metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m408-m409

Bis[4-(2-carbamoylhydrazin-1-yl­­idene-κ2N1,O)-5-hy­droxy­methyl-2-methyl­pyridinium-3-olato-κO3]cobalt(II) dinitrate dihydrate

aChemistry Research Laboratory, Chemistry Department, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Chemistry, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Trg D. Obradovica 3, Serbia
*Correspondence e-mail: drasko.vidovic@gmail.com

(Received 11 January 2010; accepted 28 January 2010; online 13 March 2010)

The asymmetric unit of the title compound, [Co(C9H12N4O3)2](NO3)2·2H2O, consists of a discrete cationic [Co(PLSC)2]2+ complex unit [PLSC is 4-(2-carbamoylhydrazin-1-yl­idene)-5-hydroxy­methyl-2-methyl­pyridinium-3-ol­ato], two NO3 and two water mol­ecules. The two tridentate PLSC ligands of the cation are zwitterions related to each other by a non-crystallographic C2 axis. The CoII ion is in a disorted octa­hedral coordination environment. The crystal structure is composed of alternating NO3/H2O and complex layers supported by extensive C—H⋯O, N—H⋯O and N—H⋯N hydrogen bonding.

Related literature

For the preparation and structure of other complexes incorporating PLSC ligands, see for example: Poleti et al. (2003[Poleti, D., Karanović, L., Leovac, V. M. & Jevtović, V. S. (2003). Acta Cryst. C59, m73-m75.]); Leovac et al. (2007a[Leovac, V., Jovanovic, Lj., Divjakovic, V., Pevec, A., Leban, I. & Armstrong, T. (2007a). Polyhedron, 26, 49-58.]); Jacimovic et al. (2007[Jacimovic, Z., Leovac, V., Giester, G., Tomic, Z. & Szecsenyi, K. (2007). J. Therm. Anal. Calorim. 90, 549-555.]); Knezevic et al. (2003[Knezevic, N., Leovac, M., Jevtovic, V., Grguric-Sipka, S. & Sabo, T. (2003). Inorg. Chem. Commun. 6, 561-563.]). For the preparation and structures of similar complexes incorporating thio­semicarbazone (TSC) ligands, see: Belicchi Ferrari et al. (1998[Belicchi Ferrari, M., Gasparri Fava, G., Pelizzi, C., Pelosi, G. & Tarasconi, P. (1998). Inorg. Chim. Acta, 269, 297-301.]); Leovac et al. (2007b[Leovac, V., Jovanovic, Lj., Jevtovic, V., Pelosi, G. & Bisceglie, F. (2007b). Polyhedron, 26, 2971-2978.]). For background to the biological acitiviy of semicarbazones and thio­semicarbazones, see: West et al. (1991[West, D. X., Padhye, S. B. & Sonawane, P. B. (1991). Struct. Bonding (Berlin), 76, 1-50.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the Chebychev weighting scheme, see: Prince (1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]); Watkin (1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C9H12N4O3)2](NO3)2·2H2O

  • Mr = 667.41

  • Monoclinic, P 21 /c

  • a = 11.0358 (1) Å

  • b = 18.4859 (2) Å

  • c = 13.8380 (1) Å

  • β = 106.5705 (6)°

  • V = 2705.80 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 150 K

  • 0.38 × 0.08 × 0.03 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.92, Tmax = 0.98

  • 38405 measured reflections

  • 5212 independent reflections

  • 4121 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.041

  • S = 1.14

  • 5212 reflections

  • 389 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H71⋯O11 0.94 2.33 2.992 (3) 127
C17—H172⋯O11i 0.97 2.58 3.331 (3) 135
C22—H221⋯O2ii 0.93 2.35 3.153 (3) 144
N27—H271⋯O35iii 0.86 2.18 2.950 (3) 149
N27—H271⋯N36iii 0.86 2.57 3.400 (3) 163
N27—H271⋯O37iii 0.86 2.27 2.995 (3) 142
C30—H301⋯O37iv 0.97 2.49 3.369 (3) 151
O11—H325⋯O16i 0.82 2.00 2.783 (3) 159
O11—H325⋯O18i 0.82 2.59 3.132 (3) 125
O39—H11⋯O40 0.84 2.01 2.851 (3) 175
O31—H17⋯O42v 0.81 1.95 2.718 (3) 158
C17—H23⋯O40 0.96 2.59 3.391 (3) 141
O39—H45⋯O31vi 0.85 2.05 2.892 (3) 171
O34—H7⋯O11vii 0.83 1.96 2.767 (3) 164
O34—H19⋯O25 0.83 2.06 2.852 (3) 158
N13—H131⋯O40 0.75 2.22 2.963 (3) 169
N13—H131⋯O42 0.75 2.38 2.971 (3) 136
N5—H2⋯O38i 0.86 1.93 2.789 (3) 174
N4—H3⋯O37viii 0.86 2.09 2.948 (3) 174
N33—H4⋯O39ix 0.86 2.08 2.893 (3) 158
N33—H5⋯O34ii 0.88 2.06 2.874 (3) 153
N4—H6⋯O35i 0.88 2.09 2.967 (3) 174
N20—H9⋯O34ii 0.86 2.21 2.946 (3) 143
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) x, y, z-1; (vi) -x+1, -y+1, -z; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) x+1, y, z.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

Semicarbazones (SC) and thiosemicarbazones (TSC) are excellent chelating ligands of different denticity that possess a broad range of biological activity as antifungal, anti-viral, anti-malarian and anti-tumour agents (West et al., 1991). The synthetic, structural as well as the biological activity of TSC-based ligands have been explored to a greater extent than their SC-based analogues. In fact, only a handful of reports have been published revealing the syntheses and structures of complexes incorporating 3–hydroxy–5–hydroxymethyl–2–methyl– pyridine–4–carbaldehyde semicarbazone (PLSC) ligand (see for example Knezevic et al., 2003) and all the reports describe complexes incorporating one PLSC ligand except for a report by Leovac et al., (2007b), which includes the synthetic and structural descriptions of a complex with two PTSC ligands in its coordination sphere. It is worth noting that PLSC ligand can adopt three different forms in the coordination sphere of a transition metal namely neutral (but zwitterionic) H2L, monoanionic HL- (pyridinium deprotonation) and dianionic L2- (both pyridinium and hydrazine deprotonation) forms (see Fig. 1).

Herein, we report the second PLSC-based complex ([Co(H2L)2].2NO3.2H2O, 1 (Figure 2), which contains two PLSC ligands in its coordination sphere. However, complex 1 includes both PLSC ligands in their neutral zwitterionic forms while in the corresponding complex reported by Leovac et al., (2007b) both ligands are in their monodeprotonated forms HL-. Thus, the title complex 1 is the first bis-PLSC-based complex that contains neutral PLSC ligands.

The molecular structure for 1 is shown in Fig. 2 and it contains a discrete dicationic unit [Co(H2L)2]2+, two NO3- anions and two H2O molecules. The crystal structure is connected by an extensive hydrogen-bonding network. The structure is best described as layered (Fig. 3) in which one layer consists of [Co(H2L)2]2+ units connected by alternating O16—H···O11 and C22—H···O2 hydrogen bonds additionally stabilized by a water molecule. The other layer consists of NO3- anions and water molecules that also form several hydrogen bonds with the first layer.

The values for certain bond lengths and angles of the ligand backbone (O(phenolic)–C–C–C–N (hydrazine)–NCO(carbonyl)) are crystallographic evidence used to determine which form (H2L, HL- or L2-) the PLSC ligand adopts once coordinated to a metal centre. For example, the first deprotonation of H2L, forming monoanionic form HL-, changes the carbonyl C—O from a double to a single bond and the hydrazine N—N from a single to a double bond. Further deprotonation to form L2- leads to a change in the C—N—C angle of the pyridine ring from 125° to 118°. Thus, the carbonyl C–O (1.249 (3) and 1.295 (3) Å) and N–N (1.368 (2) and 1.375 (2) Å) bond lengths, and the pyridine C–N–C angles (124.9 (2) Å and 124.19 (19) °) are the concrete evidence that the PTSC ligands are in their neutral (H2L) forms in complex 1.

The environment around the central cobalt cation in 1 can be best described as a distorted octahedral geometry. In fact, the N6–Co–N21 angle (171.12 (7)°) is somewhat similar to the theoretical 180° , but the other two, symmetry-related, O2–Co1–O16 (154,44 (7)° ), and O18–Co1–O25 (162.82 (6)° ) angles greatly deviate from linearity due to the chelation rings strain. Furthermore, the angles formed by the phenolic and carbonyl O atoms and Co (O2–Co1–O18 and O16–Co1–O25) differ from 90° (83.21 (6) and 101.92 (7)°, respectively) confirming a distorted octahedral geometry around the central Co cation.

The ring-puckering parameters defined for the atom sequence O16(O25)–C15(C24)–C8(C23)– C7(C22)–N6(N21)–Co are Θ = 64.8 (7)°, Q1=0.142 (2) Å and Q2= 0.067 (2) Å corresponding to a twist (1T2) conformation while the six-membered ring has and a total puckering amplitude of 0.1572 (18) Å corresponding to a skew (1S2) conformation (Cremer & Pople , 1975). The O16(25) atoms are the only atoms in the chelate ligand which exhibit strong H bonding interactions with O11 of the NO3- anions. The geometry of NO3- groups do not deviate from the usual literature values and the summary of the H bonding (O–H···O, N—H···O and C—H···O) in 1 are given in Table 1.

Related literature top

For the preparation and structure of other complexes incorporating PLSC ligands, see, for example: Poleti et al. (2003); Leovac et al. (2007a); Jacimovic et al. (2007); Knezevic et al. (2003). For the preparation and structures of similar complexes incorporating thiosemicarbazone (TSC) ligands, see: Belicchi Ferrari et al. (1998); Leovac et al. (2007b). For background to the biological acitiviy of semicarbazones and thiosemicarbazones, see: West et al. (1991). For puckering parameters, see: Cremer & Pople (1975). For the Chebychev weighting scheme, see: Prince (1982); Watkin (1994).

Experimental top

The title complex was prepared by the reaction of Co(NO3)2 .6H2O and PLSC in a 1:1 molar ratio, using warm H2O as the solvent. Brown single crystals of 1 were obtained after allowing the reaction mixture to stand overnight.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularise their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2-1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

A three term Chebychev polynomial weighting scheme was applied (Watkin, 1994; Prince, 1982).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. Different forms of the PLSC ligand.
[Figure 2] Fig. 2. The asymmetric unit of 1. The thermal ellipsoids are drawn at the 50% probability level. H atoms are not shown.
[Figure 3] Fig. 3. Crystal packing diagram of 1 viewed along the z axis showing the layered motif. H atoms are not shown.
Bis[4-(2-carbamoylhydrazin-1-ylidene-κ2N1,O)-5- hydroxymethyl-2-methylpyridinium-3-olato-κO3]cobalt(II) dinitrate dihydrate top
Crystal data top
[Co(C9H12N4O3)2](NO3)2·2H2OF(000) = 1380
Mr = 667.41Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6300 reflections
a = 11.0358 (1) Åθ = 5–27°
b = 18.4859 (2) ŵ = 0.72 mm1
c = 13.8380 (1) ÅT = 150 K
β = 106.5705 (6)°Block, green
V = 2705.80 (4) Å30.38 × 0.08 × 0.03 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.92, Tmax = 0.98k = 2323
38405 measured reflectionsl = 1717
6133 independent reflections
Refinement top
Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.444 0.165 0.244
wR(F2) = 0.041(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.56 e Å3
5212 reflectionsΔρmin = 0.42 e Å3
389 parametersExtinction correction: Larson (1970), Equation 22
0 restraintsExtinction coefficient: 80 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Co(C9H12N4O3)2](NO3)2·2H2OV = 2705.80 (4) Å3
Mr = 667.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0358 (1) ŵ = 0.72 mm1
b = 18.4859 (2) ÅT = 150 K
c = 13.8380 (1) Å0.38 × 0.08 × 0.03 mm
β = 106.5705 (6)°
Data collection top
Nonius KappaCCD
diffractometer
6133 independent reflections
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
4121 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.98Rint = 0.056
38405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.14Δρmax = 0.56 e Å3
5212 reflectionsΔρmin = 0.42 e Å3
389 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.97214 (3)0.479038 (15)0.21508 (2)0.0178
O21.10949 (15)0.41005 (8)0.18293 (11)0.0221
C31.1436 (2)0.35913 (12)0.24402 (16)0.0197
N41.22358 (19)0.30776 (11)0.23500 (15)0.0266
N51.09857 (18)0.35397 (10)0.32629 (14)0.0237
N61.01658 (17)0.40702 (10)0.33633 (13)0.0189
C70.9609 (2)0.39890 (12)0.40564 (16)0.0191
C80.8744 (2)0.45254 (11)0.42558 (16)0.0183
C90.8127 (2)0.43675 (12)0.50011 (16)0.0200
C100.8221 (2)0.36423 (12)0.55277 (17)0.0232
O110.94816 (15)0.34273 (8)0.60528 (11)0.0235
C120.7357 (2)0.48771 (12)0.52394 (17)0.0229
N130.71667 (17)0.55170 (10)0.47433 (14)0.0226
C140.7688 (2)0.56970 (12)0.40180 (16)0.0201
C150.85115 (19)0.52005 (12)0.37386 (15)0.0186
O160.90135 (15)0.54119 (8)0.30417 (12)0.0230
C170.7403 (2)0.64164 (12)0.35176 (18)0.0256
O181.11612 (15)0.55823 (9)0.23239 (11)0.0246
C191.1000 (2)0.59940 (12)0.15863 (16)0.0195
N200.99748 (17)0.59111 (10)0.07567 (14)0.0211
N210.91416 (17)0.53710 (9)0.08134 (13)0.0187
C220.8162 (2)0.52824 (12)0.00484 (16)0.0191
C230.7192 (2)0.47389 (12)0.00103 (16)0.0197
C240.7303 (2)0.42092 (12)0.07771 (17)0.0212
O250.82772 (15)0.41181 (8)0.15522 (12)0.0231
C260.6286 (2)0.37144 (13)0.06785 (18)0.0271
N270.52905 (19)0.37585 (12)0.01369 (16)0.0308
C280.5171 (2)0.42374 (14)0.08929 (18)0.0288
C290.6111 (2)0.47329 (13)0.08471 (16)0.0225
C300.5993 (2)0.52333 (13)0.17260 (16)0.0253
O310.49006 (17)0.50463 (10)0.25181 (14)0.0361
C320.6314 (3)0.31578 (15)0.1459 (2)0.0380
N331.17911 (19)0.65324 (11)0.15436 (15)0.0266
O340.92284 (17)0.30192 (9)0.05176 (13)0.0298
O350.71622 (18)0.80490 (10)0.60566 (13)0.0335
N360.75110 (18)0.79336 (10)0.52883 (14)0.0225
O370.68648 (16)0.81769 (9)0.44575 (12)0.0291
O380.85047 (15)0.75880 (9)0.53404 (13)0.0298
O390.41254 (18)0.62823 (12)0.31113 (15)0.0467
O400.5576 (2)0.67311 (12)0.50711 (15)0.0484
N410.51580 (19)0.64733 (13)0.57582 (15)0.0311
O420.5441 (2)0.58280 (11)0.59929 (16)0.0453
O430.4521 (2)0.68264 (14)0.61762 (18)0.0566
H710.97740.35730.44600.0228*
H1010.77200.36640.60160.0279*
H1020.78760.32650.50160.0267*
H1210.69420.47910.57650.0442*
H1720.81360.67240.37470.0384*
H1730.71970.63600.27940.0387*
H2210.80660.55890.05020.0232*
H2710.46770.34620.01840.0362*
H3010.59180.57250.15070.0287*
H3020.67250.51940.19700.0290*
H3210.55520.28720.12700.0565*
H3220.63850.34000.20850.0563*
H3230.70390.28520.15370.0561*
H3250.98020.37700.64090.0357*
H110.45170.64150.37010.0682*
H170.48880.53360.29640.0494*
H230.66970.66430.36640.0389*
H450.44940.59120.29720.0683*
H70.94330.26090.07590.0456*
H190.90050.32560.09500.0455*
H3240.44440.42280.14440.0326*
H1310.67420.57910.48840.0126*
H21.11720.31780.36710.0294*
H31.25270.30790.18330.0331*
H41.24540.65820.20430.0307*
H51.16340.67950.09930.0304*
H61.24620.27400.28100.0331*
H90.98500.61860.02350.0258*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02145 (15)0.01664 (15)0.01580 (14)0.00014 (12)0.00608 (10)0.00114 (12)
O20.0268 (8)0.0207 (8)0.0212 (8)0.0020 (6)0.0105 (6)0.0033 (6)
C30.0217 (11)0.0196 (10)0.0184 (10)0.0021 (8)0.0069 (8)0.0006 (8)
N40.0329 (11)0.0264 (10)0.0243 (10)0.0087 (9)0.0145 (8)0.0036 (8)
N50.0311 (10)0.0208 (9)0.0223 (9)0.0101 (8)0.0127 (8)0.0064 (8)
N60.0211 (9)0.0188 (9)0.0178 (9)0.0039 (7)0.0071 (7)0.0009 (7)
C70.0238 (11)0.0176 (10)0.0164 (10)0.0019 (8)0.0062 (8)0.0022 (8)
C80.0186 (10)0.0196 (10)0.0167 (10)0.0011 (8)0.0050 (8)0.0021 (8)
C90.0193 (10)0.0224 (11)0.0185 (10)0.0027 (9)0.0057 (8)0.0014 (9)
C100.0253 (11)0.0230 (11)0.0237 (11)0.0030 (9)0.0107 (9)0.0013 (9)
O110.0276 (8)0.0198 (7)0.0226 (8)0.0004 (6)0.0064 (6)0.0011 (6)
C120.0226 (11)0.0268 (11)0.0211 (11)0.0017 (9)0.0091 (9)0.0013 (9)
N130.0198 (9)0.0240 (9)0.0254 (10)0.0046 (8)0.0089 (8)0.0033 (8)
C140.0191 (10)0.0209 (10)0.0191 (10)0.0022 (8)0.0036 (8)0.0036 (8)
C150.0195 (10)0.0194 (10)0.0167 (10)0.0013 (9)0.0052 (8)0.0021 (9)
O160.0298 (8)0.0180 (7)0.0241 (8)0.0012 (6)0.0126 (7)0.0028 (6)
C170.0278 (12)0.0213 (11)0.0279 (12)0.0040 (9)0.0083 (9)0.0009 (9)
O180.0267 (8)0.0256 (8)0.0206 (8)0.0039 (7)0.0052 (6)0.0002 (7)
C190.0205 (10)0.0186 (10)0.0202 (10)0.0003 (8)0.0069 (8)0.0015 (8)
N200.0225 (9)0.0188 (9)0.0213 (9)0.0057 (7)0.0052 (7)0.0038 (7)
N210.0206 (9)0.0167 (9)0.0203 (9)0.0014 (7)0.0080 (7)0.0002 (7)
C220.0209 (10)0.0203 (10)0.0173 (10)0.0004 (9)0.0073 (8)0.0014 (8)
C230.0200 (10)0.0202 (10)0.0195 (10)0.0006 (9)0.0069 (8)0.0020 (9)
C240.0215 (11)0.0189 (10)0.0240 (11)0.0003 (9)0.0078 (9)0.0021 (9)
O250.0245 (8)0.0198 (8)0.0236 (8)0.0008 (6)0.0045 (6)0.0030 (6)
C260.0262 (12)0.0242 (11)0.0318 (12)0.0044 (10)0.0099 (10)0.0003 (10)
N270.0240 (10)0.0326 (11)0.0350 (11)0.0106 (9)0.0074 (9)0.0000 (9)
C280.0256 (12)0.0330 (13)0.0260 (12)0.0037 (10)0.0044 (10)0.0007 (10)
C290.0209 (10)0.0261 (11)0.0213 (10)0.0020 (9)0.0074 (9)0.0039 (9)
C300.0243 (11)0.0282 (12)0.0196 (10)0.0045 (10)0.0003 (9)0.0004 (9)
O310.0329 (9)0.0399 (10)0.0267 (8)0.0085 (8)0.0057 (7)0.0034 (8)
C320.0332 (14)0.0317 (13)0.0471 (16)0.0090 (11)0.0083 (12)0.0121 (12)
N330.0265 (10)0.0259 (10)0.0250 (10)0.0084 (8)0.0035 (8)0.0008 (8)
O340.0397 (10)0.0207 (8)0.0301 (9)0.0015 (7)0.0116 (8)0.0012 (7)
O350.0469 (11)0.0349 (10)0.0232 (8)0.0128 (8)0.0175 (8)0.0032 (7)
N360.0275 (10)0.0190 (9)0.0227 (10)0.0016 (8)0.0101 (8)0.0030 (7)
O370.0326 (9)0.0322 (9)0.0234 (8)0.0104 (7)0.0094 (7)0.0086 (7)
O380.0265 (9)0.0322 (9)0.0323 (9)0.0096 (7)0.0111 (7)0.0091 (7)
O390.0335 (10)0.0616 (14)0.0390 (11)0.0035 (9)0.0009 (8)0.0149 (10)
O400.0599 (13)0.0568 (13)0.0304 (10)0.0153 (11)0.0161 (9)0.0023 (9)
N410.0272 (11)0.0426 (13)0.0229 (10)0.0009 (9)0.0060 (8)0.0030 (9)
O420.0497 (12)0.0437 (12)0.0462 (12)0.0081 (10)0.0199 (10)0.0034 (9)
O430.0491 (13)0.0671 (15)0.0602 (14)0.0178 (11)0.0264 (11)0.0122 (12)
Geometric parameters (Å, º) top
Co1—O22.1228 (15)C19—N331.336 (3)
Co1—N62.0878 (18)N20—N211.375 (2)
Co1—O162.0000 (15)N20—H90.861
Co1—O182.1232 (16)N21—C221.290 (3)
Co1—N212.0763 (18)C22—C231.458 (3)
Co1—O252.0044 (16)C22—H2210.931
O2—C31.249 (3)C23—C241.423 (3)
C3—N41.327 (3)C23—C291.422 (3)
C3—N51.369 (3)C24—O251.295 (3)
N4—H30.864C24—C261.424 (3)
N4—H60.875C26—N271.334 (3)
N5—N61.368 (2)C26—C321.485 (3)
N5—H20.861N27—C281.348 (3)
N6—C71.287 (3)N27—H2710.859
C7—C81.457 (3)C28—C291.372 (3)
C7—H710.937C28—H3240.935
C8—C91.419 (3)C29—C301.504 (3)
C8—C151.425 (3)C30—O311.421 (3)
C9—C101.515 (3)C30—H3010.970
C9—C121.370 (3)C30—H3020.964
C10—O111.430 (3)O31—H170.814
C10—H1010.988C32—H3210.964
C10—H1020.990C32—H3220.959
O11—H3250.818C32—H3230.961
C12—N131.354 (3)N33—H40.856
C12—H1210.977N33—H50.878
N13—C141.334 (3)O34—H70.834
N13—H1310.753O34—H190.833
C14—C151.421 (3)O35—N361.248 (2)
C14—C171.491 (3)N36—O371.251 (2)
C15—O161.302 (3)N36—O381.253 (2)
C17—H1720.965O39—H110.844
C17—H1730.967O39—H450.847
C17—H230.955O40—N411.262 (3)
O18—C191.245 (3)N41—O421.252 (3)
C19—N201.371 (3)N41—O431.219 (3)
O2—Co1—N676.54 (6)C14—C17—H23111.7
O2—Co1—O16154.44 (7)H172—C17—H23109.2
N6—Co1—O1685.09 (7)H173—C17—H23107.6
O2—Co1—O1883.21 (6)Co1—O18—C19113.69 (14)
N6—Co1—O18110.63 (7)O18—C19—N20120.60 (19)
O16—Co1—O1886.89 (6)O18—C19—N33123.3 (2)
O2—Co1—N21100.41 (6)N20—C19—N33116.08 (19)
N6—Co1—N21171.12 (7)C19—N20—N21116.04 (17)
O16—Co1—N21100.21 (7)C19—N20—H9122.1
O18—Co1—N2176.98 (6)N21—N20—H9121.8
O2—Co1—O2594.13 (6)Co1—N21—N20112.65 (13)
N6—Co1—O2585.04 (7)Co1—N21—C22129.72 (15)
O16—Co1—O25101.92 (7)N20—N21—C22117.59 (18)
O18—Co1—O25162.82 (6)N21—C22—C23123.5 (2)
N21—Co1—O2586.88 (7)N21—C22—H221117.8
Co1—O2—C3113.95 (13)C23—C22—H221118.6
O2—C3—N4123.8 (2)C22—C23—C24122.8 (2)
O2—C3—N5120.31 (19)C22—C23—C29117.9 (2)
N4—C3—N5115.94 (19)C24—C23—C29119.3 (2)
C3—N4—H3119.3C23—C24—O25125.6 (2)
C3—N4—H6120.1C23—C24—C26118.2 (2)
H3—N4—H6120.6O25—C24—C26116.2 (2)
C3—N5—N6116.22 (18)Co1—O25—C24129.50 (14)
C3—N5—H2121.6C24—C26—N27118.6 (2)
N6—N5—H2122.1C24—C26—C32121.5 (2)
Co1—N6—N5112.70 (13)N27—C26—C32119.9 (2)
Co1—N6—C7128.37 (15)C26—N27—C28124.9 (2)
N5—N6—C7117.54 (18)C26—N27—H271117.8
N6—C7—C8122.68 (19)C28—N27—H271117.4
N6—C7—H71119.1N27—C28—C29119.8 (2)
C8—C7—H71118.2N27—C28—H324119.4
C7—C8—C9118.30 (19)C29—C28—H324120.8
C7—C8—C15122.33 (19)C23—C29—C28119.2 (2)
C9—C8—C15119.37 (19)C23—C29—C30121.9 (2)
C8—C9—C10123.38 (19)C28—C29—C30118.9 (2)
C8—C9—C12119.5 (2)C29—C30—O31109.48 (19)
C10—C9—C12117.05 (19)C29—C30—H301108.6
C9—C10—O11114.45 (18)O31—C30—H301109.9
C9—C10—H101108.5C29—C30—H302110.4
O11—C10—H101108.5O31—C30—H302108.9
C9—C10—H102108.7H301—C30—H302109.6
O11—C10—H102106.7C30—O31—H17104.6
H101—C10—H102110.0C26—C32—H321110.3
C10—O11—H325106.4C26—C32—H322108.3
C9—C12—N13119.7 (2)H321—C32—H322109.9
C9—C12—H121121.5C26—C32—H323109.5
N13—C12—H121118.8H321—C32—H323110.0
C12—N13—C14124.19 (19)H322—C32—H323108.8
C12—N13—H131118.4C19—N33—H4117.6
C14—N13—H131117.4C19—N33—H5118.7
N13—C14—C15119.4 (2)H4—N33—H5123.5
N13—C14—C17119.5 (2)H7—O34—H19107.0
C15—C14—C17121.12 (19)O35—N36—O37119.20 (19)
C8—C15—C14117.81 (19)O35—N36—O38121.04 (19)
C8—C15—O16125.55 (19)O37—N36—O38119.76 (18)
C14—C15—O16116.61 (19)H11—O39—H45108.0
Co1—O16—C15127.43 (14)O40—N41—O42115.9 (2)
C14—C17—H172109.0O40—N41—O43122.6 (2)
C14—C17—H173109.9O42—N41—O43121.4 (2)
H172—C17—H173109.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H71···O110.942.332.992 (3)127
C17—H172···O11i0.972.583.331 (3)135
C22—H221···O2ii0.932.353.153 (3)144
N27—H271···O35iii0.862.182.950 (3)149
N27—H271···N36iii0.862.573.400 (3)163
N27—H271···O37iii0.862.272.995 (3)142
C30—H301···O37iv0.972.493.369 (3)151
O11—H325···O16i0.822.002.783 (3)159
O11—H325···O18i0.822.593.132 (3)125
O39—H11···O400.842.012.851 (3)175
O31—H17···O42v0.811.952.718 (3)158
C17—H23···O400.962.593.391 (3)141
O39—H45···O31vi0.852.052.892 (3)171
O34—H7···O11vii0.831.962.767 (3)164
O34—H19···C240.832.543.149 (3)131
O34—H19···O250.832.062.852 (3)158
N13—H131···O400.752.222.963 (3)169
N13—H131···O420.752.382.971 (3)136
N5—H2···O38i0.861.932.789 (3)174
N4—H3···O37viii0.862.092.948 (3)174
N33—H4···O39ix0.862.082.893 (3)158
N33—H5···O34ii0.882.062.874 (3)153
N4—H6···O35i0.882.092.967 (3)174
N20—H9···O34ii0.862.212.946 (3)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y, z1; (vi) x+1, y+1, z; (vii) x, y+1/2, z1/2; (viii) x+2, y1/2, z+1/2; (ix) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C9H12N4O3)2](NO3)2·2H2O
Mr667.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.0358 (1), 18.4859 (2), 13.8380 (1)
β (°) 106.5705 (6)
V3)2705.80 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.38 × 0.08 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.92, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
38405, 6133, 4121
Rint0.056
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.041, 1.14
No. of reflections5212
No. of parameters389
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.42

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996) and SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H71···O110.942.332.992 (3)127
C17—H172···O11i0.972.583.331 (3)135
C22—H221···O2ii0.932.353.153 (3)144
N27—H271···O35iii0.862.182.950 (3)149
N27—H271···N36iii0.862.573.400 (3)163
N27—H271···O37iii0.862.272.995 (3)142
C30—H301···O37iv0.972.493.369 (3)151
O11—H325···O16i0.822.002.783 (3)159
O11—H325···O18i0.822.593.132 (3)125
O39—H11···O400.842.012.851 (3)175
O31—H17···O42v0.811.952.718 (3)158
C17—H23···O400.962.593.391 (3)141
O39—H45···O31vi0.852.052.892 (3)171
O34—H7···O11vii0.831.962.767 (3)164
O34—H19···C240.832.543.149 (3)131
O34—H19···O250.832.062.852 (3)158
N13—H131···O400.752.222.963 (3)169
N13—H131···O420.752.382.971 (3)136
N5—H2···O38i0.861.932.789 (3)174
N4—H3···O37viii0.862.092.948 (3)174
N33—H4···O39ix0.862.082.893 (3)158
N33—H5···O34ii0.882.062.874 (3)153
N4—H6···O35i0.882.092.967 (3)174
N20—H9···O34ii0.862.212.946 (3)143
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z1/2; (v) x, y, z1; (vi) x+1, y+1, z; (vii) x, y+1/2, z1/2; (viii) x+2, y1/2, z+1/2; (ix) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Oxford Chemical Crystallography Service for the use of the instrumentation and the Chemical Crystallography Research Group for helpful discussions.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBelicchi Ferrari, M., Gasparri Fava, G., Pelizzi, C., Pelosi, G. & Tarasconi, P. (1998). Inorg. Chim. Acta, 269, 297–301.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJacimovic, Z., Leovac, V., Giester, G., Tomic, Z. & Szecsenyi, K. (2007). J. Therm. Anal. Calorim. 90, 549–555.  Web of Science CrossRef CAS Google Scholar
First citationKnezevic, N., Leovac, M., Jevtovic, V., Grguric-Sipka, S. & Sabo, T. (2003). Inorg. Chem. Commun. 6, 561–563.  Web of Science CrossRef CAS Google Scholar
First citationLeovac, V., Jovanovic, Lj., Divjakovic, V., Pevec, A., Leban, I. & Armstrong, T. (2007a). Polyhedron, 26, 49–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeovac, V., Jovanovic, Lj., Jevtovic, V., Pelosi, G. & Bisceglie, F. (2007b). Polyhedron, 26, 2971–2978.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoleti, D., Karanović, L., Leovac, V. M. & Jevtović, V. S. (2003). Acta Cryst. C59, m73–m75.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWest, D. X., Padhye, S. B. & Sonawane, P. B. (1991). Struct. Bonding (Berlin), 76, 1–50.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m408-m409
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds