metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m475-m476

Tetra­ethyl­ammonium (2,2′-bi­pyridine)tetra­cyanidocobaltate(III) sesquihydrate aceto­nitrile solvate

aDepartment of Chemistry and Physics, College of Science and Technology, Southern Arkansas University, Magnolia, AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: GannaLyubartseva@saumag.edu

(Received 19 March 2010; accepted 25 March 2010; online 31 March 2010)

The title complex, (C8H20N)[Co(CN)4(C10H8N2)]·CH3CN·1.5H2O, consists of tetra­ethyl ammonium cations, mononuclear [CoIIIbpy(CN)4] anions and uncoordinated water and acetonitrile mol­ecules. The CoIII atom is six-coordinated by two 2,2′-bipyridine (bpy) N atoms and four cyanide C atoms in a distorted octa­hedral geometry. The acute bite angle of the chelating bpy [82.28 (8)°] is the main factor accounting for this distortion. In addition, the tetra­ethyl­ammonium cation is significantly disordered [occupancy ratio 0.611 (3):0.389 (3)]. The presence of water mol­ecules, one of which is disordered over two positions about an inversion center, results in the formation of a network of O—H⋯N hydrogen bonds involving the cyanide N atoms.

Related literature

For the starting complex [Co(bpy)3]Cl2·2H2O·CH3CH2OH, see: Szalda et al. (1983[Szalda, D. J., Creutz, C., Mahajan, D. & Sutin, N. (1983). Inorg. Chem. 22, 2372-2379.]). For a similar building block with a tetra­phenyl­phospho­nium cation and chromium(III), and a nuclearity controlled cyanide-bridged bimetallic compound, see: Toma et al. (2004[Toma, L., Lescouezec, R., Vaissermann, J., Delgado, F. S., Ruiz-Perez, C., Carrasco, R., Cano, J., Lloret, F. & Julve, M. (2004). Chem. Eur. J. 10, 6130-6145.]); with a potassium cation and tetra­phenyl­arsonium cation and iron(III), and cyanide-bridged heterobimetallic complexes, see: Toma et al. (2007[Toma, L., Lescouezec, R., Uriel, S., Llusar, R., Ruiz-Perez, C., Vaissermann, J., Lloret, F. & Julve, M. (2007). J. Chem. Soc. Dalton Trans. pp. 3690-3698.]); with a tetra­phenyl­phospho­nium cation and iron(III) and ribbon-like ferromagnetic cyano-bridged chains, see: Lescoueezec et al. (2002[Lescoueezec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2002). Inorg. Chem. 41, 818-826.]). For potential applications of bimetallic clusters as catalysts, see: Darensbourg & Phelps (2004[Darensbourg, J. & Phelps, A. L. (2004). Inorg. Chim. Acta, 357, 1603-1607.]), as room temperature magnets, see: Mallah et al. (1993[Mallah, T., Thibault, S., Verdaguer, M. & Veillet, P. (1993). Science, 262, 1554-1557.]); Garde et al. (2002[Garde, R., Villain, F. & Verdaguer, M. (2002). J. Am. Chem. Soc. 124, 10531-10538.]); Holmes & Girolami (1999[Holmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593-5594.]) and as single-mol­ecule magnets, see: Sokol et al. (2002[Sokol, J. J., Hee, A. G. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 7656-7657.]). For attempts to make a similar building block with nickel(II), see: Lyubartseva & Parkin (2009[Lyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Co(CN)4(C10H8N2)]·C2H3N·1.5H2O

  • Mr = 517.52

  • Monoclinic, P 21 /n

  • a = 10.1591 (1) Å

  • b = 23.4015 (3) Å

  • c = 11.3422 (2) Å

  • β = 97.3080 (5)°

  • V = 2674.57 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 90 K

  • 0.30 × 0.27 × 0.25 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.709, Tmax = 0.849

  • 28623 measured reflections

  • 4704 independent reflections

  • 3689 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 4704 reflections

  • 378 parameters

  • 60 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N5i 0.83 (2) 2.10 (2) 2.925 (3) 176 (3)
O1W—H2W1⋯N4 0.82 (2) 2.08 (2) 2.899 (3) 174 (3)
O2W—H1W2⋯N3 0.84 (2) 1.83 (2) 2.665 (5) 172 (7)
O2W—H2W2⋯N3ii 0.84 (2) 1.92 (2) 2.740 (5) 165 (7)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Self-assembly of cyano-linked metal complexes draws considerable interest as a strategy for developing new bimetallic clusters. Typically one needs a stable cyanometallate anion as a ligand for fully or partially solvated metal ions. Hexacyanometallate anion [M(CN)6]3- is very useful but it often gives three dimensional Prussian Blue analogs. If the metal ions are partially blocked with a bidentate ligand it is possible to control the nuclearity of the bimetallic clusters which have potential application as catalysts, see Darensbourg et al. (2004); room temperature magnets, see Mallah et al. (1993), Garde et al. (2002) and Holmes & Girolami (1999); or single-molecule magnets, see Sokol et al. (2002). Here we report a new building block [(CoIIIbpy(CN)4]-- which can be applied to make new bimetallic clusters.

The structure consists of tetraethyl ammonium cations, mononuclear [CoIIIbpy(CN)4]- anions, uncoordinated water and acetonitrile molecules. The cobalt (III) atom is six-coordinate with two bpy-nitrogen atoms and four cyanide-carbon atoms in a distorted octahedral geometry (Fig.1). The acute bite angle of the chelating bpy [82.28 (8)°] is the main factor accounting for this distortion from the ideal geometry. The values of the CoIII-nitrogen bond lengths are shorter than bond lengths in the similar chromium (III) anionic complex reported by Toma et al. (2004). The cobalt—carbon—nitrogen angles for the terminally bound cyanide ligands are quasilinear [178.5 (2)–179.5 (3)°]. The values of the cyanide bonds vary in the range 1.147 (4)–1.159 (3) Å. The presence of terminally bound cyanide groups in the structure is consistent with the presence of cyanide stretching vibrations at 2133(m)cm-1. Also, the tetraethyl ammonium cationic part is significantly disordered. Presence of water molecules, one of which is disordered over two positions about an inversion centre, results in the formation of a network of O—H···N hydrogen bonds involving nitrogen atoms of cyano ligands.

Related literature top

For the starting complex [Co(bpy)3]Cl2.2H20.CH3CH2OH, see: Szalda et al. (1983). For a similar building block with a tetraphenylphosphonium cation and chromium(III), and a nuclearity controlled cyanide-bridged bimetallic compound, see: Toma et al. (2004); with a potassium cation and tetraphenylarsonium cation and iron(III), and cyanide-bridged heterobimetallic complexes, see: Toma et al.(2007); with a tetraphenylphosphonium cation and iron(III) and ribbon-like ferromagnetic cyano-bridged chains, see: Lescoueezec et al. (2002). For potential applications of bimetallic clusters as catalysts, see: Darensbourg & Phelps (2004), as room temperature magnets, see: Mallah et al. (1993); Garde et al. (2002); Holmes & Girolami (1999) and as single-molecule magnets, see: Sokol et al. (2002). For attempts to make a similar building block with nickel(II), see: Lyubartseva & Parkin (2009).

Experimental top

2,2'-bipyridine and tetraethylammonium cyanide were purchased from Sigma-Aldrich and used as received. The starting complex [Co(bpy)3]Cl2.2H2O.CH3CH2OH was synthesized according to the previously published procedure by Szalda et al.(1983). [Co(bpy)3]Cl2.2H20.CH3CH2OH (680 mg, 1 mmol) was dissolved in 20 ml 1:1 mixture of methanol and acetonitrile. Tetraethylammonium cyanide (468 mg, 3 mmol) was dissolved in 10 ml wet acetonitrile. The cyanide solution was added dropwise to metal solution with slow stirring. Once the addition was complete, the resulting solution was filtered and solvent was evaporated slowly. Yellow coloured, analytically pure monoclinic crystals were obtained after one week and found to be [tetraethylammonium][(2-(pyridin-2-yl)pyridine) tetracyanocobaltate (III)]. 2H2O.CH3CN (198 mg, 37.6% yield). Elemental analysis calculated for CoC24H35N8O2: C 54.75, H 6.70, N 21.28; found C 55.55, H 6.49, N 20.43. IR(cm-1) 3496, 2997, 2133, 1578, 1557, 1453, 1412, 1313, 1250, 1185, 1083, 997, 791, 773,757,653, 620, 403.

Refinement top

H atoms on the anion, cation, and acetonitrile were found in difference Fourier maps and later placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), and 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom. The H atoms attached to O1w were found in a difference map. The partial occupancy O2w is within H-bonding distance of N3, so it was assumed that one of the hydrogen atoms of this water would be found between O2w and N3. Indeed, a pair of plausible hydrogen atoms were found in a difference map, with one of them between O2w and N3, in spite of the partial occupancy. The water hydrogens were constrained to distances of 0.84 Å and assigned Uiso of 1.5Ueq (O).

To ensure chemically sensible and physically reasonable structural parameters for the disordered cation, the SHELXL97 SAME and DELU restraints were used along with the EADP constraint. Water molecule geometry was restrained using the SHELXL97 DFIX command.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Tetraethylammonium (2,2'-bipyridine)tetracyanidocobaltate(III) sesquihydrate acetonitrile solvate top
Crystal data top
(C8H20N)[Co(CN)4(C10H8N2)]·C2H3N·1.5H2OF(000) = 1092
Mr = 517.52Dx = 1.285 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6273 reflections
a = 10.1591 (1) Åθ = 1.0–27.5°
b = 23.4015 (3) ŵ = 0.68 mm1
c = 11.3422 (2) ÅT = 90 K
β = 97.3080 (5)°Block, yellow
V = 2674.57 (6) Å30.30 × 0.27 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4704 independent reflections
Radiation source: fine-focus sealed tube3689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.1 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scans at fixed χ = 55°h = 1212
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 2727
Tmin = 0.709, Tmax = 0.849l = 1313
28623 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0481P)2 + 2.6305P]
where P = (Fo2 + 2Fc2)/3
4704 reflections(Δ/σ)max = 0.001
378 parametersΔρmax = 0.69 e Å3
60 restraintsΔρmin = 0.33 e Å3
Crystal data top
(C8H20N)[Co(CN)4(C10H8N2)]·C2H3N·1.5H2OV = 2674.57 (6) Å3
Mr = 517.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1591 (1) ŵ = 0.68 mm1
b = 23.4015 (3) ÅT = 90 K
c = 11.3422 (2) Å0.30 × 0.27 × 0.25 mm
β = 97.3080 (5)°
Data collection top
Nonius KappaCCD
diffractometer
4704 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
3689 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.849Rint = 0.048
28623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04160 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.69 e Å3
4704 reflectionsΔρmin = 0.33 e Å3
378 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.66787 (3)0.093308 (13)0.27408 (3)0.02317 (12)
N10.7419 (2)0.05486 (8)0.42108 (19)0.0238 (5)
N20.5597 (2)0.02349 (8)0.25393 (18)0.0240 (5)
C10.8401 (3)0.07455 (11)0.5019 (2)0.0292 (6)
H10.87820.11080.48950.035*
C20.8872 (3)0.04358 (12)0.6025 (3)0.0383 (7)
H20.95660.05840.65820.046*
C30.8320 (3)0.00906 (13)0.6209 (3)0.0431 (8)
H30.86260.03080.68960.052*
C40.7314 (3)0.02991 (12)0.5380 (2)0.0350 (7)
H40.69260.06610.54910.042*
C50.6881 (3)0.00296 (10)0.4384 (2)0.0254 (6)
C60.5839 (3)0.01476 (10)0.3436 (2)0.0239 (6)
C70.5152 (3)0.06600 (11)0.3423 (2)0.0287 (6)
H70.53390.09250.40570.034*
C80.4195 (3)0.07813 (11)0.2483 (2)0.0320 (6)
H80.37120.11290.24630.038*
C90.3946 (3)0.03900 (11)0.1567 (2)0.0321 (6)
H90.32930.04650.09090.039*
C100.4668 (3)0.01138 (11)0.1630 (2)0.0293 (6)
H100.44970.03830.10020.035*
N30.8813 (3)0.03848 (11)0.1447 (3)0.0600 (9)
C110.8014 (3)0.05929 (11)0.1935 (3)0.0350 (7)
N40.8354 (2)0.19977 (9)0.3179 (2)0.0337 (5)
C120.7721 (3)0.15893 (11)0.3010 (2)0.0263 (6)
N50.5526 (3)0.14664 (10)0.0403 (2)0.0375 (6)
C130.5958 (3)0.12650 (11)0.1303 (2)0.0293 (6)
N60.4571 (2)0.15090 (9)0.4029 (2)0.0281 (5)
C140.5359 (2)0.12964 (10)0.3530 (2)0.0224 (5)
N1C0.1397 (2)0.17482 (9)0.03158 (18)0.0240 (5)
C1C0.2239 (5)0.16359 (19)0.0684 (4)0.0317 (11)0.611 (3)
H1C10.19100.18830.13680.038*0.611 (3)
H1C20.31640.17520.04080.038*0.611 (3)
C2C0.225 (3)0.1027 (8)0.1111 (16)0.0409 (18)0.611 (3)
H2C10.28100.09970.17500.061*0.611 (3)
H2C20.13430.09090.14100.061*0.611 (3)
H2C30.26020.07780.04500.061*0.611 (3)
C3C0.0006 (4)0.1547 (2)0.0034 (4)0.0306 (11)0.611 (3)
H3C10.04950.16590.06910.037*0.611 (3)
H3C20.00070.11240.00050.037*0.611 (3)
C4C0.0712 (10)0.1778 (4)0.1124 (10)0.040 (2)0.611 (3)
H4C10.16200.16270.12440.060*0.611 (3)
H4C20.02410.16580.17850.060*0.611 (3)
H4C30.07390.21960.10900.060*0.611 (3)
C5C0.2059 (4)0.14187 (17)0.1426 (4)0.0271 (10)0.611 (3)
H5C10.20230.10050.12460.033*0.611 (3)
H5C20.30070.15300.15730.033*0.611 (3)
C6C0.1447 (19)0.1518 (9)0.2535 (7)0.029 (2)0.611 (3)
H6C10.19280.12970.31870.044*0.611 (3)
H6C20.05170.13960.24120.044*0.611 (3)
H6C30.14950.19250.27350.044*0.611 (3)
C7C0.1441 (5)0.23881 (17)0.0576 (4)0.0310 (11)0.611 (3)
H7C10.10560.25650.01830.037*0.611 (3)
H7C20.07700.24430.11270.037*0.611 (3)
C8C0.2393 (7)0.2726 (3)0.0975 (11)0.049 (2)0.611 (3)
H8C10.20460.31140.10360.074*0.611 (3)
H8C20.30690.27250.04310.074*0.611 (3)
H8C30.27890.25960.17620.074*0.611 (3)
C1C'0.1829 (7)0.1151 (3)0.0039 (6)0.0313 (17)0.389 (3)
H1C30.25150.10280.06870.038*0.389 (3)
H1C40.10580.08930.00490.038*0.389 (3)
C2C'0.237 (4)0.1069 (13)0.112 (3)0.0409 (18)0.389 (3)
H2C40.26430.06700.11960.061*0.389 (3)
H2C50.31410.13190.11500.061*0.389 (3)
H2C60.16850.11640.17810.061*0.389 (3)
C3C'0.0367 (7)0.1966 (3)0.0737 (6)0.0302 (16)0.389 (3)
H3C30.00680.23530.05390.036*0.389 (3)
H3C40.08200.20000.14570.036*0.389 (3)
C4C'0.0849 (16)0.1587 (7)0.1027 (18)0.040 (2)0.389 (3)
H4C40.14280.17490.17010.060*0.389 (3)
H4C50.13330.15660.03340.060*0.389 (3)
H4C60.05690.12030.12320.060*0.389 (3)
C5C'0.0653 (6)0.1730 (3)0.1398 (5)0.0225 (14)0.389 (3)
H5C30.02020.21010.14670.027*0.389 (3)
H5C40.00390.14310.12730.027*0.389 (3)
C6C'0.152 (3)0.1611 (15)0.2544 (12)0.029 (2)0.389 (3)
H6C40.09820.16010.31990.044*0.389 (3)
H6C50.21940.19130.26910.044*0.389 (3)
H6C60.19670.12410.24910.044*0.389 (3)
C7C'0.2528 (6)0.2158 (3)0.0447 (6)0.0274 (16)0.389 (3)
H7C30.33070.19020.06160.033*0.389 (3)
H7C40.25510.22910.03780.033*0.389 (3)
C8C'0.2884 (13)0.2594 (5)0.1049 (17)0.049 (2)0.389 (3)
H8C40.37140.27410.08110.074*0.389 (3)
H8C50.30210.24940.18950.074*0.389 (3)
H8C60.21940.28880.09110.074*0.389 (3)
N1S0.0766 (3)0.15711 (15)0.6193 (3)0.0686 (10)
C1S0.1527 (3)0.18783 (14)0.5901 (3)0.0407 (7)
C2S0.2493 (3)0.22731 (12)0.5543 (3)0.0404 (7)
H2S10.20600.25310.49330.061*
H2S20.31970.20600.52200.061*
H2S30.28790.24960.62330.061*
O1W1.0262 (2)0.29166 (9)0.31420 (19)0.0423 (5)
H1W11.034 (3)0.3105 (13)0.376 (2)0.063*
H2W10.969 (3)0.2672 (12)0.318 (3)0.063*
O2W1.1073 (4)0.0035 (2)0.0843 (4)0.0494 (12)0.50
H1W21.032 (4)0.008 (3)0.098 (6)0.074*0.50
H2W21.098 (7)0.010 (3)0.011 (2)0.074*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0327 (2)0.01501 (19)0.0242 (2)0.00140 (14)0.01285 (15)0.00014 (14)
N10.0272 (11)0.0178 (10)0.0289 (12)0.0035 (9)0.0129 (9)0.0010 (9)
N20.0318 (12)0.0179 (10)0.0246 (12)0.0017 (9)0.0120 (9)0.0022 (9)
C10.0329 (15)0.0223 (13)0.0335 (15)0.0050 (11)0.0084 (12)0.0009 (12)
C20.0467 (17)0.0315 (16)0.0353 (17)0.0054 (13)0.0001 (14)0.0007 (13)
C30.059 (2)0.0351 (17)0.0338 (17)0.0089 (15)0.0020 (15)0.0095 (14)
C40.0479 (17)0.0244 (14)0.0336 (16)0.0089 (13)0.0081 (13)0.0046 (12)
C50.0329 (14)0.0190 (13)0.0265 (14)0.0009 (11)0.0126 (11)0.0009 (11)
C60.0332 (14)0.0179 (12)0.0231 (13)0.0008 (11)0.0133 (11)0.0028 (10)
C70.0417 (16)0.0185 (13)0.0289 (15)0.0041 (11)0.0162 (12)0.0008 (11)
C80.0396 (16)0.0212 (13)0.0376 (16)0.0090 (12)0.0149 (13)0.0090 (12)
C90.0389 (16)0.0281 (14)0.0302 (15)0.0043 (12)0.0076 (12)0.0081 (12)
C100.0416 (16)0.0222 (14)0.0253 (14)0.0005 (12)0.0094 (12)0.0015 (11)
N30.086 (2)0.0285 (14)0.078 (2)0.0051 (14)0.0623 (19)0.0012 (14)
C110.0521 (18)0.0173 (14)0.0405 (17)0.0043 (12)0.0255 (14)0.0019 (12)
N40.0389 (13)0.0227 (12)0.0425 (14)0.0040 (11)0.0167 (11)0.0010 (10)
C120.0306 (14)0.0215 (14)0.0297 (14)0.0042 (12)0.0153 (11)0.0035 (11)
N50.0548 (16)0.0277 (13)0.0315 (14)0.0001 (11)0.0113 (12)0.0055 (11)
C130.0422 (16)0.0190 (13)0.0299 (16)0.0052 (12)0.0166 (13)0.0024 (12)
N60.0300 (12)0.0221 (11)0.0337 (13)0.0004 (9)0.0100 (10)0.0031 (10)
C140.0287 (14)0.0161 (12)0.0227 (13)0.0052 (10)0.0048 (11)0.0003 (10)
N1C0.0295 (11)0.0203 (11)0.0236 (11)0.0016 (9)0.0087 (9)0.0000 (9)
C1C0.041 (3)0.035 (3)0.022 (2)0.007 (2)0.0130 (19)0.0034 (19)
C2C0.048 (4)0.038 (3)0.0396 (18)0.006 (3)0.015 (2)0.0112 (17)
C3C0.028 (2)0.036 (3)0.029 (2)0.0050 (19)0.0056 (18)0.006 (2)
C4C0.042 (3)0.049 (7)0.028 (2)0.003 (4)0.000 (2)0.002 (4)
C5C0.031 (2)0.021 (2)0.028 (2)0.0054 (18)0.0038 (18)0.0008 (18)
C6C0.038 (2)0.021 (7)0.0286 (15)0.004 (3)0.0031 (14)0.0039 (17)
C7C0.046 (3)0.020 (2)0.027 (2)0.0013 (19)0.007 (2)0.0004 (18)
C8C0.080 (6)0.029 (4)0.048 (3)0.016 (4)0.043 (5)0.016 (3)
C1C'0.037 (4)0.015 (3)0.044 (4)0.002 (3)0.015 (3)0.006 (3)
C2C'0.048 (4)0.038 (3)0.0396 (18)0.006 (3)0.015 (2)0.0112 (17)
C3C'0.039 (4)0.029 (4)0.022 (3)0.002 (3)0.003 (3)0.001 (3)
C4C'0.042 (3)0.049 (7)0.028 (2)0.003 (4)0.000 (2)0.002 (4)
C5C'0.022 (3)0.021 (3)0.027 (3)0.000 (3)0.011 (3)0.006 (3)
C6C'0.038 (2)0.021 (7)0.0286 (15)0.004 (3)0.0031 (14)0.0039 (17)
C7C'0.031 (4)0.021 (3)0.033 (4)0.007 (3)0.012 (3)0.003 (3)
C8C'0.080 (6)0.029 (4)0.048 (3)0.016 (4)0.043 (5)0.016 (3)
N1S0.078 (2)0.082 (2)0.0462 (18)0.045 (2)0.0083 (16)0.0021 (16)
C1S0.0477 (18)0.0448 (18)0.0296 (16)0.0135 (15)0.0054 (14)0.0090 (14)
C2S0.0436 (17)0.0330 (16)0.0486 (19)0.0068 (13)0.0212 (15)0.0123 (14)
O1W0.0548 (14)0.0344 (12)0.0429 (13)0.0221 (10)0.0265 (11)0.0162 (10)
O2W0.033 (2)0.078 (3)0.035 (2)0.018 (2)0.0045 (19)0.015 (2)
Geometric parameters (Å, º) top
Co1—C121.868 (3)C4C—H4C10.9800
Co1—C131.869 (3)C4C—H4C20.9800
Co1—C111.904 (3)C4C—H4C30.9800
Co1—C141.904 (3)C5C—C6C1.490 (14)
Co1—N11.959 (2)C5C—H5C10.9900
Co1—N21.966 (2)C5C—H5C20.9900
N1—C11.347 (3)C6C—H6C10.9800
N1—C51.356 (3)C6C—H6C20.9800
N2—C101.337 (3)C6C—H6C30.9800
N2—C61.354 (3)C7C—C8C1.286 (8)
C1—C21.385 (4)C7C—H7C10.9900
C1—H10.9500C7C—H7C20.9900
C2—C31.380 (4)C8C—H8C10.9800
C2—H20.9500C8C—H8C20.9800
C3—C41.386 (4)C8C—H8C30.9800
C3—H30.9500C1C'—C2C'1.505 (19)
C4—C51.392 (4)C1C'—H1C30.9900
C4—H40.9500C1C'—H1C40.9900
C5—C61.469 (4)C2C'—H2C40.9800
C6—C71.387 (3)C2C'—H2C50.9800
C7—C81.379 (4)C2C'—H2C60.9800
C7—H70.9500C3C'—C4C'1.522 (12)
C8—C91.383 (4)C3C'—H3C30.9900
C8—H80.9500C3C'—H3C40.9900
C9—C101.386 (4)C4C'—H4C40.9800
C9—H90.9500C4C'—H4C50.9800
C10—H100.9500C4C'—H4C60.9800
N3—C111.147 (4)C5C'—C6C'1.504 (18)
N4—C121.155 (3)C5C'—H5C30.9900
N5—C131.159 (3)C5C'—H5C40.9900
N6—C141.151 (3)C6C'—H6C40.9800
N1C—C3C1.485 (4)C6C'—H6C50.9800
N1C—C7C'1.489 (6)C6C'—H6C60.9800
N1C—C1C'1.509 (6)C7C'—C8C'1.256 (11)
N1C—C5C'1.521 (6)C7C'—H7C30.9900
N1C—C7C1.526 (4)C7C'—H7C40.9900
N1C—C1C1.528 (4)C8C'—H8C40.9800
N1C—C5C1.555 (4)C8C'—H8C50.9800
N1C—C3C'1.570 (7)C8C'—H8C60.9800
C1C—C2C1.506 (16)N1S—C1S1.136 (4)
C1C—H1C10.9900C1S—C2S1.443 (4)
C1C—H1C20.9900C2S—H2S10.9800
C2C—H2C10.9800C2S—H2S20.9800
C2C—H2C20.9800C2S—H2S30.9800
C2C—H2C30.9800O1W—H1W10.827 (18)
C3C—C4C1.518 (9)O1W—H2W10.821 (18)
C3C—H3C10.9900O2W—H1W20.84 (2)
C3C—H3C20.9900O2W—H2W20.84 (2)
C12—Co1—C1387.23 (11)H2C2—C2C—H2C3109.5
C12—Co1—C1189.91 (11)N1C—C3C—C4C114.4 (5)
C13—Co1—C1188.80 (12)N1C—C3C—H3C1108.7
C12—Co1—C1488.53 (10)C4C—C3C—H3C1108.7
C13—Co1—C1490.20 (11)N1C—C3C—H3C2108.7
C11—Co1—C14178.18 (10)C4C—C3C—H3C2108.7
C12—Co1—N195.18 (10)H3C1—C3C—H3C2107.6
C13—Co1—N1177.20 (10)C3C—C4C—H4C1109.5
C11—Co1—N189.79 (11)C3C—C4C—H4C2109.5
C14—Co1—N191.28 (9)H4C1—C4C—H4C2109.5
C12—Co1—N2177.28 (10)C3C—C4C—H4C3109.5
C13—Co1—N295.33 (10)H4C1—C4C—H4C3109.5
C11—Co1—N291.07 (10)H4C2—C4C—H4C3109.5
C14—Co1—N290.54 (9)C6C—C5C—N1C115.0 (7)
N1—Co1—N282.28 (8)C6C—C5C—H5C1108.5
C1—N1—C5119.0 (2)N1C—C5C—H5C1108.5
C1—N1—Co1126.39 (17)C6C—C5C—H5C2108.5
C5—N1—Co1114.58 (17)N1C—C5C—H5C2108.5
C10—N2—C6118.8 (2)H5C1—C5C—H5C2107.5
C10—N2—Co1126.51 (17)C5C—C6C—H6C1109.5
C6—N2—Co1114.64 (17)C5C—C6C—H6C2109.5
N1—C1—C2122.0 (2)H6C1—C6C—H6C2109.5
N1—C1—H1119.0C5C—C6C—H6C3109.5
C2—C1—H1119.0H6C1—C6C—H6C3109.5
C3—C2—C1119.1 (3)H6C2—C6C—H6C3109.5
C3—C2—H2120.4C8C—C7C—N1C132.3 (5)
C1—C2—H2120.4C8C—C7C—H7C1104.2
C2—C3—C4119.4 (3)N1C—C7C—H7C1104.2
C2—C3—H3120.3C8C—C7C—H7C2104.2
C4—C3—H3120.3N1C—C7C—H7C2104.2
C3—C4—C5119.1 (3)H7C1—C7C—H7C2105.5
C3—C4—H4120.5C7C—C8C—H8C1109.5
C5—C4—H4120.5C7C—C8C—H8C2109.5
N1—C5—C4121.4 (2)H8C1—C8C—H8C2109.5
N1—C5—C6114.4 (2)C7C—C8C—H8C3109.5
C4—C5—C6124.2 (2)H8C1—C8C—H8C3109.5
N2—C6—C7121.4 (2)H8C2—C8C—H8C3109.5
N2—C6—C5114.1 (2)C2C'—C1C'—N1C116.7 (14)
C7—C6—C5124.5 (2)C2C'—C1C'—H1C3108.1
C8—C7—C6119.4 (2)N1C—C1C'—H1C3108.1
C8—C7—H7120.3C2C'—C1C'—H1C4108.1
C6—C7—H7120.3N1C—C1C'—H1C4108.1
C7—C8—C9119.2 (2)H1C3—C1C'—H1C4107.3
C7—C8—H8120.4C1C'—C2C'—H2C4109.5
C9—C8—H8120.4C1C'—C2C'—H2C5109.5
C8—C9—C10118.7 (3)H2C4—C2C'—H2C5109.5
C8—C9—H9120.7C1C'—C2C'—H2C6109.5
C10—C9—H9120.7H2C4—C2C'—H2C6109.5
N2—C10—C9122.5 (2)H2C5—C2C'—H2C6109.5
N2—C10—H10118.8C4C'—C3C'—N1C114.8 (8)
C9—C10—H10118.8C4C'—C3C'—H3C3108.6
N3—C11—Co1179.5 (3)N1C—C3C'—H3C3108.6
N4—C12—Co1179.4 (2)C4C'—C3C'—H3C4108.6
N5—C13—Co1179.0 (3)N1C—C3C'—H3C4108.6
N6—C14—Co1178.5 (2)H3C3—C3C'—H3C4107.5
C3C—N1C—C7C'157.9 (4)C3C'—C4C'—H4C4109.5
C3C—N1C—C1C'87.4 (3)C3C'—C4C'—H4C5109.5
C7C'—N1C—C1C'112.1 (4)H4C4—C4C'—H4C5109.5
C3C—N1C—C5C'66.9 (3)C3C'—C4C'—H4C6109.5
C7C'—N1C—C5C'113.2 (4)H4C4—C4C'—H4C6109.5
C1C'—N1C—C5C'109.2 (4)H4C5—C4C'—H4C6109.5
C3C—N1C—C7C110.9 (3)C6C'—C5C'—N1C113.9 (12)
C7C'—N1C—C7C49.2 (3)C6C'—C5C'—H5C3108.8
C1C'—N1C—C7C161.2 (4)N1C—C5C'—H5C3108.8
C5C'—N1C—C7C82.9 (3)C6C'—C5C'—H5C4108.8
C3C—N1C—C1C113.1 (3)N1C—C5C'—H5C4108.8
C7C'—N1C—C1C71.8 (3)H5C3—C5C'—H5C4107.7
C1C'—N1C—C1C58.8 (3)C5C'—C6C'—H6C4109.5
C5C'—N1C—C1C167.6 (3)C5C'—C6C'—H6C5109.5
C7C—N1C—C1C107.9 (3)H6C4—C6C'—H6C5109.5
C3C—N1C—C5C108.6 (3)C5C'—C6C'—H6C6109.5
C7C'—N1C—C5C89.4 (3)H6C4—C6C'—H6C6109.5
C1C'—N1C—C5C66.5 (3)H6C5—C6C'—H6C6109.5
C5C'—N1C—C5C62.7 (3)C8C'—C7C'—N1C138.0 (9)
C7C—N1C—C5C109.4 (3)C8C'—C7C'—H7C3102.6
C1C—N1C—C5C106.9 (3)N1C—C7C'—H7C3102.6
C3C—N1C—C3C'54.2 (3)C8C'—C7C'—H7C4102.6
C7C'—N1C—C3C'107.4 (4)N1C—C7C'—H7C4102.6
C1C'—N1C—C3C'109.0 (4)H7C3—C7C'—H7C4105.0
C5C'—N1C—C3C'105.7 (4)C7C'—C8C'—H8C4109.5
C7C—N1C—C3C'80.1 (3)C7C'—C8C'—H8C5109.5
C1C—N1C—C3C'82.7 (3)H8C4—C8C'—H8C5109.5
C5C—N1C—C3C'162.8 (3)C7C'—C8C'—H8C6109.5
C2C—C1C—N1C115.4 (8)H8C4—C8C'—H8C6109.5
C2C—C1C—H1C1108.4H8C5—C8C'—H8C6109.5
N1C—C1C—H1C1108.4N1S—C1S—C2S179.2 (4)
C2C—C1C—H1C2108.4C1S—C2S—H2S1109.5
N1C—C1C—H1C2108.4C1S—C2S—H2S2109.5
H1C1—C1C—H1C2107.5H2S1—C2S—H2S2109.5
C1C—C2C—H2C1109.5C1S—C2S—H2S3109.5
C1C—C2C—H2C2109.5H2S1—C2S—H2S3109.5
H2C1—C2C—H2C2109.5H2S2—C2S—H2S3109.5
C1C—C2C—H2C3109.5H1W1—O1W—H2W1108 (3)
H2C1—C2C—H2C3109.5H1W2—O2W—H2W2105 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N5i0.83 (2)2.10 (2)2.925 (3)176 (3)
O1W—H2W1···N40.82 (2)2.08 (2)2.899 (3)174 (3)
O2W—H1W2···N30.84 (2)1.83 (2)2.665 (5)172 (7)
O2W—H2W2···N3ii0.84 (2)1.92 (2)2.740 (5)165 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[Co(CN)4(C10H8N2)]·C2H3N·1.5H2O
Mr517.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)90
a, b, c (Å)10.1591 (1), 23.4015 (3), 11.3422 (2)
β (°) 97.3080 (5)
V3)2674.57 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.30 × 0.27 × 0.25
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.709, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
28623, 4704, 3689
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections4704
No. of parameters378
No. of restraints60
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.33

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N5i0.827 (18)2.099 (18)2.925 (3)176 (3)
O1W—H2W1···N40.821 (18)2.081 (18)2.899 (3)174 (3)
O2W—H1W2···N30.84 (2)1.83 (2)2.665 (5)172 (7)
O2W—H2W2···N3ii0.84 (2)1.92 (2)2.740 (5)165 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z.
 

Acknowledgements

GL gratefully acknowledges the College of Science and Technology, Southern Arkansas University, for financial support.

References

First citationDarensbourg, J. & Phelps, A. L. (2004). Inorg. Chim. Acta, 357, 1603–1607.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarde, R., Villain, F. & Verdaguer, M. (2002). J. Am. Chem. Soc. 124, 10531–10538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolmes, S. M. & Girolami, G. S. (1999). J. Am. Chem. Soc. 121, 5593–5594.  Web of Science CrossRef CAS Google Scholar
First citationLescoueezec, R., Lloret, F., Julve, M., Vaissermann, J. & Verdaguer, M. (2002). Inorg. Chem. 41, 818–826.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLyubartseva, G. & Parkin, S. (2009). Acta Cryst. E65, m1530.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMallah, T., Thibault, S., Verdaguer, M. & Veillet, P. (1993). Science, 262, 1554–1557.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokol, J. J., Hee, A. G. & Long, J. R. (2002). J. Am. Chem. Soc. 124, 7656–7657.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSzalda, D. J., Creutz, C., Mahajan, D. & Sutin, N. (1983). Inorg. Chem. 22, 2372–2379.  CSD CrossRef CAS Web of Science Google Scholar
First citationToma, L., Lescouezec, R., Uriel, S., Llusar, R., Ruiz-Perez, C., Vaissermann, J., Lloret, F. & Julve, M. (2007). J. Chem. Soc. Dalton Trans. pp. 3690–3698.  CrossRef Google Scholar
First citationToma, L., Lescouezec, R., Vaissermann, J., Delgado, F. S., Ruiz-Perez, C., Carrasco, R., Cano, J., Lloret, F. & Julve, M. (2004). Chem. Eur. J. 10, 6130–6145.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m475-m476
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds