metal-organic compounds
Bis[μ-2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-olato]dicopper(II) bis(perchlorate)
aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: yxhphd@163.com
The title complex, [Cu2(C13H11F2N6O)2](ClO4)2, which was hydrothermally synthesized, contains a binuclear copper cluster (2 symmetry) with a Cu2O2 rhombus [Cu—O = 1.927 (2) Å] formed by donation of two O atoms from two chelate rings. The tridentate function of each ligand is completed by two N atoms coordinated to the two CuII atoms [Cu—N = 1.933 (2) Å]. The separation distance of two CuII atoms in a cluster is 2.988 (1) Å. The dihedral angle between the six-membered chelate rings is 2.13 (9)°. The perchlorate counter-anion is disordered over two sites in a 0.58 (10):0.42 (10) ratio.
Related literature
For the use of 1,2,4-triazole and its derivatives in coordination chemistry, see: Haasnoot et al. (2000); Zhao et al. (2007). For 1,2,4-triazole as a bridging ligand, see: Liu et al. (2003); Park et al. (2006); Yi et al. (2004); Garcia et al. (2005).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810008512/kp2237sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008512/kp2237Isup2.hkl
A methanolic solution (15 ml) containing the Hflu ligand (0.5 mmol, 0.153 g) was added dropwise to a water solution (10 ml) containing Cu(ClO4)2 (0.5 mmol, 0.131 g). After stirring for 4 h, the solution was filtered. The filtered solution were evaporated for several days in the air and obtained deep-blue block-shaped crystals that was suitable for single-crystal X-ray diffraction (yield: 65.6% based on the ligand). Anal calc (%). for C26H22Cl2Cu2F4N12O10: H, 2.37; C, 33.34; N, 17.95. Found: H, 2.45; C,33.41; N, 17.81.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms. The thermalfactors being set 1.5 times of their carrier atoms.
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C13H11F2N6O)2](ClO4)2 | Dx = 1.778 Mg m−3 |
Mr = 936.54 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnnm | Cell parameters from 3901 reflections |
a = 15.4464 (18) Å | θ = 2.6–26.9° |
b = 7.9532 (10) Å | µ = 1.46 mm−1 |
c = 14.2407 (15) Å | T = 298 K |
V = 1749.4 (4) Å3 | Block, blue |
Z = 2 | 0.49 × 0.45 × 0.43 mm |
F(000) = 940 |
Bruker SMART 1000 diffractometer | 1618 independent reflections |
Radiation source: fine-focus sealed tube | 1169 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
phi and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −16→18 |
Tmin = 0.534, Tmax = 0.572 | k = −9→9 |
7867 measured reflections | l = −16→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0552P)2 + 3.7317P] where P = (Fo2 + 2Fc2)/3 |
1618 reflections | (Δ/σ)max = 0.001 |
162 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
[Cu2(C13H11F2N6O)2](ClO4)2 | V = 1749.4 (4) Å3 |
Mr = 936.54 | Z = 2 |
Orthorhombic, Pnnm | Mo Kα radiation |
a = 15.4464 (18) Å | µ = 1.46 mm−1 |
b = 7.9532 (10) Å | T = 298 K |
c = 14.2407 (15) Å | 0.49 × 0.45 × 0.43 mm |
Bruker SMART 1000 diffractometer | 1618 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1169 reflections with I > 2σ(I) |
Tmin = 0.534, Tmax = 0.572 | Rint = 0.024 |
7867 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.55 e Å−3 |
1618 reflections | Δρmin = −0.48 e Å−3 |
162 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.0000 | 0.5000 | 0.10491 (4) | 0.0387 (3) | |
Cl1 | 0.0000 | 1.0000 | 0.1949 (2) | 0.0786 (7) | |
F1 | 0.3498 (3) | 0.3943 (7) | 0.0000 | 0.112 (2) | |
F2 | 0.3994 (4) | 0.9719 (7) | 0.0000 | 0.110 (2) | |
N1 | 0.1704 (2) | 0.4153 (4) | 0.1725 (2) | 0.0412 (8) | |
N2 | 0.0936 (2) | 0.4883 (4) | 0.1947 (2) | 0.0394 (8) | |
N3 | 0.1944 (3) | 0.5620 (5) | 0.2995 (3) | 0.0595 (11) | |
O1 | 0.0783 (2) | 0.4823 (5) | 0.0000 | 0.0339 (8) | |
O2 | 0.009 (3) | 0.8525 (18) | 0.126 (2) | 0.097 (7) | 0.58 (10) |
O3 | 0.0787 (17) | 1.020 (6) | 0.232 (3) | 0.110 (11) | 0.58 (10) |
O2' | 0.047 (4) | 0.884 (6) | 0.151 (3) | 0.106 (13) | 0.42 (10) |
O3' | 0.055 (3) | 1.093 (8) | 0.261 (3) | 0.109 (11) | 0.42 (10) |
C1 | 0.1119 (3) | 0.5755 (6) | 0.2716 (3) | 0.0503 (11) | |
H1 | 0.0711 | 0.6402 | 0.3033 | 0.060* | |
C2 | 0.2285 (3) | 0.4627 (6) | 0.2355 (3) | 0.0546 (12) | |
H2 | 0.2863 | 0.4298 | 0.2346 | 0.066* | |
C3 | 0.1787 (3) | 0.3154 (5) | 0.0873 (3) | 0.0433 (10) | |
H3A | 0.1359 | 0.2260 | 0.0878 | 0.052* | |
H3B | 0.2357 | 0.2641 | 0.0853 | 0.052* | |
C4 | 0.1658 (3) | 0.4248 (7) | 0.0000 | 0.0352 (12) | |
C5 | 0.2277 (4) | 0.5736 (7) | 0.0000 | 0.0395 (13) | |
C6 | 0.3173 (4) | 0.5544 (9) | 0.0000 | 0.0640 (19) | |
C7 | 0.3745 (5) | 0.6848 (12) | 0.0000 | 0.079 (2) | |
H7 | 0.4339 | 0.6656 | 0.0000 | 0.095* | |
C8 | 0.3431 (5) | 0.8399 (11) | 0.0000 | 0.069 (2) | |
C9 | 0.2571 (5) | 0.8714 (9) | 0.0000 | 0.0640 (19) | |
H9 | 0.2369 | 0.9815 | 0.0000 | 0.077* | |
C10 | 0.1993 (4) | 0.7384 (7) | 0.0000 | 0.0448 (14) | |
H10 | 0.1402 | 0.7604 | 0.0000 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0307 (4) | 0.0620 (5) | 0.0232 (3) | −0.0056 (3) | 0.000 | 0.000 |
Cl1 | 0.0398 (9) | 0.0638 (12) | 0.132 (2) | 0.0021 (9) | 0.000 | 0.000 |
F1 | 0.049 (3) | 0.078 (3) | 0.208 (7) | 0.022 (2) | 0.000 | 0.000 |
F2 | 0.115 (4) | 0.105 (4) | 0.111 (4) | −0.075 (3) | 0.000 | 0.000 |
N1 | 0.0453 (19) | 0.0394 (18) | 0.0390 (18) | −0.0007 (16) | −0.0119 (15) | 0.0017 (16) |
N2 | 0.0415 (18) | 0.049 (2) | 0.0276 (16) | −0.0035 (16) | −0.0047 (14) | 0.0001 (15) |
N3 | 0.061 (2) | 0.064 (3) | 0.054 (2) | −0.004 (2) | −0.022 (2) | −0.012 (2) |
O1 | 0.0277 (18) | 0.047 (2) | 0.0268 (18) | 0.0006 (16) | 0.000 | 0.000 |
O2 | 0.073 (13) | 0.066 (6) | 0.153 (12) | −0.002 (6) | 0.008 (10) | −0.014 (6) |
O3 | 0.068 (8) | 0.101 (17) | 0.162 (17) | 0.005 (9) | −0.027 (9) | −0.003 (15) |
O2' | 0.08 (2) | 0.087 (15) | 0.152 (17) | 0.024 (16) | 0.009 (16) | −0.013 (13) |
O3' | 0.078 (14) | 0.10 (2) | 0.151 (15) | 0.002 (14) | −0.022 (11) | −0.018 (13) |
C1 | 0.054 (3) | 0.056 (3) | 0.041 (2) | 0.000 (2) | −0.010 (2) | −0.006 (2) |
C2 | 0.049 (3) | 0.059 (3) | 0.056 (3) | 0.002 (2) | −0.021 (2) | −0.004 (2) |
C3 | 0.051 (2) | 0.036 (2) | 0.042 (2) | 0.0042 (19) | −0.007 (2) | 0.0003 (18) |
C4 | 0.031 (3) | 0.033 (3) | 0.041 (3) | 0.000 (2) | 0.000 | 0.000 |
C5 | 0.035 (3) | 0.039 (3) | 0.045 (3) | 0.001 (3) | 0.000 | 0.000 |
C6 | 0.047 (4) | 0.059 (4) | 0.086 (5) | 0.000 (3) | 0.000 | 0.000 |
C7 | 0.047 (4) | 0.089 (7) | 0.101 (7) | −0.015 (4) | 0.000 | 0.000 |
C8 | 0.068 (5) | 0.067 (5) | 0.071 (5) | −0.036 (4) | 0.000 | 0.000 |
C9 | 0.080 (5) | 0.045 (4) | 0.067 (5) | −0.010 (4) | 0.000 | 0.000 |
C10 | 0.048 (3) | 0.042 (3) | 0.045 (3) | −0.002 (3) | 0.000 | 0.000 |
Cu1—O1i | 1.927 (2) | N3—C1 | 1.340 (6) |
Cu1—O1 | 1.927 (2) | O1—C4 | 1.427 (6) |
Cu1—N2 | 1.933 (3) | O1—Cu1i | 1.927 (2) |
Cu1—N2ii | 1.933 (3) | C1—H1 | 0.9300 |
Cu1—Cu1i | 2.9880 (13) | C2—H2 | 0.9300 |
Cl1—O2' | 1.33 (2) | C3—C4 | 1.531 (5) |
Cl1—O2'iii | 1.33 (2) | C3—H3A | 0.9700 |
Cl1—O3iii | 1.336 (12) | C3—H3B | 0.9700 |
Cl1—O3 | 1.336 (12) | C4—C5 | 1.522 (8) |
Cl1—O3' | 1.47 (3) | C4—C3iv | 1.531 (5) |
Cl1—O3'iii | 1.47 (3) | C5—C10 | 1.382 (8) |
Cl1—O2 | 1.53 (2) | C5—C6 | 1.392 (9) |
Cl1—O2iii | 1.53 (2) | C6—C7 | 1.364 (10) |
F1—C6 | 1.368 (9) | C7—C8 | 1.326 (12) |
F2—C8 | 1.364 (8) | C7—H7 | 0.9300 |
N1—C2 | 1.324 (5) | C8—C9 | 1.352 (11) |
N1—N2 | 1.358 (5) | C9—C10 | 1.383 (9) |
N1—C3 | 1.456 (5) | C9—H9 | 0.9300 |
N2—C1 | 1.326 (5) | C10—H10 | 0.9300 |
N3—C2 | 1.316 (6) | ||
O1i—Cu1—O1 | 78.33 (16) | C1—N2—Cu1 | 132.8 (3) |
O1i—Cu1—N2 | 170.37 (12) | N1—N2—Cu1 | 121.3 (2) |
O1—Cu1—N2 | 92.30 (13) | C2—N3—C1 | 102.9 (4) |
O1i—Cu1—N2ii | 92.30 (13) | C4—O1—Cu1i | 128.15 (10) |
O1—Cu1—N2ii | 170.37 (12) | C4—O1—Cu1 | 128.15 (10) |
N2—Cu1—N2ii | 97.2 (2) | Cu1i—O1—Cu1 | 101.67 (16) |
O1i—Cu1—Cu1i | 39.16 (8) | N2—C1—N3 | 113.9 (4) |
O1—Cu1—Cu1i | 39.16 (8) | N2—C1—H1 | 123.0 |
N2—Cu1—Cu1i | 131.42 (10) | N3—C1—H1 | 123.0 |
N2ii—Cu1—Cu1i | 131.42 (10) | N3—C2—N1 | 111.7 (4) |
O2'—Cl1—O2'iii | 124 (3) | N3—C2—H2 | 124.2 |
O2'—Cl1—O3iii | 127 (2) | N1—C2—H2 | 124.2 |
O2'iii—Cl1—O3iii | 76.9 (12) | N1—C3—C4 | 110.8 (3) |
O2'—Cl1—O3 | 76.9 (12) | N1—C3—H3A | 109.5 |
O2'iii—Cl1—O3 | 127 (2) | C4—C3—H3A | 109.5 |
O3iii—Cl1—O3 | 133 (4) | N1—C3—H3B | 109.5 |
O2'—Cl1—O3' | 110.0 (11) | C4—C3—H3B | 109.5 |
O2'iii—Cl1—O3' | 105.2 (13) | H3A—C3—H3B | 108.1 |
O3iii—Cl1—O3' | 109 (3) | O1—C4—C5 | 110.2 (4) |
O3—Cl1—O3' | 33.1 (6) | O1—C4—C3iv | 107.8 (3) |
O2'—Cl1—O3'iii | 105.2 (13) | C5—C4—C3iv | 111.1 (3) |
O2'iii—Cl1—O3'iii | 110.0 (11) | O1—C4—C3 | 107.8 (3) |
O3iii—Cl1—O3'iii | 33.1 (6) | C5—C4—C3 | 111.1 (3) |
O3—Cl1—O3'iii | 109 (3) | C3iv—C4—C3 | 108.6 (4) |
O3'—Cl1—O3'iii | 100 (2) | C10—C5—C6 | 114.8 (6) |
O2'—Cl1—O2 | 28 (2) | C10—C5—C4 | 122.6 (5) |
O2'iii—Cl1—O2 | 106.2 (16) | C6—C5—C4 | 122.6 (6) |
O3iii—Cl1—O2 | 104.1 (11) | C7—C6—F1 | 118.0 (7) |
O3—Cl1—O2 | 105.3 (11) | C7—C6—C5 | 124.1 (7) |
O3'—Cl1—O2 | 138.4 (14) | F1—C6—C5 | 117.8 (6) |
O3'iii—Cl1—O2 | 94.2 (13) | C8—C7—C6 | 118.0 (7) |
O2'—Cl1—O2iii | 106.2 (16) | C8—C7—H7 | 121.0 |
O2'iii—Cl1—O2iii | 28 (2) | C6—C7—H7 | 121.0 |
O3iii—Cl1—O2iii | 105.3 (11) | C7—C8—C9 | 122.2 (7) |
O3—Cl1—O2iii | 104.1 (11) | C7—C8—F2 | 118.8 (8) |
O3'—Cl1—O2iii | 94.2 (13) | C9—C8—F2 | 119.0 (8) |
O3'iii—Cl1—O2iii | 138.4 (14) | C8—C9—C10 | 119.5 (7) |
O2—Cl1—O2iii | 101 (2) | C8—C9—H9 | 120.2 |
C2—N1—N2 | 108.2 (3) | C10—C9—H9 | 120.2 |
C2—N1—C3 | 131.3 (4) | C5—C10—C9 | 121.4 (6) |
N2—N1—C3 | 120.3 (3) | C5—C10—H10 | 119.3 |
C1—N2—N1 | 103.3 (3) | C9—C10—H10 | 119.3 |
C2—N1—N2—C1 | −0.3 (4) | Cu1—O1—C4—C5 | −99.6 (3) |
C3—N1—N2—C1 | −176.2 (4) | Cu1i—O1—C4—C3iv | −21.8 (5) |
C2—N1—N2—Cu1 | 163.9 (3) | Cu1—O1—C4—C3iv | 138.9 (3) |
C3—N1—N2—Cu1 | −12.0 (5) | Cu1i—O1—C4—C3 | −138.9 (3) |
O1i—Cu1—N2—C1 | 121.8 (9) | Cu1—O1—C4—C3 | 21.8 (5) |
O1—Cu1—N2—C1 | 135.0 (4) | N1—C3—C4—O1 | −65.7 (4) |
N2ii—Cu1—N2—C1 | −46.9 (4) | N1—C3—C4—C5 | 55.2 (5) |
Cu1i—Cu1—N2—C1 | 133.1 (4) | N1—C3—C4—C3iv | 177.8 (2) |
O1i—Cu1—N2—N1 | −37.0 (10) | O1—C4—C5—C10 | 0.0 |
O1—Cu1—N2—N1 | −23.8 (3) | C3iv—C4—C5—C10 | 119.5 (3) |
N2ii—Cu1—N2—N1 | 154.3 (3) | C3—C4—C5—C10 | −119.5 (3) |
Cu1i—Cu1—N2—N1 | −25.7 (3) | O1—C4—C5—C6 | 180.0 |
O1i—Cu1—O1—C4 | −164.6 (5) | C3iv—C4—C5—C6 | −60.5 (3) |
N2—Cu1—O1—C4 | 17.6 (4) | C3—C4—C5—C6 | 60.5 (3) |
N2ii—Cu1—O1—C4 | −151.2 (8) | C10—C5—C6—C7 | 0.0 |
Cu1i—Cu1—O1—C4 | −164.6 (5) | C4—C5—C6—C7 | 180.0 |
O1i—Cu1—O1—Cu1i | 0.0 | C10—C5—C6—F1 | 180.0 |
N2—Cu1—O1—Cu1i | −177.77 (17) | C4—C5—C6—F1 | 0.0 |
N2ii—Cu1—O1—Cu1i | 13.5 (10) | F1—C6—C7—C8 | 180.0 |
N1—N2—C1—N3 | −0.3 (5) | C5—C6—C7—C8 | 0.0 |
Cu1—N2—C1—N3 | −161.8 (3) | C6—C7—C8—C9 | 0.0 |
C2—N3—C1—N2 | 0.8 (6) | C6—C7—C8—F2 | 180.0 |
C1—N3—C2—N1 | −0.9 (6) | C7—C8—C9—C10 | 0.0 |
N2—N1—C2—N3 | 0.8 (5) | F2—C8—C9—C10 | 180.0 |
C3—N1—C2—N3 | 176.1 (4) | C6—C5—C10—C9 | 0.0 |
C2—N1—C3—C4 | −110.2 (5) | C4—C5—C10—C9 | 180.0 |
N2—N1—C3—C4 | 64.5 (5) | C8—C9—C10—C5 | 0.0 |
Cu1i—O1—C4—C5 | 99.6 (3) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+1, z; (iii) −x, −y+2, z; (iv) x, y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C13H11F2N6O)2](ClO4)2 |
Mr | 936.54 |
Crystal system, space group | Orthorhombic, Pnnm |
Temperature (K) | 298 |
a, b, c (Å) | 15.4464 (18), 7.9532 (10), 14.2407 (15) |
V (Å3) | 1749.4 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.49 × 0.45 × 0.43 |
Data collection | |
Diffractometer | Bruker SMART 1000 diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.534, 0.572 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7867, 1618, 1169 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.129, 1.09 |
No. of reflections | 1618 |
No. of parameters | 162 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.48 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Innovation Project (gxun-chx2009080) of Guangxi University for Nationalities.
References
Garcia, Y., Bravic, G., Gieck, C., Chasseau, D. & Tremel, W. (2005). Inorg. Chem. 44, 9723–9730. Web of Science CSD CrossRef PubMed CAS Google Scholar
Haasnoot, J.-G. (2000). Chem. Rev. 131, 200–202. Google Scholar
Liu, J.-C., Guo, G.-C., Huang, J.-S. & You, X.-Z. (2003). Inorg. Chem. 42, 235–243. Web of Science CSD CrossRef PubMed CAS Google Scholar
Park, H., Moureau, D.-M. & Parise, J.-B. (2006). Chem. Mater. 18, 525–531. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 43, 33–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhao, X.-J., Wang, Q. & Du, M. (2007). Inorg. Chim. Acta. 360, 1970–1976. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,4-triazole and its derivatives, being used in pharmaceuticals and agricultural chemicals, have attracted ever-increasing attention in coordination chemistry (Haasnoot et al., 2000, Zhao et al., 2007). The coordination versatility of 1, 2, 4-triazole as a reliable bridging ligand, i.e. adopting diverse binding fashions upon metal complexation, will be responsible for structural diversity of the resulting coordination frameworks (Liu et al., 2003, Park et al., 2006, Yi et al., 2004, Garcia et al., 2005). Now, we present the synthesis and structure analysis of the title Hflu complex derived from bis-fluconazolato-di-copper diperchlorate. The distinct binding modes of the ligands (Scheme 1) and the coordination preferences of the metal ion are discussed. The title binuclear copper(II) compound, C26H22Cl2Cu2F4N12O10, reveals a centro-symmetric arrangement. The coordination of Cu1 is achieved by 1, 2, 4-triazole-N and flu-O ligands (Fig. 1); two oxygen atoms of fluconazole molecule form rhombus with two copper atoms with Cu-O1 bond of 1.927 (2) Å, forming a Z-style structure. The perchlorate ion is not coordinated to CuII atom. It take a part in formation of an ornament of 'palace lantern-style'geometry (Fig. 2). The perchlorate anions adopt two crystallographic orientations in the crystal lattice with occupancy factors of 0.576 and 0.424. The dihedral angle between two 1, 2, 4-triazole groups in the same fluconazole ligand is 68.25 (9) ° and the dihedral angle between two ipso-lateral 1, 2, 4-triazole groups in the same molecular binuclear copper cluster is 68.25 (9) ° (Fig. 1). In order to achieve the optimum coordination, fluconazole molecules were adjusted into epsilon-type arrangement.