(sin θ/λ)max1)0.773
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.065, 1.09
No. of reflections3471
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 1.09
Absolute structureFlack (1983), 1659 Friedel pairs
Absolute structure parameter0.039 (14)

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8C···O2i0.982.703.546 (5)144.6
C6—H6···Br2ii0.952.933.838 (3)159.3
C8—H8A···O1iii0.982.693.647 (4)166.7
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge a research grant from the Higher Education Commission of Pakistan, project No. 20-Miscel/R&D/00/3834. We also thank the University of Otago for purchase of the diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, N.-J., Wei, Y.-B., Pu, X.-H. & Guo, W. (2005). Acta Cryst. E61, o2393–o2394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGray, R. W. & Whalley, W. B. (1971). J. Chem. Soc. C, pp. 3575–3577.  Google Scholar
First citationHarris, J. P. & Mantle, P. G. (2001). Phytochemistry, 58, 709–716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem Soc. 124, 6530–6531.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaeed, A. & Rama, N. H. (1994). J. Sci. Iran, 5, 173–175.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimpson, T. J. (1978). J. Chem. Soc. Chem. Commun. pp. 627–628.  CrossRef Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o982-o983
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds