organic compounds
Alaptide from synchrotron powder diffraction data
aDepartment of Solid State Chemistry, Prague Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic, and bCentral Laboratories, Prague Institute of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
*Correspondence e-mail: rohlicej@vscht.cz
The title compound [systematic name: (8S)-8-methyl-6,9-diazaspiro[4.5]decane-7,10-dione], C9H14N2O2, consists of two connected rings, viz. a piperazine-2,5-dione (DKP) ring and a five-membered ring. The DKP ring adopts a slight boat conformation and the bonded methyl group is in an equatorial position. The five-membered ring is in an In the intermolecular N—H⋯O hydrogen bonds link molecules into chains running parallel to the c axis.
Related literature
For background to alaptide and its biological activity, see: Kasafírek et al. (1992); Hliňák et al. (1996). For a related structure, see: Symerský et al. (1987). For the original powder diffraction data, see: Maixner et al. (2009). For the synthetic procedure, see: Sturc & Kacafirek (1992). For a description of the Cambridge Structural Database, see: Allen (2002). For the March–Dollase orientation correction, see: (Dollase, 1986).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: ESRF SPEC (Certified Scientific Software, 2003); cell EXPO2004 (Altomare et al., 1999); data reduction: CRYSFIRE2004 (Shirley, 2000); program(s) used to solve structure: EXPO2004; program(s) used to refine structure: GSAS (Larson & Von Dreele, 1994); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536810007750/lh2977sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S1600536810007750/lh2977Isup2.rtv
Structure factors: contains datablock I. DOI: 10.1107/S1600536810007750/lh2977Isup3.hkl
The title compound was synthesized according to the procedure of Sturc & Kacafirek (1992). Alaptide was crystallized from various solvents in order to check
but only one solid form was found (Maixner et al., 2009). The sample for measurement was recrystallized from methanol by slow evaporation technique.X-Ray diffraction data were collected on the high resolution diffractometer ID31 of the European Synchrotron Radiation Facility. The monochromatic wavelength was fixed at 0.79984 (4) Å. Si (111) crystal multi-analyzer combined with Si (111) monochromator was used (beam offset angle α = 2°). A rotating 1-mm-diameter borosilicate glass capillary with alaptide powder was used for the experiment. Data were measured from 1.002° 2θ to 48.012° 2θ at the room temperature, steps scans were set to 0.003° 2θ.
Indexation was done in CRYSFIRE 2004 (Shirley, 2000) package. It confirmed previously presented unit-cell parameters and
(Maixner et al., 2009): a = 21.136 (4), b = 7.212 (4), c = 6.126 (3) Å, P212121, V = 933.8 (8) Å3, and Z = 4. The structure was solved by using methods implemented in EXPO2004 package (Altomare et al.,1999). All non-hydrogen atoms were found in the structure solution process. Hydrogen atoms were placed in their theoretical positions and structure was refined by as implemented in GSAS (Larson & Von Dreele, 1994). Bonds, angles and planar group restraints were used during At final stages atomic coordinates and Uiso parameters of non-hydrogen atoms were refined to the final agreement factors Rp = 0.059 and Rwp= 0.089. The diffraction profiles and differences between the measured and calculated profiles are shown in Fig. 3.The isotropic displacement parameters of atoms C10, C11 and C12 are large compared to those of the other atoms. A disorder model was attempted but this did not improve the
and therefore was not used.Data collection: ESRF SPEC package (Certified Scientific Software, 2003); cell
EXPO2004 package (Altomare et al., 1999); data reduction: CRYSFIRE2004 (Shirley, 2000); program(s) used to solve structure: EXPO2004 package (Altomare et al., 1999); program(s) used to refine structure: GSAS (Larson & Von Dreele, 1994); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).C9H14N2O2 | F(000) = 392 |
Mr = 182.22 | Dx = 1.290 Mg m−3 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 0.79984 Å |
Hall symbol: P 2ac 2ab | T = 293 K |
a = 21.14118 (7) Å | Particle morphology: no specific habit |
b = 7.22207 (2) Å | white |
c = 6.14610 (3) Å | cylinder, 40 × 1 mm |
V = 938.41 (1) Å3 | Specimen preparation: Prepared at 293 K and 101 kPa |
Z = 4 |
ID31 ESRF Grenoble diffractometer | Data collection mode: transmission |
Radiation source: synchrotron | Scan method: step |
Si(111) monochromator | 2θmin = 1.001°, 2θmax = 48.011°, 2θstep = 0.003° |
Specimen mounting: capilary |
Least-squares matrix: full | 53 parameters |
Rp = 0.058 | 37 restraints |
Rwp = 0.089 | 0 constraints |
Rexp = 0.023 | H-atom parameters not refined |
RBragg = 0.102 | Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2 |
χ2 = 15.210 | (Δ/σ)max = 0.06 |
15671 data points | Background function: Shifted Chebyschev |
Excluded region(s): no | Preferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation is 101; MD = 0.93 |
C9H14N2O2 | V = 938.41 (1) Å3 |
Mr = 182.22 | Z = 4 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 0.79984 Å |
a = 21.14118 (7) Å | T = 293 K |
b = 7.22207 (2) Å | cylinder, 40 × 1 mm |
c = 6.14610 (3) Å |
ID31 ESRF Grenoble diffractometer | Scan method: step |
Specimen mounting: capilary | 2θmin = 1.001°, 2θmax = 48.011°, 2θstep = 0.003° |
Data collection mode: transmission |
Rp = 0.058 | 15671 data points |
Rwp = 0.089 | 53 parameters |
Rexp = 0.023 | 37 restraints |
RBragg = 0.102 | H-atom parameters not refined |
χ2 = 15.210 |
x | y | z | Uiso*/Ueq | ||
C1 | −0.08373 (10) | 0.2121 (8) | −0.0450 (5) | 0.027 (3)* | |
C2 | −0.01869 (8) | 0.3035 (3) | −0.0158 (4) | 0.035 (3)* | |
C3 | 0.01033 (9) | 0.27000 (17) | 0.2032 (3) | 0.052 (3)* | |
N4 | 0.07052 (9) | 0.2345 (4) | 0.2137 (3) | 0.026 (2)* | |
C5 | 0.11718 (7) | 0.2470 (3) | 0.0365 (3) | 0.027 (3)* | |
C6 | 0.08529 (8) | 0.23092 (17) | −0.1846 (3) | 0.025 (3)* | |
N7 | 0.02321 (9) | 0.2505 (4) | −0.1937 (3) | 0.027 (2)* | |
O8 | 0.11977 (11) | 0.2014 (4) | −0.3425 (4) | 0.047 (2)* | |
C9 | 0.16843 (14) | 0.0925 (6) | 0.0590 (5) | 0.043 (4)* | |
C10 | 0.15361 (16) | 0.4304 (5) | 0.0487 (5) | 0.133 (6)* | |
C11 | 0.20873 (16) | 0.3907 (9) | 0.1995 (5) | 0.165 (5)* | |
C12 | 0.22476 (14) | 0.1870 (9) | 0.1704 (8) | 0.114 (4)* | |
O13 | −0.02052 (12) | 0.2734 (4) | 0.3727 (4) | 0.0319 (18)* | |
H11 | −0.0992 | 0.2386 | −0.1875 | 0.0346* | |
H12 | −0.1121 | 0.2595 | 0.0598 | 0.0346* | |
H13 | −0.0795 | 0.0821 | −0.0282 | 0.0346* | |
H21 | −0.025 | 0.4337 | −0.0286 | 0.0516* | |
H91 | 0.181 | 0.0494 | −0.0796 | 0.063* | |
H92 | 0.1531 | −0.0061 | 0.1445 | 0.063* | |
H101 | 0.1686 | 0.4665 | −0.0916 | 0.18* | |
H102 | 0.1276 | 0.5269 | 0.1053 | 0.18* | |
H111 | 0.2441 | 0.4664 | 0.1615 | 0.2445* | |
H112 | 0.197 | 0.4181 | 0.3464 | 0.2445* | |
H121 | 0.2617 | 0.1746 | 0.089 | 0.168* | |
H122 | 0.2309 | 0.1335 | 0.313 | 0.168* | |
H71 | 0.006 | 0.2305 | −0.3181 | 0.0296* | |
H41 | 0.0848 | 0.2013 | 0.3384 | 0.0271* |
O8—C6 | 1.232 (3) | N4—H41 | 0.86 |
O13—C3 | 1.229 (3) | N7—H71 | 0.86 |
N4—C3 | 1.300 (3) | C1—H11 | 0.95 |
N4—C5 | 1.472 (3) | C1—H12 | 0.94 |
N7—C2 | 1.458 (3) | C1—H13 | 0.95 |
N7—C6 | 1.321 (3) | C2—H21 | 0.95 |
C1—C2 | 1.536 (4) | C9—H91 | 0.95 |
C2—C3 | 1.499 (3) | C9—H92 | 0.94 |
C5—C6 | 1.521 (3) | C10—H101 | 0.95 |
C5—C9 | 1.561 (4) | C10—H102 | 0.95 |
C5—C10 | 1.534 (4) | C11—H111 | 0.96 |
C9—C12 | 1.534 (5) | C11—H112 | 0.96 |
C10—C11 | 1.516 (5) | C12—H121 | 0.93 |
C11—C12 | 1.520 (9) | C12—H122 | 0.97 |
C3—N4—C5 | 127.39 (18) | C2—C1—H13 | 109 |
C2—N7—C6 | 126.85 (18) | H11—C1—H12 | 110 |
N7—C2—C1 | 110.1 (2) | H11—C1—H13 | 109 |
N7—C2—C3 | 112.48 (16) | H12—C1—H13 | 110 |
C1—C2—C3 | 113.7 (2) | N7—C2—H21 | 106 |
O13—C3—N4 | 118.8 (2) | C1—C2—H21 | 107 |
O13—C3—C2 | 122.7 (2) | C3—C2—H21 | 107 |
N4—C3—C2 | 118.50 (17) | C5—C9—H91 | 111 |
N4—C5—C6 | 111.05 (14) | C5—C9—H92 | 111 |
N4—C5—C9 | 110.8 (2) | C12—C9—H91 | 109 |
N4—C5—C10 | 110.7 (2) | C12—C9—H92 | 111 |
C6—C5—C9 | 109.39 (18) | H91—C9—H92 | 111 |
C6—C5—C10 | 109.39 (18) | C5—C10—H101 | 111 |
C9—C5—C10 | 105.3 (2) | C5—C10—H102 | 111 |
O8—C6—N7 | 124.94 (19) | C11—C10—H101 | 110 |
O8—C6—C5 | 117.03 (17) | C11—C10—H102 | 111 |
N7—C6—C5 | 118.02 (16) | H101—C10—H102 | 109 |
C5—C9—C12 | 105.1 (3) | C10—C11—H111 | 110 |
C5—C10—C11 | 104.6 (3) | C10—C11—H112 | 110 |
C10—C11—C12 | 106.4 (4) | C12—C11—H111 | 111 |
C9—C12—C11 | 108.1 (3) | C12—C11—H112 | 112 |
C3—N4—H41 | 116 | H111—C11—H112 | 108 |
C5—N4—H41 | 116 | C9—C12—H121 | 112 |
C2—N7—H71 | 117 | C9—C12—H122 | 109 |
C6—N7—H71 | 116 | C11—C12—H121 | 110 |
C2—C1—H11 | 109 | C11—C12—H122 | 108 |
C2—C1—H12 | 109 | H121—C12—H122 | 110 |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···O8i | 0.86 | 2.10 | 2.929 (3) | 164 |
N7—H71···O13ii | 0.86 | 2.01 | 2.826 (3) | 159 |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C9H14N2O2 |
Mr | 182.22 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 21.14118 (7), 7.22207 (2), 6.14610 (3) |
V (Å3) | 938.41 (1) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.79984 Å |
µ (mm−1) | ? |
Specimen shape, size (mm) | Cylinder, 40 × 1 |
Data collection | |
Diffractometer | ID31 ESRF Grenoble diffractometer |
Specimen mounting | Capilary |
Data collection mode | Transmission |
Scan method | Step |
2θ values (°) | 2θmin = 1.001 2θmax = 48.011 2θstep = 0.003 |
Refinement | |
R factors and goodness of fit | Rp = 0.058, Rwp = 0.089, Rexp = 0.023, RBragg = 0.102, χ2 = 15.210 |
No. of data points | 15671 |
No. of parameters | 53 |
No. of restraints | 37 |
H-atom treatment | H-atom parameters not refined |
Computer programs: ESRF SPEC package (Certified Scientific Software, 2003), EXPO2004 package (Altomare et al., 1999), CRYSFIRE2004 (Shirley, 2000), GSAS (Larson & Von Dreele, 1994), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H41···O8i | 0.86 | 2.10 | 2.929 (3) | 164 |
N7—H71···O13ii | 0.86 | 2.01 | 2.826 (3) | 159 |
Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1. |
Acknowledgements
This study was supported by the research programs MSM6046137302 and NPV II 2B08021 of the Ministry of Education, Youth and Sports of the Czech Republic.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339–340. Web of Science CrossRef CAS IUCr Journals Google Scholar
Certified Scientific Software (2003). ESRF SPEC. Certified Scientific Software, Cambridge, MA, USA. Google Scholar
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hliňák, Z., Vinšová, J. & Kasafírek, E. (1996). Eur. J. Pharmacol. 314, 1–7. PubMed Web of Science Google Scholar
Kasafírek, E., Šturc, A. & Roubalová, A. (1992). Collect. Czech. Chem. Commun. 57, 179–187. Google Scholar
Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maixner, J., Rohlíček, J., Kratochvíl, B. & Šturc, A. (2009). Powder Diffr. 24, 32–34. Web of Science CrossRef CAS Google Scholar
Shirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sturc, A. & Kacafirek, E. (1992). Research Institute for Pharmacy and Biochemistry, Prague, Czech Republic, Report No. CS 277132, p. 30. Google Scholar
Symerský, J., Bláha, K. & Langer, V. (1987). Acta Cryst. C43, 303–306. CSD CrossRef Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Alaptide is a small molecule belonging to the group of spirocyclic dipeptides (Kasafírek et al., 1992). The systematic research during the last twenty years has shown a positive effect of alaptide and its derivatives on the memory of animals and on healing of burns (Hliňák et al., 1996).
The molecular structure of the title compound is shown in Fig. 1. The crystal structure contains two types of intermolecular N—H···O hydrogen bonds between DKP rings. The DKP ring adopts a slight boat conformation and is connected via the spiro junction to a five-membered carbon ring which is in an envelope conformation. The methyl group bonded to the dipeptide ring is in an equatorial position. A search in the Cambridge Structural Database (Allen, 2002) found the crystal structure of a similar type of molecule, namely: (8S)-8-Hydroxymethyl-6,9-diazaspiro[4.5]decane-7,10-dione (CSD refcode FEPFOV; Symerský et al., 1987). This structure has the same spacegroup and comparable unit-cell parameters as the reported structure of the title copmound. Two similar hydrogen bonds N—H···O connecting DKP rings of neighboring molecules occur in both crystal structures. In both structures, the hydrogen bonding connects molecules to form one-dimensional chains. The third hydrogen bond O—H···O is missing in the structure of alaptide, which causes a different formation of extended chains in these structures, see Fig. 2.