metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-2-(2,4-di­fluoro­phen­yl)-1,3-bis­­(1H-1,2,4-triazol-1-yl)propan-2-olato]dicopper(II) bis­­(perchlorate)

aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 23 October 2009; accepted 5 March 2010; online 10 March 2010)

The title complex, [Cu2(C13H11F2N6O)2](ClO4)2, which was hydro­thermally synthesized, contains a binuclear copper cluster (2 symmetry) with a Cu2O2 rhombus [Cu—O = 1.927 (2) Å] formed by donation of two O atoms from two chelate rings. The tridentate function of each ligand is completed by two N atoms coordinated to the two CuII atoms [Cu—N = 1.933 (2) Å]. The separation distance of two CuII atoms in a cluster is 2.988 (1) Å. The dihedral angle between the six-membered chelate rings is 2.13 (9)°. The perchlorate counter-anion is disordered over two sites in a 0.58 (10):0.42 (10) ratio.

Related literature

For the use of 1,2,4-triazole and its derivatives in coordination chemistry, see: Haasnoot et al. (2000[Haasnoot, J.-G. (2000). Chem. Rev. 131, 200-202.]); Zhao et al. (2007[Zhao, X.-J., Wang, Q. & Du, M. (2007). Inorg. Chim. Acta. 360, 1970-1976.]). For 1,2,4-triazole as a bridging ligand, see: Liu et al. (2003[Liu, J.-C., Guo, G.-C., Huang, J.-S. & You, X.-Z. (2003). Inorg. Chem. 42, 235-243.]); Park et al. (2006[Park, H., Moureau, D.-M. & Parise, J.-B. (2006). Chem. Mater. 18, 525-531.]); Yi et al. (2004[Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33-43.]); Garcia et al. (2005[Garcia, Y., Bravic, G., Gieck, C., Chasseau, D. & Tremel, W. (2005). Inorg. Chem. 44, 9723-9730.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H11F2N6O)2](ClO4)2

  • Mr = 936.54

  • Orthorhombic, P n n m

  • a = 15.4464 (18) Å

  • b = 7.9532 (10) Å

  • c = 14.2407 (15) Å

  • V = 1749.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 298 K

  • 0.49 × 0.45 × 0.43 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.534, Tmax = 0.572

  • 7867 measured reflections

  • 1618 independent reflections

  • 1169 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.129

  • S = 1.09

  • 1618 reflections

  • 162 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-triazole and its derivatives, being used in pharmaceuticals and agricultural chemicals, have attracted ever-increasing attention in coordination chemistry (Haasnoot et al., 2000, Zhao et al., 2007). The coordination versatility of 1, 2, 4-triazole as a reliable bridging ligand, i.e. adopting diverse binding fashions upon metal complexation, will be responsible for structural diversity of the resulting coordination frameworks (Liu et al., 2003, Park et al., 2006, Yi et al., 2004, Garcia et al., 2005). Now, we present the synthesis and structure analysis of the title Hflu complex derived from bis-fluconazolato-di-copper diperchlorate. The distinct binding modes of the ligands (Scheme 1) and the coordination preferences of the metal ion are discussed. The title binuclear copper(II) compound, C26H22Cl2Cu2F4N12O10, reveals a centro-symmetric arrangement. The coordination of Cu1 is achieved by 1, 2, 4-triazole-N and flu-O ligands (Fig. 1); two oxygen atoms of fluconazole molecule form rhombus with two copper atoms with Cu-O1 bond of 1.927 (2) Å, forming a Z-style structure. The perchlorate ion is not coordinated to CuII atom. It take a part in formation of an ornament of 'palace lantern-style'geometry (Fig. 2). The perchlorate anions adopt two crystallographic orientations in the crystal lattice with occupancy factors of 0.576 and 0.424. The dihedral angle between two 1, 2, 4-triazole groups in the same fluconazole ligand is 68.25 (9) ° and the dihedral angle between two ipso-lateral 1, 2, 4-triazole groups in the same molecular binuclear copper cluster is 68.25 (9) ° (Fig. 1). In order to achieve the optimum coordination, fluconazole molecules were adjusted into epsilon-type arrangement.

Related literature top

For the use of 1,2,4-triazole and its derivatives in coordination chemistry, see: Haasnoot et al. (2000); Zhao et al. (2007). For 1,2,4-triazole as a bridging ligand, see: Liu et al. (2003); Park et al. (2006); Yi et al. (2004); Garcia et al. (2005).

Experimental top

A methanolic solution (15 ml) containing the Hflu ligand (0.5 mmol, 0.153 g) was added dropwise to a water solution (10 ml) containing Cu(ClO4)2 (0.5 mmol, 0.131 g). After stirring for 4 h, the solution was filtered. The filtered solution were evaporated for several days in the air and obtained deep-blue block-shaped crystals that was suitable for single-crystal X-ray diffraction (yield: 65.6% based on the ligand). Anal calc (%). for C26H22Cl2Cu2F4N12O10: H, 2.37; C, 33.34; N, 17.95. Found: H, 2.45; C,33.41; N, 17.81.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms. The thermalfactors being set 1.5 times of their carrier atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound and the atom-numbering scheme. The H atoms have been omitted for clarity. [Symmetry code: (i) -x, 1-y, -z.]
[Figure 2] Fig. 2. The packing diagram of the title compound.
[Figure 3] Fig. 3. The structure of Hfcz, the distinct binding mode of the ligand and the title compound.
Bis[µ-2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2- olato]dicopper(II) bis(perchlorate) top
Crystal data top
[Cu2(C13H11F2N6O)2](ClO4)2Dx = 1.778 Mg m3
Mr = 936.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnnmCell parameters from 3901 reflections
a = 15.4464 (18) Åθ = 2.6–26.9°
b = 7.9532 (10) ŵ = 1.46 mm1
c = 14.2407 (15) ÅT = 298 K
V = 1749.4 (4) Å3Block, blue
Z = 20.49 × 0.45 × 0.43 mm
F(000) = 940
Data collection top
Bruker SMART 1000
diffractometer
1618 independent reflections
Radiation source: fine-focus sealed tube1169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1618
Tmin = 0.534, Tmax = 0.572k = 99
7867 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0552P)2 + 3.7317P]
where P = (Fo2 + 2Fc2)/3
1618 reflections(Δ/σ)max = 0.001
162 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2(C13H11F2N6O)2](ClO4)2V = 1749.4 (4) Å3
Mr = 936.54Z = 2
Orthorhombic, PnnmMo Kα radiation
a = 15.4464 (18) ŵ = 1.46 mm1
b = 7.9532 (10) ÅT = 298 K
c = 14.2407 (15) Å0.49 × 0.45 × 0.43 mm
Data collection top
Bruker SMART 1000
diffractometer
1618 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1169 reflections with I > 2σ(I)
Tmin = 0.534, Tmax = 0.572Rint = 0.024
7867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
1618 reflectionsΔρmin = 0.48 e Å3
162 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.50000.10491 (4)0.0387 (3)
Cl10.00001.00000.1949 (2)0.0786 (7)
F10.3498 (3)0.3943 (7)0.00000.112 (2)
F20.3994 (4)0.9719 (7)0.00000.110 (2)
N10.1704 (2)0.4153 (4)0.1725 (2)0.0412 (8)
N20.0936 (2)0.4883 (4)0.1947 (2)0.0394 (8)
N30.1944 (3)0.5620 (5)0.2995 (3)0.0595 (11)
O10.0783 (2)0.4823 (5)0.00000.0339 (8)
O20.009 (3)0.8525 (18)0.126 (2)0.097 (7)0.58 (10)
O30.0787 (17)1.020 (6)0.232 (3)0.110 (11)0.58 (10)
O2'0.047 (4)0.884 (6)0.151 (3)0.106 (13)0.42 (10)
O3'0.055 (3)1.093 (8)0.261 (3)0.109 (11)0.42 (10)
C10.1119 (3)0.5755 (6)0.2716 (3)0.0503 (11)
H10.07110.64020.30330.060*
C20.2285 (3)0.4627 (6)0.2355 (3)0.0546 (12)
H20.28630.42980.23460.066*
C30.1787 (3)0.3154 (5)0.0873 (3)0.0433 (10)
H3A0.13590.22600.08780.052*
H3B0.23570.26410.08530.052*
C40.1658 (3)0.4248 (7)0.00000.0352 (12)
C50.2277 (4)0.5736 (7)0.00000.0395 (13)
C60.3173 (4)0.5544 (9)0.00000.0640 (19)
C70.3745 (5)0.6848 (12)0.00000.079 (2)
H70.43390.66560.00000.095*
C80.3431 (5)0.8399 (11)0.00000.069 (2)
C90.2571 (5)0.8714 (9)0.00000.0640 (19)
H90.23690.98150.00000.077*
C100.1993 (4)0.7384 (7)0.00000.0448 (14)
H100.14020.76040.00000.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0307 (4)0.0620 (5)0.0232 (3)0.0056 (3)0.0000.000
Cl10.0398 (9)0.0638 (12)0.132 (2)0.0021 (9)0.0000.000
F10.049 (3)0.078 (3)0.208 (7)0.022 (2)0.0000.000
F20.115 (4)0.105 (4)0.111 (4)0.075 (3)0.0000.000
N10.0453 (19)0.0394 (18)0.0390 (18)0.0007 (16)0.0119 (15)0.0017 (16)
N20.0415 (18)0.049 (2)0.0276 (16)0.0035 (16)0.0047 (14)0.0001 (15)
N30.061 (2)0.064 (3)0.054 (2)0.004 (2)0.022 (2)0.012 (2)
O10.0277 (18)0.047 (2)0.0268 (18)0.0006 (16)0.0000.000
O20.073 (13)0.066 (6)0.153 (12)0.002 (6)0.008 (10)0.014 (6)
O30.068 (8)0.101 (17)0.162 (17)0.005 (9)0.027 (9)0.003 (15)
O2'0.08 (2)0.087 (15)0.152 (17)0.024 (16)0.009 (16)0.013 (13)
O3'0.078 (14)0.10 (2)0.151 (15)0.002 (14)0.022 (11)0.018 (13)
C10.054 (3)0.056 (3)0.041 (2)0.000 (2)0.010 (2)0.006 (2)
C20.049 (3)0.059 (3)0.056 (3)0.002 (2)0.021 (2)0.004 (2)
C30.051 (2)0.036 (2)0.042 (2)0.0042 (19)0.007 (2)0.0003 (18)
C40.031 (3)0.033 (3)0.041 (3)0.000 (2)0.0000.000
C50.035 (3)0.039 (3)0.045 (3)0.001 (3)0.0000.000
C60.047 (4)0.059 (4)0.086 (5)0.000 (3)0.0000.000
C70.047 (4)0.089 (7)0.101 (7)0.015 (4)0.0000.000
C80.068 (5)0.067 (5)0.071 (5)0.036 (4)0.0000.000
C90.080 (5)0.045 (4)0.067 (5)0.010 (4)0.0000.000
C100.048 (3)0.042 (3)0.045 (3)0.002 (3)0.0000.000
Geometric parameters (Å, º) top
Cu1—O1i1.927 (2)N3—C11.340 (6)
Cu1—O11.927 (2)O1—C41.427 (6)
Cu1—N21.933 (3)O1—Cu1i1.927 (2)
Cu1—N2ii1.933 (3)C1—H10.9300
Cu1—Cu1i2.9880 (13)C2—H20.9300
Cl1—O2'1.33 (2)C3—C41.531 (5)
Cl1—O2'iii1.33 (2)C3—H3A0.9700
Cl1—O3iii1.336 (12)C3—H3B0.9700
Cl1—O31.336 (12)C4—C51.522 (8)
Cl1—O3'1.47 (3)C4—C3iv1.531 (5)
Cl1—O3'iii1.47 (3)C5—C101.382 (8)
Cl1—O21.53 (2)C5—C61.392 (9)
Cl1—O2iii1.53 (2)C6—C71.364 (10)
F1—C61.368 (9)C7—C81.326 (12)
F2—C81.364 (8)C7—H70.9300
N1—C21.324 (5)C8—C91.352 (11)
N1—N21.358 (5)C9—C101.383 (9)
N1—C31.456 (5)C9—H90.9300
N2—C11.326 (5)C10—H100.9300
N3—C21.316 (6)
O1i—Cu1—O178.33 (16)C1—N2—Cu1132.8 (3)
O1i—Cu1—N2170.37 (12)N1—N2—Cu1121.3 (2)
O1—Cu1—N292.30 (13)C2—N3—C1102.9 (4)
O1i—Cu1—N2ii92.30 (13)C4—O1—Cu1i128.15 (10)
O1—Cu1—N2ii170.37 (12)C4—O1—Cu1128.15 (10)
N2—Cu1—N2ii97.2 (2)Cu1i—O1—Cu1101.67 (16)
O1i—Cu1—Cu1i39.16 (8)N2—C1—N3113.9 (4)
O1—Cu1—Cu1i39.16 (8)N2—C1—H1123.0
N2—Cu1—Cu1i131.42 (10)N3—C1—H1123.0
N2ii—Cu1—Cu1i131.42 (10)N3—C2—N1111.7 (4)
O2'—Cl1—O2'iii124 (3)N3—C2—H2124.2
O2'—Cl1—O3iii127 (2)N1—C2—H2124.2
O2'iii—Cl1—O3iii76.9 (12)N1—C3—C4110.8 (3)
O2'—Cl1—O376.9 (12)N1—C3—H3A109.5
O2'iii—Cl1—O3127 (2)C4—C3—H3A109.5
O3iii—Cl1—O3133 (4)N1—C3—H3B109.5
O2'—Cl1—O3'110.0 (11)C4—C3—H3B109.5
O2'iii—Cl1—O3'105.2 (13)H3A—C3—H3B108.1
O3iii—Cl1—O3'109 (3)O1—C4—C5110.2 (4)
O3—Cl1—O3'33.1 (6)O1—C4—C3iv107.8 (3)
O2'—Cl1—O3'iii105.2 (13)C5—C4—C3iv111.1 (3)
O2'iii—Cl1—O3'iii110.0 (11)O1—C4—C3107.8 (3)
O3iii—Cl1—O3'iii33.1 (6)C5—C4—C3111.1 (3)
O3—Cl1—O3'iii109 (3)C3iv—C4—C3108.6 (4)
O3'—Cl1—O3'iii100 (2)C10—C5—C6114.8 (6)
O2'—Cl1—O228 (2)C10—C5—C4122.6 (5)
O2'iii—Cl1—O2106.2 (16)C6—C5—C4122.6 (6)
O3iii—Cl1—O2104.1 (11)C7—C6—F1118.0 (7)
O3—Cl1—O2105.3 (11)C7—C6—C5124.1 (7)
O3'—Cl1—O2138.4 (14)F1—C6—C5117.8 (6)
O3'iii—Cl1—O294.2 (13)C8—C7—C6118.0 (7)
O2'—Cl1—O2iii106.2 (16)C8—C7—H7121.0
O2'iii—Cl1—O2iii28 (2)C6—C7—H7121.0
O3iii—Cl1—O2iii105.3 (11)C7—C8—C9122.2 (7)
O3—Cl1—O2iii104.1 (11)C7—C8—F2118.8 (8)
O3'—Cl1—O2iii94.2 (13)C9—C8—F2119.0 (8)
O3'iii—Cl1—O2iii138.4 (14)C8—C9—C10119.5 (7)
O2—Cl1—O2iii101 (2)C8—C9—H9120.2
C2—N1—N2108.2 (3)C10—C9—H9120.2
C2—N1—C3131.3 (4)C5—C10—C9121.4 (6)
N2—N1—C3120.3 (3)C5—C10—H10119.3
C1—N2—N1103.3 (3)C9—C10—H10119.3
C2—N1—N2—C10.3 (4)Cu1—O1—C4—C599.6 (3)
C3—N1—N2—C1176.2 (4)Cu1i—O1—C4—C3iv21.8 (5)
C2—N1—N2—Cu1163.9 (3)Cu1—O1—C4—C3iv138.9 (3)
C3—N1—N2—Cu112.0 (5)Cu1i—O1—C4—C3138.9 (3)
O1i—Cu1—N2—C1121.8 (9)Cu1—O1—C4—C321.8 (5)
O1—Cu1—N2—C1135.0 (4)N1—C3—C4—O165.7 (4)
N2ii—Cu1—N2—C146.9 (4)N1—C3—C4—C555.2 (5)
Cu1i—Cu1—N2—C1133.1 (4)N1—C3—C4—C3iv177.8 (2)
O1i—Cu1—N2—N137.0 (10)O1—C4—C5—C100.0
O1—Cu1—N2—N123.8 (3)C3iv—C4—C5—C10119.5 (3)
N2ii—Cu1—N2—N1154.3 (3)C3—C4—C5—C10119.5 (3)
Cu1i—Cu1—N2—N125.7 (3)O1—C4—C5—C6180.0
O1i—Cu1—O1—C4164.6 (5)C3iv—C4—C5—C660.5 (3)
N2—Cu1—O1—C417.6 (4)C3—C4—C5—C660.5 (3)
N2ii—Cu1—O1—C4151.2 (8)C10—C5—C6—C70.0
Cu1i—Cu1—O1—C4164.6 (5)C4—C5—C6—C7180.0
O1i—Cu1—O1—Cu1i0.0C10—C5—C6—F1180.0
N2—Cu1—O1—Cu1i177.77 (17)C4—C5—C6—F10.0
N2ii—Cu1—O1—Cu1i13.5 (10)F1—C6—C7—C8180.0
N1—N2—C1—N30.3 (5)C5—C6—C7—C80.0
Cu1—N2—C1—N3161.8 (3)C6—C7—C8—C90.0
C2—N3—C1—N20.8 (6)C6—C7—C8—F2180.0
C1—N3—C2—N10.9 (6)C7—C8—C9—C100.0
N2—N1—C2—N30.8 (5)F2—C8—C9—C10180.0
C3—N1—C2—N3176.1 (4)C6—C5—C10—C90.0
C2—N1—C3—C4110.2 (5)C4—C5—C10—C9180.0
N2—N1—C3—C464.5 (5)C8—C9—C10—C50.0
Cu1i—O1—C4—C599.6 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C13H11F2N6O)2](ClO4)2
Mr936.54
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)298
a, b, c (Å)15.4464 (18), 7.9532 (10), 14.2407 (15)
V3)1749.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.49 × 0.45 × 0.43
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.534, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
7867, 1618, 1169
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.129, 1.09
No. of reflections1618
No. of parameters162
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.48

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Innovation Project (gxun-chx2009080) of Guangxi University for Nationalities.

References

First citationGarcia, Y., Bravic, G., Gieck, C., Chasseau, D. & Tremel, W. (2005). Inorg. Chem. 44, 9723–9730.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHaasnoot, J.-G. (2000). Chem. Rev. 131, 200–202.  Google Scholar
First citationLiu, J.-C., Guo, G.-C., Huang, J.-S. & You, X.-Z. (2003). Inorg. Chem. 42, 235–243.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPark, H., Moureau, D.-M. & Parise, J.-B. (2006). Chem. Mater. 18, 525–531.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, X.-J., Wang, Q. & Du, M. (2007). Inorg. Chim. Acta. 360, 1970–1976.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds