metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m477-m478

Chloridotris(penta­fluoro­benzene­thiol­ato-κS)[tris­­(4-fluoro­phen­yl)phosphine-κP]osmium(IV)

aCentro de Química del Instituto de Ciencias, BUAP, Ciudad Universitaria, San Manuel, 72570 Puebla, Pue., Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, N.L., Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 22 March 2010; accepted 25 March 2010; online 31 March 2010)

The title complex, [Os(C6F5S)3Cl(C18H12F3P)], displays a trigonal-bipyramidal OsIV coordination geometry with the S atoms of three thiol­ate ligands occupying the equatorial positions. The thiol­ate penta­fluoro­phenyl substituents are all placed above the equatorial plane, forming a claw-like cavity which accommodates the chloride ligand with a normal Os—Cl bond length. The phosphine ligand trans to the chloride ligand reveals a short Os—P bond length compared to other chloride–phosphine OsIV complexes (average = 2.40 Å). This strong bonding indicates that the inductive effect of the F atoms in the phosphine does not affect significantly its basicity, compared to triphenyl­phosphine. This feature is also consistent with the known poor trans influence of Cl. The crystal packing involves ππ contacts between inversion-related thiol­ate C6F5 rings, with a centroid–centroid separation of 3.659 (8) Å.

Related literature

For the structures of related five-coordinated OsIV complexes, see: Hills et al. (1991[Hills, A., Hughes, D. L., Richards, R. L., Arroyo, M., Cruz-Garritz, D. & Torrens, H. (1991). J. Chem. Soc. Dalton Trans. pp. 1281-1284.]); Arroyo et al. (1994[Arroyo, M., Chamizo, J. A., Hughes, D. L., Richards, R. L., Roman, P., Sosa, P. & Torrens, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1819-1824], 2007[Arroyo, M., Bernès, S., Cerón, M., Cortina, V., Mendoza, C. & Torrens, H. (2007). Inorg. Chem. 46, 4857-4867.], 2009[Arroyo, M., Mendoza, C., Bernès, S., Torrens, H. & Morales-Rojas, H. (2009). Polyhedron, 28, 2625-2634.]); Cerón et al. (2006[Cerón, M., Arroyo, M. & Bernès, S. (2006). Acta Cryst. E62, m2167-m2169.]); Mendoza et al. (2006[Mendoza, C., Bernès, S. & Arroyo, M. (2006). Acta Cryst. C62, m201-m204.]). For the structure and basicity of free tris­(4-fluoro­phen­yl)phosphine, see: bin Shawkataly et al. (1996[bin Shawkataly, O., Singh, J., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 2243-2245.]) and Allman & Goel (1982[Allman, T. & Goel, R. G. (1982). Can. J. Chem. 60, 716-722.]), respectively. For geometrical analysis using the Cambridge Structural Database, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • [Os(C6F5S)3Cl(C18H12F3P)]

  • Mr = 1139.26

  • Monoclinic, P 21 /c

  • a = 17.983 (7) Å

  • b = 10.446 (5) Å

  • c = 21.521 (8) Å

  • β = 107.62 (2)°

  • V = 3853 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.70 mm−1

  • T = 298 K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.215, Tmax = 0.330

  • 13694 measured reflections

  • 6749 independent reflections

  • 5120 reflections with I > 2σ(I)

  • Rint = 0.052

  • 3 standard reflections every 97 reflections intensity decay: 0.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.33

  • 6749 reflections

  • 542 parameters

  • H-atom parameters constrained

  • Δρmax = 1.96 e Å−3

  • Δρmin = −2.11 e Å−3

Table 1
Selected bond lengths (Å)

Os1—S1 2.205 (3)
Os1—S2 2.199 (3)
Os1—S3 2.206 (3)
Os1—Cl1 2.414 (2)
Os1—P1 2.334 (2)

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL-Plus.

Supporting information


Comment top

We have been interested for a long time in OsIV complexes bearing fluorinated thiolate ligands, as these systems are involved in the study of the C—F bond activation (Arroyo et al., 2007, and references therein). For the five-coordinated complexes with general formula [OsIV(thiolate)4(phosphine)], the metal centre is invariably found to be in a trigonal-bipyramidal geometry (e.g. Mendoza et al., 2006; Cerón et al., 2006; Arroyo et al., 2009), with the phosphine and one thiolate groups placed in axial positions. Of interest are the complexes [OsX(thiolate)3(phosphine)], where X is an halogen trans to the phosphine in a bipyramidal geometry (Hills et al., 1991; Arroyo et al., 1994)and halides are known to have little trans influence, allowing the estimation of the basicity of the coordinated phosphine.

The title complex was obtained by reaction of [Os(SC6F5)4(P(C6H4F-4)3)] (space group P1, Arroyo et al., 2009) and HCl(aq) in acetone (see Experimental). The complex approximates 3-fold symmetry (Fig. 1), with atoms P1 and Cl1 placed in axial positions. The coordinated Cl- ion is placed in a cavity approximating point symmetry C3, formed by the C6F5 groups of the thiolate ligands, all 'up' towards and around the smaller chloride ligand. The trigonal-bipyramidal coordination geometry of the OsIV centre is completed by three S atoms in the equatorial plane.

The chloride ligand is found at the expected distance from the metal center, Os—Cl = 2.414 (2) Å, which compares well with the average Os—Cl bond length retrieved from 804 hits in the CSD, 2.401 Å (CSD, version 5.31 with all updates; Bruno et al., 2002). A quite different situation is observed for the phosphine: the Os—P bond is short, 2.334 (2) Å, compared to other OsIV complexes including the P—Os—Cl fragment (ca. 2.40 Å). For all the 340 hits retrieved in the CSD with a P—Os—Cl fragment, the average Os—P bond length is 2.383 (2) Å. The phosphine is thus strongly bonded to the metal centre in the title compound. In spite of the inductive effect of the F atoms in the phosphine, a significant amount of electron density should be donated back to the rings and the P atom, favoring the ligand bonding. This behaviour is consistent with the pKa of that phosphine, 1.97, which is close to the pKa of triphenylphosphine, 2.73 (Allman & Goel, 1982). Finally, the strong coordination of tris(4-fluorophenyl)phosphine in the title compound also affects the geometry of this ligand: short P—C bond lengths are observed, in the range 1.787 (10)–1.797 (10) Å, while the mean P—C distance reported in the free tris(4-fluorophenyl)phosphine is 1.825 (5) Å (bin Shawkataly et al., 1996).

The crystal structure is stabilized by intermolecular ππ interactions involving C6F5 rings of thiolate ligands related by an inversion centre (Fig. 2). The separation between the centroids of stacked rings is 3.659 (8) Å.

Related literature top

For the structures of related five-coordinated OsIV complexes, see: Hills et al. (1991); Arroyo et al. (1994, 2007, 2009); Cerón et al. (2006); Mendoza et al. (2006). For the structure and basicity of free tris(4-fluorophenyl)phosphine, see: bin Shawkataly et al. (1996) and Allman & Goel (1982), respectively. For geometrical analysis using the Cambridge Structural Database, see: Bruno et al. (2002).

Experimental top

The previously prepared complex [Os(SC6F5)4(P(C6H4F-4)3)] (Arroyo et al., 2009) (0.200 g, 0.154 mmol) was dissolved in acetone (50 ml), and HCl 1.5 M (5 ml) was added. The mixture was stirred at room temperature for ca. 48 h, monitoring the progress of the reaction by TLC. The solvent was distilled off under vacuum and the solid product was purified through a silica gel chromatographic column eluted with hexane-dichloromethane (4:1), affording [OsCl(SC6F5)3(P(C6H4F)3)] (75% yield). Complex decomposes at 423 K, with colour changing from dark-brown to black, and does not show defined melting point. FAB-MS {m/z (%) [fragment]}: 1139 (2) [M+], 1121 (4) [M+—F], 1105 (65) [M+—Cl], 1045 (4) [M+—C6H4F], 941 (100) [M+—SC6F5], 923 (9) [M+—SC6F5—F], 391 (34) [M+—P(C6H4F)3-2SC6F5—Cl]. Single crystals were obtained by slow evaporation of the eluent at room temperature.

Refinement top

Diffraction data were collected at room temperature, and completeness was reduced to 0.99 because 68 reflections were rejected during data reduction. As commonly found in perfluorinated complexes, F atoms display high displacement parameters. As a consequence, significant Hirshfeld differences are observed for some C—C and C—F bonds in the thiolate groups. Limited accuracy is also reflected in the small C—C average bond length in benzene ring C31···C36 (ca. 1.36 Å). H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 Å, and Uiso(H) = 1.2 Ueq(carrier C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure with the shortest ππ contact showed by dashed line. Symmetry related molecules are represented by different colours; grey: asymmetric unit; gold: 1-x, 1-y, 1-z; green: 1-x, -1/2+y, 3/2-z; purple: x, 3/2-y, -1/2+z.
Chloridotris(pentafluorobenzenethiolato-κS)[tris(4- fluorophenyl)phosphine-κP]osmium(IV) top
Crystal data top
[Os(C6F5S)3Cl(C18H12F3P)]F(000) = 2184
Mr = 1139.26Dx = 1.964 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 84 reflections
a = 17.983 (7) Åθ = 5.2–12.5°
b = 10.446 (5) ŵ = 3.70 mm1
c = 21.521 (8) ÅT = 298 K
β = 107.62 (2)°Prism, dark-brown
V = 3853 (3) Å30.5 × 0.4 × 0.3 mm
Z = 4
Data collection top
Siemens P4
diffractometer
5120 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 2111
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 121
Tmin = 0.215, Tmax = 0.330l = 2425
13694 measured reflections3 standard reflections every 97 reflections
6749 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.026P)2 + 24.9505P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max = 0.002
6749 reflectionsΔρmax = 1.96 e Å3
542 parametersΔρmin = 2.11 e Å3
0 restraintsExtinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.00165 (11)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Os(C6F5S)3Cl(C18H12F3P)]V = 3853 (3) Å3
Mr = 1139.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.983 (7) ŵ = 3.70 mm1
b = 10.446 (5) ÅT = 298 K
c = 21.521 (8) Å0.5 × 0.4 × 0.3 mm
β = 107.62 (2)°
Data collection top
Siemens P4
diffractometer
5120 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.052
Tmin = 0.215, Tmax = 0.3303 standard reflections every 97 reflections
13694 measured reflections intensity decay: 0.5%
6749 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.33 w = 1/[σ2(Fo2) + (0.026P)2 + 24.9505P]
where P = (Fo2 + 2Fc2)/3
6749 reflectionsΔρmax = 1.96 e Å3
542 parametersΔρmin = 2.11 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os10.76039 (2)0.56074 (3)0.715615 (17)0.04286 (15)
Cl10.78380 (14)0.6117 (2)0.61374 (11)0.0508 (6)
P10.73741 (14)0.5076 (2)0.81355 (11)0.0428 (5)
S10.78307 (18)0.7581 (3)0.75283 (13)0.0589 (7)
S20.85683 (16)0.4221 (3)0.74230 (12)0.0572 (6)
S30.63988 (15)0.4992 (3)0.66494 (12)0.0549 (6)
C10.8010 (6)0.5869 (9)0.8837 (5)0.053 (2)
C20.8829 (7)0.5691 (12)0.8998 (5)0.072 (3)
H2A0.90220.51700.87320.086*
C30.9347 (8)0.6259 (14)0.9531 (6)0.082 (4)
H3A0.98830.61330.96320.099*
C40.9038 (9)0.7011 (13)0.9902 (5)0.076 (4)
F40.9545 (6)0.7575 (9)1.0432 (4)0.120 (3)
C50.8274 (9)0.7246 (12)0.9780 (5)0.076 (4)
H5A0.80990.77831.00510.092*
C60.7743 (7)0.6666 (11)0.9236 (5)0.066 (3)
H6A0.72110.68190.91440.079*
C70.7474 (5)0.3408 (9)0.8337 (4)0.045 (2)
C80.7133 (7)0.2499 (10)0.7861 (5)0.063 (3)
H8A0.69000.27660.74340.075*
C90.7135 (9)0.1221 (12)0.8007 (6)0.083 (4)
H9A0.69250.06220.76820.099*
C100.7446 (9)0.0850 (11)0.8631 (6)0.075 (4)
F100.7452 (6)0.0411 (7)0.8774 (4)0.110 (3)
C110.7818 (7)0.1675 (11)0.9110 (6)0.073 (3)
H11A0.80660.13850.95300.087*
C120.7819 (6)0.2956 (11)0.8956 (5)0.057 (3)
H12A0.80620.35340.92830.069*
C130.6421 (5)0.5476 (10)0.8168 (4)0.048 (2)
C140.6033 (7)0.4718 (12)0.8503 (6)0.071 (3)
H14A0.62610.39520.86850.085*
C150.5324 (7)0.5062 (13)0.8573 (6)0.075 (3)
H15A0.50880.45600.88170.090*
C160.4974 (6)0.6154 (12)0.8278 (5)0.060 (3)
F160.4288 (4)0.6488 (8)0.8350 (4)0.089 (2)
C170.5316 (7)0.6903 (12)0.7939 (6)0.074 (3)
H17A0.50660.76440.77420.089*
C180.6040 (6)0.6581 (11)0.7881 (5)0.061 (3)
H18A0.62730.71110.76470.073*
C190.7813 (7)0.8609 (9)0.6869 (5)0.062 (3)
C200.7086 (8)0.9076 (11)0.6483 (6)0.070 (3)
F200.6449 (5)0.8800 (8)0.6635 (4)0.092 (2)
C210.7051 (9)0.9799 (12)0.5942 (7)0.084 (4)
F210.6339 (6)1.0171 (9)0.5564 (4)0.120 (3)
C220.7686 (11)1.0100 (13)0.5801 (7)0.088 (4)
F220.7646 (7)1.0821 (8)0.5264 (4)0.137 (4)
C230.8428 (10)0.9711 (13)0.6153 (7)0.083 (4)
F230.9054 (6)0.9989 (10)0.6012 (5)0.133 (4)
C240.8443 (8)0.8931 (12)0.6702 (6)0.076 (3)
F240.9150 (5)0.8441 (9)0.7039 (4)0.100 (3)
C250.9160 (6)0.4406 (10)0.6912 (5)0.054 (2)
C260.9050 (6)0.3713 (11)0.6354 (5)0.059 (3)
F260.8450 (4)0.2905 (7)0.6162 (4)0.088 (2)
C270.9505 (7)0.3856 (13)0.5952 (5)0.070 (3)
F270.9364 (5)0.3208 (10)0.5399 (4)0.107 (3)
C281.0114 (7)0.4685 (15)0.6120 (6)0.078 (4)
F281.0582 (5)0.4826 (11)0.5748 (5)0.125 (3)
C291.0258 (7)0.5396 (14)0.6685 (8)0.085 (4)
F291.0851 (5)0.6206 (11)0.6855 (5)0.138 (4)
C300.9755 (6)0.5254 (12)0.7056 (6)0.067 (3)
F300.9929 (4)0.5951 (8)0.7607 (4)0.095 (2)
C310.6220 (6)0.4927 (10)0.5789 (5)0.054 (2)
C320.5926 (7)0.5966 (12)0.5394 (6)0.069 (3)
F320.5806 (5)0.7067 (7)0.5659 (4)0.104 (3)
C330.5783 (8)0.5886 (16)0.4740 (6)0.085 (4)
F330.5500 (6)0.6898 (11)0.4365 (4)0.139 (4)
C340.5880 (7)0.4766 (19)0.4461 (6)0.087 (4)
F340.5699 (6)0.4657 (13)0.3809 (4)0.140 (4)
C350.6150 (8)0.3715 (15)0.4836 (6)0.081 (4)
F350.6243 (6)0.2614 (11)0.4560 (4)0.133 (4)
C360.6326 (6)0.3817 (11)0.5496 (5)0.063 (3)
F360.6620 (5)0.2803 (7)0.5865 (4)0.088 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os10.0543 (2)0.0379 (2)0.0388 (2)0.00019 (17)0.01766 (16)0.00087 (15)
Cl10.0629 (14)0.0505 (13)0.0431 (12)0.0031 (11)0.0224 (11)0.0043 (10)
P10.0553 (14)0.0410 (13)0.0371 (12)0.0003 (11)0.0212 (10)0.0003 (10)
S10.0863 (19)0.0437 (14)0.0519 (15)0.0079 (13)0.0288 (14)0.0035 (11)
S20.0636 (15)0.0599 (17)0.0513 (14)0.0123 (13)0.0223 (12)0.0082 (12)
S30.0617 (15)0.0576 (16)0.0481 (14)0.0056 (12)0.0207 (12)0.0031 (11)
C10.078 (7)0.036 (5)0.050 (6)0.007 (5)0.026 (5)0.004 (4)
C20.085 (8)0.078 (8)0.058 (7)0.017 (7)0.030 (6)0.016 (6)
C30.087 (9)0.093 (10)0.058 (7)0.027 (8)0.008 (6)0.018 (7)
C40.099 (10)0.079 (9)0.043 (6)0.036 (8)0.008 (6)0.013 (6)
F40.151 (8)0.130 (8)0.067 (5)0.062 (6)0.017 (5)0.037 (5)
C50.116 (11)0.064 (8)0.051 (7)0.015 (7)0.027 (7)0.022 (6)
C60.087 (8)0.055 (7)0.056 (6)0.003 (6)0.023 (6)0.002 (5)
C70.050 (5)0.043 (5)0.043 (5)0.005 (4)0.016 (4)0.002 (4)
C80.083 (8)0.051 (6)0.045 (6)0.007 (6)0.004 (5)0.004 (5)
C90.134 (12)0.043 (6)0.070 (8)0.006 (7)0.031 (8)0.001 (6)
C100.123 (11)0.041 (6)0.071 (8)0.014 (6)0.045 (7)0.015 (6)
F100.157 (8)0.052 (5)0.108 (6)0.005 (5)0.020 (5)0.025 (4)
C110.095 (9)0.057 (7)0.057 (7)0.013 (6)0.009 (6)0.019 (6)
C120.070 (7)0.057 (7)0.041 (5)0.004 (5)0.011 (5)0.005 (5)
C130.053 (5)0.056 (6)0.035 (5)0.004 (5)0.014 (4)0.004 (4)
C140.073 (7)0.060 (7)0.087 (8)0.005 (6)0.035 (7)0.018 (6)
C150.061 (7)0.078 (8)0.096 (9)0.014 (6)0.039 (7)0.020 (7)
C160.048 (6)0.075 (8)0.057 (6)0.012 (5)0.017 (5)0.004 (6)
F160.058 (4)0.112 (6)0.103 (5)0.023 (4)0.034 (4)0.006 (5)
C170.090 (9)0.072 (8)0.064 (7)0.028 (7)0.028 (6)0.010 (6)
C180.066 (7)0.062 (7)0.066 (7)0.007 (5)0.034 (5)0.015 (5)
C190.101 (9)0.030 (5)0.055 (6)0.023 (5)0.023 (6)0.007 (4)
C200.101 (10)0.041 (6)0.064 (7)0.006 (6)0.019 (7)0.001 (5)
F200.094 (5)0.073 (5)0.112 (6)0.012 (4)0.034 (5)0.008 (4)
C210.101 (11)0.049 (7)0.088 (10)0.010 (7)0.009 (8)0.003 (6)
F210.152 (8)0.083 (6)0.105 (6)0.023 (6)0.008 (6)0.017 (5)
C220.130 (13)0.060 (8)0.088 (10)0.022 (9)0.057 (10)0.014 (7)
F220.274 (13)0.072 (6)0.078 (5)0.008 (7)0.074 (7)0.013 (4)
C230.116 (12)0.058 (8)0.092 (10)0.036 (8)0.054 (9)0.021 (7)
F230.179 (9)0.118 (8)0.142 (8)0.070 (7)0.108 (7)0.026 (6)
C240.089 (9)0.062 (8)0.074 (8)0.030 (7)0.020 (7)0.011 (6)
F240.091 (5)0.106 (7)0.110 (6)0.040 (5)0.038 (5)0.015 (5)
C250.052 (5)0.063 (7)0.054 (6)0.014 (5)0.027 (5)0.002 (5)
C260.064 (6)0.056 (7)0.058 (6)0.007 (5)0.020 (5)0.007 (5)
F260.083 (5)0.086 (5)0.098 (5)0.016 (4)0.033 (4)0.034 (4)
C270.063 (7)0.090 (9)0.053 (6)0.022 (7)0.010 (5)0.008 (6)
F270.103 (6)0.149 (8)0.076 (5)0.023 (5)0.036 (4)0.028 (5)
C280.067 (8)0.100 (11)0.073 (8)0.020 (7)0.028 (7)0.007 (7)
F280.114 (7)0.165 (9)0.131 (7)0.015 (6)0.091 (6)0.022 (7)
C290.054 (7)0.081 (10)0.116 (11)0.007 (7)0.018 (7)0.013 (8)
F290.095 (6)0.150 (9)0.180 (10)0.057 (6)0.059 (6)0.036 (8)
C300.053 (6)0.075 (8)0.069 (7)0.014 (6)0.011 (5)0.010 (6)
F300.087 (5)0.103 (6)0.089 (5)0.017 (4)0.016 (4)0.033 (4)
C310.057 (6)0.054 (6)0.049 (6)0.000 (5)0.011 (5)0.003 (5)
C320.072 (7)0.068 (8)0.065 (7)0.004 (6)0.015 (6)0.007 (6)
F320.143 (7)0.061 (5)0.092 (5)0.021 (5)0.009 (5)0.008 (4)
C330.086 (9)0.099 (11)0.061 (8)0.003 (8)0.005 (7)0.030 (8)
F330.158 (9)0.145 (9)0.093 (6)0.021 (7)0.007 (6)0.065 (6)
C340.064 (7)0.144 (15)0.047 (7)0.012 (9)0.009 (6)0.004 (8)
F340.134 (8)0.236 (13)0.047 (4)0.001 (8)0.022 (4)0.007 (6)
C350.089 (9)0.096 (11)0.064 (8)0.003 (8)0.030 (7)0.019 (8)
F350.151 (8)0.149 (9)0.099 (6)0.022 (7)0.038 (6)0.058 (6)
C360.061 (6)0.060 (7)0.061 (7)0.007 (5)0.010 (5)0.004 (6)
F360.112 (6)0.059 (4)0.096 (5)0.018 (4)0.034 (4)0.002 (4)
Geometric parameters (Å, º) top
Os1—S12.205 (3)C16—F161.336 (11)
Os1—S22.199 (3)C16—C171.339 (16)
Os1—S32.206 (3)C17—C181.386 (15)
Os1—Cl12.414 (2)C17—H17A0.9300
Os1—P12.334 (2)C18—H18A0.9300
P1—C131.787 (10)C19—C241.331 (16)
P1—C71.791 (10)C19—C201.407 (17)
P1—C11.797 (10)C20—F201.316 (14)
S1—C191.772 (10)C20—C211.374 (18)
S2—C251.759 (9)C21—C221.306 (19)
S3—C311.783 (10)C21—F211.349 (15)
C1—C61.382 (14)C22—F221.362 (16)
C1—C21.420 (15)C22—C231.38 (2)
C2—C31.375 (16)C23—F231.284 (15)
C2—H2A0.9300C23—C241.429 (18)
C3—C41.354 (18)C24—F241.360 (15)
C3—H3A0.9300C25—C301.350 (15)
C4—C51.340 (18)C25—C261.364 (14)
C4—F41.360 (12)C26—F261.333 (12)
C5—C61.405 (16)C26—C271.366 (15)
C5—H5A0.9300C27—F271.326 (13)
C6—H6A0.9300C27—C281.356 (18)
C7—C121.372 (13)C28—F281.334 (13)
C7—C81.395 (14)C28—C291.381 (19)
C8—C91.371 (15)C29—F291.323 (15)
C8—H8A0.9300C29—C301.384 (17)
C9—C101.345 (16)C30—F301.346 (13)
C9—H9A0.9300C31—C361.360 (15)
C10—F101.352 (13)C31—C321.381 (15)
C10—C111.354 (17)C32—F321.329 (14)
C11—C121.379 (15)C32—C331.355 (17)
C11—H11A0.9300C33—F331.334 (15)
C12—H12A0.9300C33—C341.35 (2)
C13—C181.388 (14)C34—F341.346 (14)
C13—C141.391 (14)C34—C351.36 (2)
C14—C151.376 (15)C35—F351.328 (16)
C14—H14A0.9300C35—C361.364 (16)
C15—C161.363 (16)C36—F361.333 (13)
C15—H15A0.9300
S2—Os1—S1118.47 (11)F16—C16—C17120.2 (11)
S2—Os1—S3121.08 (11)F16—C16—C15118.5 (10)
S1—Os1—S3119.87 (11)C17—C16—C15121.3 (10)
S2—Os1—P187.06 (9)C16—C17—C18120.3 (11)
S1—Os1—P187.61 (9)C16—C17—H17A119.8
S3—Os1—P187.77 (9)C18—C17—H17A119.8
S2—Os1—Cl192.40 (9)C17—C18—C13120.9 (10)
S1—Os1—Cl193.42 (9)C17—C18—H18A119.6
S3—Os1—Cl191.75 (9)C13—C18—H18A119.6
P1—Os1—Cl1178.96 (9)C24—C19—C20117.9 (11)
C13—P1—C7104.2 (5)C24—C19—S1124.0 (11)
C13—P1—C1103.5 (5)C20—C19—S1118.1 (9)
C7—P1—C1104.7 (5)F20—C20—C21120.8 (13)
C13—P1—Os1114.5 (3)F20—C20—C19120.1 (10)
C7—P1—Os1114.7 (3)C21—C20—C19119.1 (13)
C1—P1—Os1114.1 (3)C22—C21—F21121.9 (15)
C19—S1—Os1108.6 (3)C22—C21—C20120.7 (15)
C25—S2—Os1110.1 (4)F21—C21—C20117.4 (14)
C31—S3—Os1111.5 (4)C21—C22—F22120.2 (17)
C6—C1—C2117.2 (10)C21—C22—C23124.7 (14)
C6—C1—P1123.2 (9)F22—C22—C23115.0 (14)
C2—C1—P1119.6 (8)F23—C23—C22125.1 (14)
C3—C2—C1122.5 (12)F23—C23—C24121.7 (16)
C3—C2—H2A118.7C22—C23—C24113.2 (13)
C1—C2—H2A118.7C19—C24—F24119.7 (12)
C4—C3—C2116.5 (13)C19—C24—C23124.3 (14)
C4—C3—H3A121.7F24—C24—C23115.9 (13)
C2—C3—H3A121.7C30—C25—C26116.5 (10)
C5—C4—C3124.7 (11)C30—C25—S2121.0 (8)
C5—C4—F4118.2 (12)C26—C25—S2122.5 (9)
C3—C4—F4117.1 (13)F26—C26—C25119.8 (10)
C4—C5—C6118.9 (11)F26—C26—C27117.3 (10)
C4—C5—H5A120.6C25—C26—C27122.8 (11)
C6—C5—H5A120.6F27—C27—C28119.0 (12)
C1—C6—C5120.1 (12)F27—C27—C26121.5 (12)
C1—C6—H6A120.0C28—C27—C26119.5 (11)
C5—C6—H6A120.0F28—C28—C27121.1 (13)
C12—C7—C8116.6 (9)F28—C28—C29119.0 (14)
C12—C7—P1123.5 (8)C27—C28—C29119.9 (11)
C8—C7—P1119.7 (7)F29—C29—C28120.6 (13)
C9—C8—C7121.6 (10)F29—C29—C30121.5 (14)
C9—C8—H8A119.2C28—C29—C30118.0 (12)
C7—C8—H8A119.2F30—C30—C25121.0 (10)
C10—C9—C8118.7 (12)F30—C30—C29115.6 (11)
C10—C9—H9A120.6C25—C30—C29123.2 (12)
C8—C9—H9A120.6C36—C31—C32117.8 (10)
C9—C10—F10118.7 (12)C36—C31—S3120.5 (8)
C9—C10—C11122.4 (11)C32—C31—S3121.6 (9)
F10—C10—C11118.6 (11)F32—C32—C33119.6 (12)
C10—C11—C12118.1 (10)F32—C32—C31119.9 (10)
C10—C11—H11A121.0C33—C32—C31120.5 (12)
C12—C11—H11A121.0F33—C33—C34119.7 (13)
C7—C12—C11122.3 (10)F33—C33—C32119.9 (15)
C7—C12—H12A118.9C34—C33—C32120.4 (13)
C11—C12—H12A118.9F34—C34—C33120.9 (15)
C18—C13—C14116.5 (9)F34—C34—C35118.6 (16)
C18—C13—P1121.8 (7)C33—C34—C35120.4 (12)
C14—C13—P1121.7 (8)F35—C35—C34120.3 (13)
C15—C14—C13122.3 (11)F35—C35—C36120.8 (14)
C15—C14—H14A118.8C34—C35—C36118.9 (13)
C13—C14—H14A118.8F36—C36—C31119.2 (10)
C16—C15—C14118.7 (11)F36—C36—C35118.9 (11)
C16—C15—H15A120.7C31—C36—C35121.9 (12)
C14—C15—H15A120.7
S2—Os1—P1—C13160.3 (4)S1—C19—C20—C21175.4 (9)
S1—Os1—P1—C1381.0 (4)F20—C20—C21—C22178.3 (12)
S3—Os1—P1—C1339.0 (4)C19—C20—C21—C223.0 (19)
S2—Os1—P1—C739.9 (4)F20—C20—C21—F212.3 (18)
S1—Os1—P1—C7158.6 (4)C19—C20—C21—F21176.4 (10)
S3—Os1—P1—C781.4 (4)F21—C21—C22—F221 (2)
S2—Os1—P1—C180.8 (4)C20—C21—C22—F22179.7 (12)
S1—Os1—P1—C137.9 (4)F21—C21—C22—C23177.5 (13)
S3—Os1—P1—C1157.9 (4)C20—C21—C22—C232 (2)
S2—Os1—S1—C19109.5 (5)C21—C22—C23—F23179.0 (13)
S3—Os1—S1—C1979.1 (5)F22—C22—C23—F231 (2)
P1—Os1—S1—C19165.2 (5)C21—C22—C23—C240 (2)
Cl1—Os1—S1—C1914.9 (5)F22—C22—C23—C24178.5 (11)
S1—Os1—S2—C2581.7 (4)C20—C19—C24—F24176.3 (10)
S3—Os1—S2—C25107.0 (4)S1—C19—C24—F241.3 (16)
P1—Os1—S2—C25167.3 (4)C20—C19—C24—C230.6 (18)
Cl1—Os1—S2—C2513.5 (4)S1—C19—C24—C23177.0 (9)
S2—Os1—S3—C3185.5 (4)F23—C23—C24—C19179.7 (11)
S1—Os1—S3—C31103.3 (4)C22—C23—C24—C190.5 (19)
P1—Os1—S3—C31170.7 (4)F23—C23—C24—F243.8 (18)
Cl1—Os1—S3—C318.4 (4)C22—C23—C24—F24175.3 (11)
C13—P1—C1—C64.8 (10)Os1—S2—C25—C3087.0 (10)
C7—P1—C1—C6113.7 (9)Os1—S2—C25—C2693.0 (9)
Os1—P1—C1—C6120.2 (8)C30—C25—C26—F26176.5 (10)
C13—P1—C1—C2175.6 (9)S2—C25—C26—F263.5 (15)
C7—P1—C1—C266.7 (9)C30—C25—C26—C270.3 (17)
Os1—P1—C1—C259.4 (9)S2—C25—C26—C27179.7 (9)
C6—C1—C2—C31.1 (18)F26—C26—C27—F270.8 (17)
P1—C1—C2—C3179.3 (10)C25—C26—C27—F27177.1 (11)
C1—C2—C3—C40 (2)F26—C26—C27—C28178.8 (11)
C2—C3—C4—C51 (2)C25—C26—C27—C282.5 (19)
C2—C3—C4—F4179.8 (12)F27—C27—C28—F282.0 (19)
C3—C4—C5—C61 (2)C26—C27—C28—F28178.3 (11)
F4—C4—C5—C6179.7 (11)F27—C27—C28—C29178.2 (12)
C2—C1—C6—C51.0 (16)C26—C27—C28—C291 (2)
P1—C1—C6—C5179.4 (9)F28—C28—C29—F290 (2)
C4—C5—C6—C10.1 (18)C27—C28—C29—F29179.9 (13)
C13—P1—C7—C1294.5 (9)F28—C28—C29—C30178.6 (12)
C1—P1—C7—C1213.8 (10)C27—C28—C29—C302 (2)
Os1—P1—C7—C12139.6 (8)C26—C25—C30—F30177.6 (10)
C13—P1—C7—C880.0 (9)S2—C25—C30—F302.4 (16)
C1—P1—C7—C8171.7 (8)C26—C25—C30—C293.0 (18)
Os1—P1—C7—C846.0 (9)S2—C25—C30—C29177.0 (10)
C12—C7—C8—C90.8 (17)F29—C29—C30—F303 (2)
P1—C7—C8—C9174.0 (10)C28—C29—C30—F30178.9 (12)
C7—C8—C9—C103 (2)F29—C29—C30—C25177.6 (12)
C8—C9—C10—F10179.6 (12)C28—C29—C30—C254 (2)
C8—C9—C10—C116 (2)Os1—S3—C31—C3692.6 (9)
C9—C10—C11—C125 (2)Os1—S3—C31—C3291.3 (9)
F10—C10—C11—C12179.0 (11)C36—C31—C32—F32179.4 (11)
C8—C7—C12—C111.4 (16)S3—C31—C32—F323.3 (16)
P1—C7—C12—C11173.2 (9)C36—C31—C32—C332.8 (18)
C10—C11—C12—C71.5 (19)S3—C31—C32—C33178.9 (10)
C7—P1—C13—C18162.8 (8)F32—C32—C33—F332 (2)
C1—P1—C13—C1887.9 (9)C31—C32—C33—F33179.9 (12)
Os1—P1—C13—C1836.8 (9)F32—C32—C33—C34178.1 (13)
C7—P1—C13—C1419.5 (10)C31—C32—C33—C344 (2)
C1—P1—C13—C1489.8 (10)F33—C33—C34—F340 (2)
Os1—P1—C13—C14145.5 (8)C32—C33—C34—F34176.3 (12)
C18—C13—C14—C152.7 (18)F33—C33—C34—C35178.4 (13)
P1—C13—C14—C15175.1 (10)C32—C33—C34—C352 (2)
C13—C14—C15—C163 (2)F34—C34—C35—F351 (2)
C14—C15—C16—F16179.7 (11)C33—C34—C35—F35179.8 (13)
C14—C15—C16—C171.7 (19)F34—C34—C35—C36179.2 (11)
F16—C16—C17—C18177.9 (10)C33—C34—C35—C360 (2)
C15—C16—C17—C180.0 (19)C32—C31—C36—F36178.9 (10)
C16—C17—C18—C130.4 (18)S3—C31—C36—F364.9 (15)
C14—C13—C18—C170.9 (16)C32—C31—C36—C350.1 (18)
P1—C13—C18—C17176.9 (9)S3—C31—C36—C35176.1 (10)
Os1—S1—C19—C2492.9 (10)F35—C35—C36—F362.4 (19)
Os1—S1—C19—C2084.7 (9)C34—C35—C36—F36177.3 (11)
C24—C19—C20—F20178.9 (11)F35—C35—C36—C31178.5 (12)
S1—C19—C20—F203.3 (14)C34—C35—C36—C312 (2)
C24—C19—C20—C212.3 (16)

Experimental details

Crystal data
Chemical formula[Os(C6F5S)3Cl(C18H12F3P)]
Mr1139.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.983 (7), 10.446 (5), 21.521 (8)
β (°) 107.62 (2)
V3)3853 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.70
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.215, 0.330
No. of measured, independent and
observed [I > 2σ(I)] reflections
13694, 6749, 5120
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.33
No. of reflections6749
No. of parameters542
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.026P)2 + 24.9505P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.96, 2.11

Computer programs: XSCANS (Siemens, 1996), SHELXTL-Plus (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Selected bond lengths (Å) top
Os1—S12.205 (3)Os1—Cl12.414 (2)
Os1—S22.199 (3)Os1—P12.334 (2)
Os1—S32.206 (3)
 

Acknowledgements

We gratefully acknowledge CONACYT (27915E), VIEP (ARCS-NAT-09-G) and PROMEP for financial support.

References

First citationAllman, T. & Goel, R. G. (1982). Can. J. Chem. 60, 716–722.  CrossRef CAS Web of Science Google Scholar
First citationArroyo, M., Bernès, S., Cerón, M., Cortina, V., Mendoza, C. & Torrens, H. (2007). Inorg. Chem. 46, 4857–4867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationArroyo, M., Chamizo, J. A., Hughes, D. L., Richards, R. L., Roman, P., Sosa, P. & Torrens, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1819–1824  CrossRef Google Scholar
First citationArroyo, M., Mendoza, C., Bernès, S., Torrens, H. & Morales-Rojas, H. (2009). Polyhedron, 28, 2625–2634.  Web of Science CSD CrossRef CAS Google Scholar
First citationbin Shawkataly, O., Singh, J., Fun, H.-K. & Sivakumar, K. (1996). Acta Cryst. C52, 2243–2245.  CSD CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCerón, M., Arroyo, M. & Bernès, S. (2006). Acta Cryst. E62, m2167–m2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHills, A., Hughes, D. L., Richards, R. L., Arroyo, M., Cruz-Garritz, D. & Torrens, H. (1991). J. Chem. Soc. Dalton Trans. pp. 1281–1284.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMendoza, C., Bernès, S. & Arroyo, M. (2006). Acta Cryst. C62, m201–m204.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m477-m478
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds