organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{5-[2-(4-Nitro­phen­­oxy)phen­yl]-1-phenyl-1H-pyrazol-3-yl}phenol

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany, and cNational Engineering and Scientific Commission, PO Box 2216, Islamabad, Pakistan
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 23 February 2010; accepted 3 March 2010; online 10 March 2010)

In the title compound, C27H19N3O4, the phenol and pyrazole rings are almost coplanar [dihedral angle = 0.95 (12)°] due to an intra­molecular O—H⋯N hydrogen bond, whereas the phenyl ring is tilted by 40.81 (7)° with respect to the plane of the pyrazole ring. The aromatic ring with a nitro­phen­oxy substituent makes a dihedral angle of 54.10 (7)° with the pyrazole ring.

Related literature

For pyrazole-containing derivatives, see: Habeeb et al. (2001[Habeeb, A. G., Rao, P. N. P. & Knaus, E. E. (2001). J. Med. Chem. 44, 3039-3042.]); Hashimoto et al. (2002[Hashimoto, H., Imamura, K., Haruta, J. I. & Wakitani, K. (2002). J. Med. Chem. 45, 1511-1517.]); Ranatunge et al. (2004[Ranatunge, R. R., Earl, R. A., Garvey, D. S., Janero, D. R., Letts, L. G., Martino, A. M., Murty, M. G., Richardson, S. K., Schwalb, D. J., Young, D. V. & Zemtseva, I. S. (2004). Bioorg. Med. Chem. 14, 6049-6052.]); Elzein et al. (2006[Elzein, E., Kalla, R., Li, X., Perry, T., Parkhill, E., Palle, V., Varkhedkar, V., Gimbel, A., Zeng, D., Lustig, D., Leung, D. & Zablocki, J. (2006). Bioorg. Med. Chem. Lett. 16, 302-306.]); Singh et al. (2005[Singh, S. K., Saibaba, V., Rao, V., Reddy, P. G., Daga, P. R., Rajjak, S. A., Misra, P. & Rao, Y. K. (2005). Eur. J. Med. Chem. 40, 977-990.]). For the properties and applications of aromatic polymers with diazole rings in the main chain, see: Bruma et al. (2003[Bruma, M., Hamciuc, E., Schulz, B., Kopnick, T., Kaminorz, Y. & Robison, J. (2003). Macromol. Symp. 199, 511-521.]); Sava et al. (2003[Sava, I., Iosip, M. D., Bruma, M., Hamciuc, C., Robison, J., Okrasa, L. & Pakula, T. (2003). Eur. Polym. J. 39, 725-738.], 2006[Sava, I., Ronova, I. A. & Bruma, M. (2006). Polym. J. 38, 940-948.]); Schulz et al. (1997[Schulz, B., Bruma, M. & Brehmer, L. (1997). Adv. Mater. 9, 601-613.]). For the preparation of 2-(3-(2-hydroxy­phen­yl)-1-phenyl-1H-pyrazol-5-yl)phenol, see: Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]).

[Scheme 1]

Experimental

Crystal data
  • C27H19N3O4

  • Mr = 449.45

  • Monoclinic, P 21 /n

  • a = 12.1361 (12) Å

  • b = 10.9072 (12) Å

  • c = 16.6380 (16) Å

  • β = 98.081 (8)°

  • V = 2180.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.32 × 0.31 × 0.28 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 12421 measured reflections

  • 4064 independent reflections

  • 2486 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.076

  • S = 0.81

  • 4064 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.90 (2) 1.81 (3) 2.604 (2) 146 (2)

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrazole containing derivatives are attracted attention due to their biological properties and their outstanding functions as a part of aromatic polymer chains. The pyrazole unit is one of the core structures in a number of natural products and has been attracted attention in the field of biology (Habeeb et al., 2001, Hashimoto et al. 2002). Extensive studies have been devoted to arylpyrazole derivatives such as celecoxib,a well-known cyclooxygenase-2 inhibitor (Ranatunge et al., 2004; Singh et al. 2005). Recently, pyrazole derivatives have been reported as high affinity and selective A2B adenosine receptor antagonist (Elzein et al., 2006). On the other hand, it was shown that aromatic polymer with diazole rings in the main chain exhibit high thermal resistance in oxidative atmosphere, good hydrolytic stability, low dielectric permittivity, high toughness and other special properties which are determined by the electronic structure of this particular heterocycle (Schulz et al., 1997; Sava et al., 2003). The incorporation of oxadiazole and imide rings together with flexible groups into the polymer chain is expected to provide a combination of high-performance properties and processability (Bruma et al., 2003, Sava et al., 2006). The title compound, 2-(5-(2-(4-nitrophenoxy)phenyl)-1-phenyl-1H-pyrazol-3-yl)phenol has the prerequisite arylether linkages along with the hydroxyl and nitro-moieties and therefore can be an attractive synthon in material for biological application.

The o-phenol ring and the pyrazole ring in the title compound are almost coplanar [dihedral angle 0.95 (12)°] due to an intramolecular hydrogen bond, whereas the phenyl ring is tilted by 40.81 (7)° to the pyrazole ring. The aromatic ring carrying the nitrophenoxy substitutent makes a dihedral angle of 54.10 (7)° with the pyrazol ring. Crystal packing is determined by van der Waals interactions.

Related literature top

For pyrazole-containing derivatives, see: Habeeb et al. (2001); Hashimoto et al. (2002); Ranatunge et al. (2004); Elzein et al. (2006); Singh et al. (2005). For the properties and applications of aromatic polymer with diazole rings in the main chain, see: Bruma et al. (2003); Sava et al. (2003, 2006); Schulz et al. (1997). For the preparation of 2-(3-(2-hydroxyphenyl)-1-phenyl-1H-pyrazol-5-yl)phenol, see: Mukherjee (2000).

Experimental top

A mixture of 0.961 g (0.0061 mol) of 4- nitrophenol, 2 g (0.0061 mol) of synthesized 2-(3-(2-hydroxyphenyl)-1-phenyl-1H-pyrazol-5-yl)phenol (Mukherjee, 2000) and 0.842 g (0.0061 mol) of potassium carbonate in 50 ml of DMF was heated with stirring at 393 K for 12 h. The reaction mixture was cooled to room temperature and poured into 800 ml of ice cold water which resulted the yellow precipitation. After being washed repeatedly with water, the product was collected by filtration and was recrystallized from DMF to yield 72% of product (m.p. 474 K).

Refinement top

Hydrogen atoms bonded to C were included in calculated positions [C—H = 0.95 Å] and refined as riding [Uiso(H) = 1.2Ueq(C)]. The hydroxyl H atom was freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The intramolecular hydrogen bond is shown as a dashed line.
2-{5-[2-(4-Nitrophenoxy)phenyl]-1-phenyl-1H-pyrazol-3-yl}phenol top
Crystal data top
C27H19N3O4F(000) = 936
Mr = 449.45Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6595 reflections
a = 12.1361 (12) Åθ = 3.4–26.0°
b = 10.9072 (12) ŵ = 0.09 mm1
c = 16.6380 (16) ÅT = 173 K
β = 98.081 (8)°Block, colourless
V = 2180.5 (4) Å30.32 × 0.31 × 0.28 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
2486 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 25.6°, θmin = 3.4°
ω scansh = 1414
12421 measured reflectionsk = 1113
4064 independent reflectionsl = 2018
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
4064 reflectionsΔρmax = 0.16 e Å3
312 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (5)
Crystal data top
C27H19N3O4V = 2180.5 (4) Å3
Mr = 449.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1361 (12) ŵ = 0.09 mm1
b = 10.9072 (12) ÅT = 173 K
c = 16.6380 (16) Å0.32 × 0.31 × 0.28 mm
β = 98.081 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2486 reflections with I > 2σ(I)
12421 measured reflectionsRint = 0.057
4064 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.81Δρmax = 0.16 e Å3
4064 reflectionsΔρmin = 0.15 e Å3
312 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.65535 (10)0.61876 (14)0.45161 (9)0.0274 (3)
N20.57870 (10)0.70777 (14)0.42624 (9)0.0286 (4)
N31.03923 (12)1.04191 (16)0.68913 (12)0.0408 (4)
C30.53351 (12)0.73920 (17)0.49247 (11)0.0278 (4)
C40.58124 (12)0.67048 (18)0.56011 (11)0.0306 (4)
H40.56340.67510.61380.037*
C50.65914 (12)0.59517 (17)0.53256 (11)0.0273 (4)
O10.89602 (9)0.60627 (12)0.53359 (7)0.0312 (3)
O20.44973 (10)0.86574 (14)0.34163 (8)0.0376 (3)
H20.5028 (18)0.808 (2)0.3516 (15)0.067 (8)*
O31.00823 (12)1.06753 (14)0.75453 (10)0.0531 (4)
O41.09471 (11)1.11286 (14)0.65330 (10)0.0533 (4)
C110.71384 (12)0.56211 (17)0.39239 (11)0.0272 (4)
C120.75161 (13)0.63578 (18)0.33421 (11)0.0315 (4)
H120.73980.72190.33410.038*
C130.80707 (13)0.5813 (2)0.27611 (12)0.0378 (5)
H130.83230.63040.23520.045*
C140.82606 (14)0.4566 (2)0.27703 (12)0.0408 (5)
H140.86500.42050.23730.049*
C150.78832 (14)0.3838 (2)0.33594 (12)0.0382 (5)
H150.80180.29800.33670.046*
C160.73091 (13)0.43615 (18)0.39379 (12)0.0326 (4)
H160.70370.38660.43370.039*
C210.73660 (12)0.50662 (17)0.57734 (11)0.0280 (4)
C220.85183 (13)0.51311 (17)0.57759 (11)0.0277 (4)
C230.92304 (14)0.42891 (18)0.61848 (12)0.0341 (5)
H231.00060.43330.61560.041*
C240.88194 (15)0.33786 (19)0.66389 (13)0.0392 (5)
H240.93110.28030.69300.047*
C250.76912 (15)0.33115 (19)0.66670 (13)0.0388 (5)
H250.74060.26930.69830.047*
C260.69702 (14)0.41432 (18)0.62353 (12)0.0335 (5)
H260.61940.40820.62550.040*
C310.93323 (12)0.70939 (17)0.57673 (11)0.0274 (4)
C320.91071 (14)0.73406 (18)0.65426 (12)0.0341 (5)
H320.87050.67670.68180.041*
C330.94728 (14)0.84307 (19)0.69138 (12)0.0382 (5)
H330.93120.86180.74430.046*
C341.00691 (13)0.92394 (17)0.65128 (12)0.0318 (4)
C351.03368 (13)0.89819 (18)0.57519 (12)0.0335 (5)
H351.07740.95390.54920.040*
C360.99614 (13)0.79031 (18)0.53732 (12)0.0317 (4)
H361.01320.77150.48470.038*
C410.44668 (12)0.83512 (17)0.48557 (11)0.0284 (4)
C420.40952 (13)0.89354 (18)0.41212 (11)0.0304 (4)
C430.32725 (13)0.98405 (19)0.40739 (12)0.0367 (5)
H430.30221.02270.35690.044*
C440.28269 (14)1.01707 (19)0.47573 (13)0.0396 (5)
H440.22671.07850.47240.047*
C450.31869 (13)0.96169 (19)0.54894 (13)0.0384 (5)
H450.28810.98550.59610.046*
C460.39962 (13)0.87122 (18)0.55412 (12)0.0347 (5)
H460.42350.83310.60490.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0278 (7)0.0289 (9)0.0260 (9)0.0040 (6)0.0051 (6)0.0014 (7)
N20.0287 (7)0.0283 (9)0.0292 (9)0.0042 (6)0.0050 (6)0.0002 (7)
N30.0400 (8)0.0317 (10)0.0474 (12)0.0007 (7)0.0058 (8)0.0061 (9)
C30.0255 (8)0.0306 (11)0.0285 (11)0.0022 (7)0.0074 (7)0.0023 (9)
C40.0299 (8)0.0367 (12)0.0262 (10)0.0001 (8)0.0078 (7)0.0001 (9)
C50.0284 (8)0.0276 (11)0.0261 (10)0.0017 (7)0.0051 (7)0.0025 (8)
O10.0335 (6)0.0338 (8)0.0273 (7)0.0074 (5)0.0080 (5)0.0027 (6)
O20.0424 (7)0.0438 (9)0.0278 (8)0.0089 (6)0.0094 (6)0.0037 (7)
O30.0711 (9)0.0403 (10)0.0465 (10)0.0033 (7)0.0033 (8)0.0080 (8)
O40.0550 (8)0.0366 (9)0.0659 (11)0.0147 (7)0.0001 (7)0.0073 (9)
C110.0250 (8)0.0314 (11)0.0249 (10)0.0014 (7)0.0027 (7)0.0039 (9)
C120.0312 (8)0.0327 (11)0.0312 (11)0.0015 (8)0.0067 (7)0.0015 (10)
C130.0346 (9)0.0493 (14)0.0304 (12)0.0051 (9)0.0084 (8)0.0015 (10)
C140.0342 (9)0.0555 (15)0.0319 (12)0.0109 (9)0.0024 (8)0.0108 (11)
C150.0401 (9)0.0345 (12)0.0375 (12)0.0094 (8)0.0029 (8)0.0119 (11)
C160.0350 (9)0.0294 (11)0.0321 (11)0.0003 (8)0.0007 (8)0.0008 (9)
C210.0307 (8)0.0279 (11)0.0257 (10)0.0016 (7)0.0045 (7)0.0026 (9)
C220.0314 (8)0.0260 (11)0.0261 (10)0.0037 (7)0.0056 (7)0.0031 (9)
C230.0328 (9)0.0341 (12)0.0347 (11)0.0042 (8)0.0017 (8)0.0027 (10)
C240.0428 (10)0.0316 (12)0.0409 (12)0.0069 (9)0.0019 (8)0.0017 (10)
C250.0495 (11)0.0294 (11)0.0369 (12)0.0049 (9)0.0043 (9)0.0077 (10)
C260.0340 (9)0.0324 (12)0.0343 (11)0.0050 (8)0.0055 (8)0.0017 (10)
C310.0238 (8)0.0289 (11)0.0292 (11)0.0013 (7)0.0022 (7)0.0009 (9)
C320.0402 (9)0.0333 (12)0.0304 (11)0.0071 (8)0.0101 (8)0.0012 (10)
C330.0492 (10)0.0362 (12)0.0300 (11)0.0045 (9)0.0088 (9)0.0014 (10)
C340.0315 (8)0.0259 (11)0.0355 (11)0.0016 (7)0.0035 (8)0.0025 (9)
C350.0280 (8)0.0317 (12)0.0414 (12)0.0018 (8)0.0067 (8)0.0081 (10)
C360.0303 (9)0.0349 (12)0.0312 (11)0.0010 (8)0.0093 (8)0.0051 (10)
C410.0260 (8)0.0300 (11)0.0298 (11)0.0007 (7)0.0066 (7)0.0027 (9)
C420.0293 (8)0.0317 (11)0.0311 (11)0.0014 (8)0.0070 (7)0.0029 (9)
C430.0338 (9)0.0385 (13)0.0376 (12)0.0047 (8)0.0047 (8)0.0024 (10)
C440.0279 (8)0.0406 (13)0.0502 (14)0.0061 (8)0.0052 (8)0.0034 (11)
C450.0305 (9)0.0474 (14)0.0394 (12)0.0030 (8)0.0119 (8)0.0093 (11)
C460.0317 (8)0.0428 (13)0.0302 (11)0.0009 (8)0.0064 (7)0.0016 (10)
Geometric parameters (Å, º) top
N1—C51.366 (2)C22—C231.374 (3)
N1—N21.370 (2)C23—C241.383 (3)
N1—C111.433 (2)C23—H230.9500
N2—C31.343 (2)C24—C251.378 (3)
N3—O31.232 (2)C24—H240.9500
N3—O41.233 (2)C25—C261.388 (3)
N3—C341.462 (3)C25—H250.9500
C3—C41.407 (3)C26—H260.9500
C3—C411.478 (2)C31—C321.382 (3)
C4—C51.379 (2)C31—C361.390 (2)
C4—H40.9500C32—C331.384 (3)
C5—C211.475 (2)C32—H320.9500
O1—C311.376 (2)C33—C341.372 (3)
O1—C221.402 (2)C33—H330.9500
O2—C421.366 (2)C34—C351.379 (3)
O2—H20.90 (2)C35—C361.381 (3)
C11—C121.385 (3)C35—H350.9500
C11—C161.389 (3)C36—H360.9500
C12—C131.387 (3)C41—C421.396 (3)
C12—H120.9500C41—C461.402 (2)
C13—C141.380 (3)C42—C431.398 (3)
C13—H130.9500C43—C441.374 (3)
C14—C151.388 (3)C43—H430.9500
C14—H140.9500C44—C451.375 (3)
C15—C161.388 (3)C44—H440.9500
C15—H150.9500C45—C461.386 (3)
C16—H160.9500C45—H450.9500
C21—C261.392 (3)C46—H460.9500
C21—C221.400 (2)
C5—N1—N2111.39 (14)C25—C24—C23119.53 (18)
C5—N1—C11130.22 (15)C25—C24—H24120.2
N2—N1—C11118.32 (14)C23—C24—H24120.2
C3—N2—N1105.44 (15)C24—C25—C26120.30 (19)
O3—N3—O4122.67 (18)C24—C25—H25119.9
O3—N3—C34118.89 (17)C26—C25—H25119.9
O4—N3—C34118.42 (18)C25—C26—C21121.11 (16)
N2—C3—C4110.53 (15)C25—C26—H26119.4
N2—C3—C41119.08 (17)C21—C26—H26119.4
C4—C3—C41130.39 (16)O1—C31—C32123.54 (16)
C5—C4—C3106.01 (15)O1—C31—C36115.77 (16)
C5—C4—H4127.0C32—C31—C36120.69 (17)
C3—C4—H4127.0C31—C32—C33119.39 (18)
N1—C5—C4106.63 (15)C31—C32—H32120.3
N1—C5—C21123.53 (15)C33—C32—H32120.3
C4—C5—C21129.83 (16)C34—C33—C32119.56 (18)
C31—O1—C22116.21 (13)C34—C33—H33120.2
C42—O2—H2109.2 (16)C32—C33—H33120.2
C12—C11—C16121.49 (17)C33—C34—C35121.58 (18)
C12—C11—N1118.36 (16)C33—C34—N3118.97 (18)
C16—C11—N1120.14 (17)C35—C34—N3119.41 (17)
C11—C12—C13118.65 (18)C34—C35—C36119.14 (17)
C11—C12—H12120.7C34—C35—H35120.4
C13—C12—H12120.7C36—C35—H35120.4
C14—C13—C12120.76 (19)C35—C36—C31119.57 (17)
C14—C13—H13119.6C35—C36—H36120.2
C12—C13—H13119.6C31—C36—H36120.2
C13—C14—C15120.03 (18)C42—C41—C46117.76 (16)
C13—C14—H14120.0C42—C41—C3122.02 (16)
C15—C14—H14120.0C46—C41—C3120.22 (17)
C16—C15—C14120.2 (2)O2—C42—C41122.68 (16)
C16—C15—H15119.9O2—C42—C43116.53 (17)
C14—C15—H15119.9C41—C42—C43120.79 (17)
C15—C16—C11118.91 (19)C44—C43—C42119.95 (19)
C15—C16—H16120.5C44—C43—H43120.0
C11—C16—H16120.5C42—C43—H43120.0
C26—C21—C22117.19 (16)C43—C44—C45120.34 (18)
C26—C21—C5120.50 (14)C43—C44—H44119.8
C22—C21—C5122.28 (16)C45—C44—H44119.8
C23—C22—C21121.75 (17)C44—C45—C46120.14 (18)
C23—C22—O1118.87 (14)C44—C45—H45119.9
C21—C22—O1119.37 (15)C46—C45—H45119.9
C22—C23—C24120.04 (16)C45—C46—C41121.02 (18)
C22—C23—H23120.0C45—C46—H46119.5
C24—C23—H23120.0C41—C46—H46119.5
C5—N1—N2—C30.50 (19)C22—C23—C24—C251.0 (3)
C11—N1—N2—C3176.84 (14)C23—C24—C25—C260.7 (3)
N1—N2—C3—C40.04 (19)C24—C25—C26—C210.6 (3)
N1—N2—C3—C41179.75 (15)C22—C21—C26—C251.1 (3)
N2—C3—C4—C50.4 (2)C5—C21—C26—C25179.30 (18)
C41—C3—C4—C5179.25 (18)C22—O1—C31—C3212.3 (2)
N2—N1—C5—C40.76 (19)C22—O1—C31—C36167.88 (15)
C11—N1—C5—C4176.16 (16)O1—C31—C32—C33176.95 (16)
N2—N1—C5—C21177.86 (15)C36—C31—C32—C332.8 (3)
C11—N1—C5—C215.2 (3)C31—C32—C33—C341.1 (3)
C3—C4—C5—N10.69 (19)C32—C33—C34—C351.5 (3)
C3—C4—C5—C21177.80 (17)C32—C33—C34—N3176.35 (16)
C5—N1—C11—C12141.18 (18)O3—N3—C34—C332.9 (2)
N2—N1—C11—C1242.1 (2)O4—N3—C34—C33178.57 (17)
C5—N1—C11—C1639.2 (3)O3—N3—C34—C35174.99 (17)
N2—N1—C11—C16137.50 (16)O4—N3—C34—C353.6 (2)
C16—C11—C12—C130.4 (3)C33—C34—C35—C362.3 (3)
N1—C11—C12—C13179.21 (15)N3—C34—C35—C36175.46 (15)
C11—C12—C13—C141.2 (3)C34—C35—C36—C310.6 (2)
C12—C13—C14—C150.8 (3)O1—C31—C36—C35177.84 (14)
C13—C14—C15—C160.3 (3)C32—C31—C36—C351.9 (3)
C14—C15—C16—C111.1 (3)N2—C3—C41—C420.5 (3)
C12—C11—C16—C150.8 (3)C4—C3—C41—C42179.89 (18)
N1—C11—C16—C15179.68 (15)N2—C3—C41—C46178.83 (16)
N1—C5—C21—C26127.17 (19)C4—C3—C41—C460.8 (3)
C4—C5—C21—C2654.6 (3)C46—C41—C42—O2179.91 (16)
N1—C5—C21—C2254.8 (3)C3—C41—C42—O20.6 (3)
C4—C5—C21—C22123.5 (2)C46—C41—C42—C430.7 (3)
C26—C21—C22—C232.9 (3)C3—C41—C42—C43179.97 (17)
C5—C21—C22—C23178.94 (18)O2—C42—C43—C44180.00 (17)
C26—C21—C22—O1178.47 (16)C41—C42—C43—C440.5 (3)
C5—C21—C22—O10.4 (3)C42—C43—C44—C450.1 (3)
C31—O1—C22—C2385.43 (19)C43—C44—C45—C460.6 (3)
C31—O1—C22—C2195.94 (18)C44—C45—C46—C410.5 (3)
C21—C22—C23—C242.9 (3)C42—C41—C46—C450.2 (3)
O1—C22—C23—C24178.47 (17)C3—C41—C46—C45179.50 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.90 (2)1.81 (3)2.604 (2)146 (2)

Experimental details

Crystal data
Chemical formulaC27H19N3O4
Mr449.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)12.1361 (12), 10.9072 (12), 16.6380 (16)
β (°) 98.081 (8)
V3)2180.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.31 × 0.28
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12421, 4064, 2486
Rint0.057
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.076, 0.81
No. of reflections4064
No. of parameters312
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.90 (2)1.81 (3)2.604 (2)146 (2)
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, Islamabad, and the Institute for Inorganic Chemistry, University of Frankfurt, for providing laboratory and analytical facilities. The authors are also grateful to the Higher Education Commission of Pakistan for financial support through Project No. 20–723/R&D/06/191.

References

First citationBruma, M., Hamciuc, E., Schulz, B., Kopnick, T., Kaminorz, Y. & Robison, J. (2003). Macromol. Symp. 199, 511–521.  Web of Science CrossRef CAS Google Scholar
First citationElzein, E., Kalla, R., Li, X., Perry, T., Parkhill, E., Palle, V., Varkhedkar, V., Gimbel, A., Zeng, D., Lustig, D., Leung, D. & Zablocki, J. (2006). Bioorg. Med. Chem. Lett. 16, 302–306.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHabeeb, A. G., Rao, P. N. P. & Knaus, E. E. (2001). J. Med. Chem. 44, 3039–3042.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHashimoto, H., Imamura, K., Haruta, J. I. & Wakitani, K. (2002). J. Med. Chem. 45, 1511–1517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationRanatunge, R. R., Earl, R. A., Garvey, D. S., Janero, D. R., Letts, L. G., Martino, A. M., Murty, M. G., Richardson, S. K., Schwalb, D. J., Young, D. V. & Zemtseva, I. S. (2004). Bioorg. Med. Chem. 14, 6049–6052.  CrossRef CAS Google Scholar
First citationSava, I., Iosip, M. D., Bruma, M., Hamciuc, C., Robison, J., Okrasa, L. & Pakula, T. (2003). Eur. Polym. J. 39, 725–738.  Web of Science CrossRef CAS Google Scholar
First citationSava, I., Ronova, I. A. & Bruma, M. (2006). Polym. J. 38, 940–948.  Web of Science CrossRef CAS Google Scholar
First citationSchulz, B., Bruma, M. & Brehmer, L. (1997). Adv. Mater. 9, 601–613.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. K., Saibaba, V., Rao, V., Reddy, P. G., Daga, P. R., Rajjak, S. A., Misra, P. & Rao, Y. K. (2005). Eur. J. Med. Chem. 40, 977–990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds