organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o762-o763

Ethyl 2-(2-acet­oxy­benzyl­­idene)-7-methyl-3-oxo-5-phenyl-2,3-di­hydro-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aDepartment of Physics, Bhavan's Sheth R.A. College of Science, Ahmedabad, Gujarat 380 001, India, bDepartment of Chemistry, M.G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 24 February 2010; accepted 1 March 2010; online 6 March 2010)

In the title mol­ecule, C25H22N2O5S, the atoms of the thia­zolopyrimidine ring system, with the exception of the phenyl-bearing C atom [deviation = 0.177 (2) Å], are essentially planar [r.m.s deviation = 0.100 (2) °] and the mean plane of these atoms forms dihedral angles of 89.86 (10) and 7.97 (8)° with the phenyl and benzene rings, respectively. In the crystal, co-operative C—H⋯O and C—H⋯π inter­actions lead to a supra­molecular chain along the a axis. These chains are connected via ππ inter­actions [centroid–centroid = 3.7523 (13) Å].

Related literature

For background to the pharmacological activity of thia­zolo[3,2-a]pyrimidine derivatives, see: Winter et al. (1962[Winter, C. A., Risley, E. A. & Nuss, G. W. (1962). Proc. Soc. Exp. Biol. Med. 111, 544-547.]); Atwal et al. (1990[Atwal, K. S., Rovnyak, G. C., Kimbali, S. D., Floyd, D. M., Moorland, S., Swanson, B. N., Gougoutas, G. Z., Schwartz, J., Smillie, K. M. & Malley, M. F. (1990). J. Med. Chem. 33, 2629-2635.]); Kappe (2000[Kappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043-1052.]); Adams et al. (2005[Adams, S., Robins, F.-M., Chen, D., Wagag, D., Holbeck, S. L., Morse, H. C., Stroncek, D. & Marincola, F. M. (2005). J. Trans Med. 3. doi:10.1186/1479-5876-3-11.]). For related structures, see: Jotani & Baldaniya (2007[Jotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937-o1939.], 2008[Jotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.]); Baldaniya & Jotani (2008[Baldaniya, B. B. & Jotani, M. M. (2008). Anal Sci. X-ray Struct. Anal. Online, 24, x217-x218.]); Jotani et al. (2009[Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2009). J. Chem. Crystallogr. 39, 898—901.]). For additional geometric analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). Semi-empirical Quantum Chemical Calculations were performed with the MOPAC2009 program (Stewart, 2009[Stewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. Available from http://OpenMOPAC.net.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N2O5S

  • Mr = 462.51

  • Triclinic, [P \overline 1]

  • a = 8.4236 (3) Å

  • b = 9.6807 (3) Å

  • c = 14.3345 (5) Å

  • α = 87.939 (2)°

  • β = 89.680 (2)°

  • γ = 75.287 (2)°

  • V = 1129.86 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.47 × 0.35 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.]) Tmin = 0.920, Tmax = 0.965

  • 20701 measured reflections

  • 3969 independent reflections

  • 3438 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.137

  • S = 1.06

  • 3969 reflections

  • 301 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/C1/N2/C15/C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O5i 0.98 2.58 3.532 (3) 163
C12—H12a⋯Cg1i 0.97 2.98 3.902 (3) 160
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The absolute stereochemistry at C2 stereocentre in fused dihydropyrimidine rings is a critical factor for their biological activity and provides an additional opportunity to study the effect of chirality on biological activities (Atwal et al., 1990; Kappe, 2000). The title compound, (I), exhibits anti-cancer (Adams et al., 2005) and anti-inflammatory activities (Winter et al., 1962). In continuation of our structural studies of these pharmacologically interesting thiazolo[3,2-a]pyrimidine derivatives, designed to ascertain the influence of substitution patterns upon crystal packing (Jotani & Baldaniya, 2007; Jotani & Baldaniya, 2008; Baldaniya & Jotani, 2008; Jotani et al., 2009), the synthesis and crystal structure of the title compound, (I), is described herein.

The thiazole ring is essentially planar [maximum deviation of 0.0181 (17) for the N2 atom]. By contrast, the pyrimidine ring is non-planar with the sp 3-C2 atom lying well out of the approximate plane defined by the remaining atoms. The distortion is quantified by the ring puckering parameters (Cremer & Pople, 1975): Q = 0.1721 (19) Å, θ = 67.8 (7) °, and ϕ2 = 164.3 (7) °. The dihedral angle formed between the fused rings is nevertheless small at 6.05 (9) °. The planarity in the molecule extends to the C3-bound acetyl group [the C4–C3–C11–O1 torsion angle is 9.3 (4) °] on one side of the fused-ring system, and on the other through the C16C17 double bond [1.336 (3) Å] and adjacent benzene ring as seen in the C15–C16–C17–C18 and C16–C17–C18–C19 torsion angles of 174.58 (18) and -174.4 (2) °, respectively. Each of the remaining substituents, i.e. the C5–C10 benzene ring and O4-acetyl groups lie to the same side of the molecule and occupy positions defined by the N2–C2–C5–C6 and C18–C19–O4–C24 torsion angles of -64.7 (2) and 94.9 (2) °, respectively. Allowing for the presence of distinct substituents, the molecular framework in (I) resembles closely those found in related derivatives (Jotani & Baldaniya, 2007; Jotani & Baldaniya, 2008; Baldaniya & Jotani, 2008; Jotani et al., 2009)

The crystal structure is stabilised by a variety of weak intermolecular interactions. A supramolecular chain aligned along the a axis is formed through the agency of C–H···O and C–H···π interactions, Fig. 2 and Table 1. These are connected via ππ interactions formed between centrosymmetrically related C18–C23 rings [ring centroid(C18–C23)···ring centroid(C18–C23)i = 3.7523 (13) Å for i: -x, -y, -z], Fig. 3.

Semi-empirical Quantum Chemical Calculations were performed with the MOPAC2009 program (Stewart, 2009) in order to optimize the experimental structure with the Austin Model 1 (AM1) approximation together with the restricted Hartree-Fock closed-shell wavefunction; minimisations were terminated at a r.m.s. gradient of less than 1.0 kJ mol-1 Å-1. The heat of formation was calculated to be -313.14 kJ mol-1. The ionization potential, dipole moment and self consistency field (SCF) factor were calculated as 8.633 eV, 3.880 Debye, and 121, respectively.

Related literature top

For background to the pharmacological activity of thiazolo[3,2-a]pyrimidine derivatives, see: Winter et al. (1962); Atwal et al. (1990); Kappe (2000); Adams et al. (2005). For related structures, see: Jotani & Baldaniya (2007, 2008); Baldaniya & Jotani (2008); Jotani et al. (2009). For additional geometric analysis, see: Cremer & Pople (1975). Semi-empirical Quantum Chemical Calculations were performed with the MOPAC2009 program (Stewart, 2009).

Experimental top

A mixture of ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (0.01 mol), chloroacetic acid (0.01 mol), fused sodium acetate (6 g) in glacial acetic acid (25 ml), acetic anhydride (10 ml), and 2-acetyloxy benzaldehyde (0.01 mol) was refluxed for 3 to 3.5 h. The reaction mixture was cooled and poured into cold water. The resulting solid was collected and crystallized from methanol to obtain the final product (75 % yield, m.pt. 438 K). The compound was crystallized by slow evaporation of benzene-ethanol (1:1) solution yielding yellow blocks.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 andSAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A supramolecular chain aligned along the a axis in (I). The C–H···O and C–H···π contacts are shown as orange and purple dashed lines, respectively. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
[Figure 3] Fig. 3. A view in projection down the a axis highlighting the ππ interactions (purple dashed lines) connecting supramolecular chains in (I). The C–H···O contacts are shown as orange dashed lines. Colour code: S, yellow; O, red; N, blue; C, grey; and H, green.
Ethyl 2-(2-acetoxybenzylidene)-7-methyl-3-oxo-5-phenyl-2,3-dihydro-5H- 1,3-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C25H22N2O5SZ = 2
Mr = 462.51F(000) = 484
Triclinic, P1Dx = 1.359 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4236 (3) ÅCell parameters from 5176 reflections
b = 9.6807 (3) Åθ = 2.2–31.3°
c = 14.3345 (5) ŵ = 0.18 mm1
α = 87.939 (2)°T = 293 K
β = 89.680 (2)°Block, yellow
γ = 75.287 (2)°0.47 × 0.35 × 0.20 mm
V = 1129.86 (7) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3969 independent reflections
Radiation source: fine-focus sealed tube3438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.920, Tmax = 0.965k = 1111
20701 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.4966P]
where P = (Fo2 + 2Fc2)/3
3969 reflections(Δ/σ)max = 0.002
301 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C25H22N2O5Sγ = 75.287 (2)°
Mr = 462.51V = 1129.86 (7) Å3
Triclinic, P1Z = 2
a = 8.4236 (3) ÅMo Kα radiation
b = 9.6807 (3) ŵ = 0.18 mm1
c = 14.3345 (5) ÅT = 293 K
α = 87.939 (2)°0.47 × 0.35 × 0.20 mm
β = 89.680 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3969 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3438 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.965Rint = 0.024
20701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
3969 reflectionsΔρmin = 0.31 e Å3
301 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19582 (7)0.35035 (6)0.10853 (4)0.0550 (2)
O10.8697 (2)0.4977 (2)0.28339 (16)0.0886 (6)
O20.87965 (18)0.27940 (18)0.33559 (11)0.0604 (4)
O30.44199 (18)0.03161 (15)0.25695 (11)0.0563 (4)
O40.00662 (19)0.14186 (16)0.17321 (11)0.0590 (4)
O50.1285 (3)0.0711 (3)0.30616 (14)0.1097 (9)
N10.4187 (2)0.4897 (2)0.14656 (13)0.0568 (5)
N20.45080 (18)0.25926 (16)0.21508 (10)0.0387 (4)
C10.3732 (2)0.3754 (2)0.16117 (13)0.0447 (5)
C20.5865 (2)0.2654 (2)0.27852 (12)0.0383 (4)
H20.67430.17750.27360.046*
C30.6520 (2)0.3922 (2)0.24663 (13)0.0433 (4)
C40.5692 (3)0.4949 (2)0.18730 (15)0.0524 (5)
C50.5251 (2)0.2766 (2)0.37843 (12)0.0377 (4)
C60.4075 (3)0.3956 (2)0.40504 (15)0.0496 (5)
H60.36750.47000.36180.060*
C70.3486 (3)0.4053 (3)0.49501 (17)0.0640 (6)
H70.26890.48580.51210.077*
C80.4071 (3)0.2968 (3)0.55903 (16)0.0664 (7)
H80.36660.30290.61960.080*
C90.5252 (4)0.1794 (3)0.53393 (16)0.0690 (7)
H90.56630.10620.57790.083*
C100.5843 (3)0.1683 (2)0.44344 (15)0.0552 (5)
H100.66400.08750.42670.066*
C110.8095 (3)0.3985 (2)0.28807 (14)0.0492 (5)
C121.0308 (3)0.2780 (3)0.38364 (18)0.0651 (6)
H12A1.11190.29440.33920.078*
H12B1.01130.35330.42840.078*
C131.0905 (4)0.1404 (4)0.4313 (3)0.1057 (12)
H13A1.01390.12850.47890.158*
H13B1.19520.13520.45930.158*
H13C1.10190.06610.38720.158*
C140.6204 (4)0.6257 (3)0.1538 (2)0.0819 (9)
H14A0.72780.62180.17770.123*
H14B0.54360.70940.17550.123*
H14C0.62270.62960.08680.123*
C150.3839 (2)0.1429 (2)0.21508 (13)0.0409 (4)
C160.2306 (2)0.1780 (2)0.15845 (12)0.0417 (4)
C170.1391 (2)0.0840 (2)0.15492 (13)0.0445 (4)
H170.18480.00360.18520.053*
C180.0194 (2)0.0952 (2)0.11188 (13)0.0437 (4)
C190.0947 (2)0.0168 (2)0.12602 (14)0.0463 (5)
C200.2463 (3)0.0123 (3)0.08936 (16)0.0563 (5)
H200.29430.08770.10090.068*
C210.3265 (3)0.1051 (3)0.03518 (16)0.0563 (6)
H210.42900.10890.00990.068*
C220.2554 (3)0.2161 (3)0.01856 (15)0.0555 (5)
H220.30920.29480.01840.067*
C230.1045 (3)0.2112 (2)0.05660 (15)0.0516 (5)
H230.05800.28760.04500.062*
C240.0289 (3)0.1560 (3)0.26542 (18)0.0612 (6)
C250.0891 (4)0.2840 (3)0.3062 (2)0.0810 (8)
H25A0.18580.25820.32650.122*
H25B0.11850.35530.25990.122*
H25C0.03960.32140.35850.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0523 (3)0.0583 (4)0.0560 (3)0.0191 (3)0.0217 (2)0.0164 (3)
O10.0699 (12)0.0833 (13)0.1248 (17)0.0447 (11)0.0285 (11)0.0212 (12)
O20.0430 (8)0.0730 (11)0.0683 (10)0.0222 (7)0.0161 (7)0.0111 (8)
O30.0549 (9)0.0473 (8)0.0666 (10)0.0140 (7)0.0186 (7)0.0120 (7)
O40.0563 (9)0.0499 (9)0.0684 (10)0.0095 (7)0.0008 (7)0.0001 (7)
O50.1234 (19)0.1067 (17)0.0643 (12)0.0321 (15)0.0107 (12)0.0131 (11)
N10.0579 (11)0.0560 (11)0.0592 (11)0.0222 (9)0.0177 (9)0.0186 (9)
N20.0374 (8)0.0434 (9)0.0353 (8)0.0103 (7)0.0055 (6)0.0019 (6)
C10.0444 (11)0.0503 (11)0.0394 (10)0.0129 (9)0.0074 (8)0.0067 (8)
C20.0333 (9)0.0426 (10)0.0384 (9)0.0083 (7)0.0053 (7)0.0013 (8)
C30.0408 (10)0.0516 (11)0.0400 (10)0.0163 (9)0.0025 (8)0.0018 (8)
C40.0555 (12)0.0577 (13)0.0483 (11)0.0237 (10)0.0045 (9)0.0095 (9)
C50.0342 (9)0.0437 (10)0.0373 (9)0.0139 (8)0.0059 (7)0.0011 (8)
C60.0470 (11)0.0524 (12)0.0470 (11)0.0083 (9)0.0027 (9)0.0003 (9)
C70.0581 (14)0.0772 (16)0.0566 (14)0.0151 (12)0.0098 (11)0.0174 (12)
C80.0754 (16)0.0904 (19)0.0425 (12)0.0371 (15)0.0078 (11)0.0091 (12)
C90.0877 (18)0.0779 (17)0.0437 (12)0.0279 (15)0.0091 (12)0.0177 (11)
C100.0588 (13)0.0547 (13)0.0485 (12)0.0088 (10)0.0059 (10)0.0078 (10)
C110.0420 (11)0.0611 (13)0.0471 (11)0.0179 (10)0.0036 (9)0.0022 (10)
C120.0417 (12)0.0902 (18)0.0647 (15)0.0188 (12)0.0125 (10)0.0020 (13)
C130.088 (2)0.102 (2)0.128 (3)0.0310 (19)0.055 (2)0.030 (2)
C140.092 (2)0.0854 (19)0.0819 (18)0.0525 (17)0.0265 (15)0.0380 (15)
C150.0426 (10)0.0446 (11)0.0357 (9)0.0116 (8)0.0018 (8)0.0004 (8)
C160.0420 (10)0.0487 (11)0.0336 (9)0.0100 (8)0.0038 (7)0.0010 (8)
C170.0452 (11)0.0487 (11)0.0399 (10)0.0125 (9)0.0057 (8)0.0006 (8)
C180.0439 (10)0.0515 (11)0.0365 (9)0.0129 (9)0.0018 (8)0.0051 (8)
C190.0461 (11)0.0487 (11)0.0443 (11)0.0118 (9)0.0001 (8)0.0040 (9)
C200.0498 (12)0.0614 (14)0.0629 (13)0.0231 (10)0.0017 (10)0.0055 (11)
C210.0424 (11)0.0719 (15)0.0565 (13)0.0172 (10)0.0071 (9)0.0070 (11)
C220.0530 (12)0.0635 (14)0.0487 (12)0.0126 (11)0.0120 (9)0.0030 (10)
C230.0533 (12)0.0564 (12)0.0483 (11)0.0205 (10)0.0099 (9)0.0038 (9)
C240.0591 (14)0.0552 (14)0.0684 (15)0.0133 (11)0.0091 (12)0.0029 (11)
C250.0785 (18)0.0565 (15)0.105 (2)0.0147 (13)0.0237 (16)0.0202 (14)
Geometric parameters (Å, º) top
S1—C161.747 (2)C9—H90.9300
S1—C11.752 (2)C10—H100.9300
O1—C111.194 (3)C12—C131.447 (4)
O2—C111.321 (3)C12—H12A0.9700
O2—C121.448 (3)C12—H12B0.9700
O3—C151.204 (2)C13—H13A0.9600
O4—C241.341 (3)C13—H13B0.9600
O4—C191.402 (2)C13—H13C0.9600
O5—C241.183 (3)C14—H14A0.9600
N1—C11.270 (3)C14—H14B0.9600
N1—C41.412 (3)C14—H14C0.9600
N2—C11.363 (2)C15—C161.487 (3)
N2—C151.382 (2)C16—C171.336 (3)
N2—C21.479 (2)C17—C181.451 (3)
C2—C51.518 (2)C17—H170.9300
C2—C31.523 (3)C18—C231.391 (3)
C2—H20.9800C18—C191.397 (3)
C3—C41.339 (3)C19—C201.373 (3)
C3—C111.473 (3)C20—C211.380 (3)
C4—C141.501 (3)C20—H200.9300
C5—C101.373 (3)C21—C221.370 (3)
C5—C61.379 (3)C21—H210.9300
C6—C71.377 (3)C22—C231.375 (3)
C6—H60.9300C22—H220.9300
C7—C81.364 (4)C23—H230.9300
C7—H70.9300C24—C251.481 (3)
C8—C91.365 (4)C25—H25A0.9600
C8—H80.9300C25—H25B0.9600
C9—C101.385 (3)C25—H25C0.9600
C16—S1—C191.39 (9)C12—C13—H13A109.5
C11—O2—C12116.05 (18)C12—C13—H13B109.5
C24—O4—C19118.48 (17)H13A—C13—H13B109.5
C1—N1—C4116.62 (18)C12—C13—H13C109.5
C1—N2—C15116.40 (16)H13A—C13—H13C109.5
C1—N2—C2121.05 (16)H13B—C13—H13C109.5
C15—N2—C2122.13 (15)C4—C14—H14A109.5
N1—C1—N2126.93 (18)C4—C14—H14B109.5
N1—C1—S1121.26 (15)H14A—C14—H14B109.5
N2—C1—S1111.80 (14)C4—C14—H14C109.5
N2—C2—C5109.63 (14)H14A—C14—H14C109.5
N2—C2—C3107.89 (15)H14B—C14—H14C109.5
C5—C2—C3112.53 (15)O3—C15—N2123.80 (17)
N2—C2—H2108.9O3—C15—C16126.21 (18)
C5—C2—H2108.9N2—C15—C16109.98 (16)
C3—C2—H2108.9C17—C16—C15119.85 (18)
C4—C3—C11121.68 (19)C17—C16—S1129.76 (16)
C4—C3—C2122.34 (18)C15—C16—S1110.33 (14)
C11—C3—C2115.93 (17)C16—C17—C18130.97 (19)
C3—C4—N1122.26 (19)C16—C17—H17114.5
C3—C4—C14126.5 (2)C18—C17—H17114.5
N1—C4—C14111.25 (19)C23—C18—C19116.47 (18)
C10—C5—C6118.94 (18)C23—C18—C17124.65 (19)
C10—C5—C2120.72 (17)C19—C18—C17118.87 (18)
C6—C5—C2120.33 (17)C20—C19—C18122.2 (2)
C7—C6—C5120.7 (2)C20—C19—O4119.12 (19)
C7—C6—H6119.6C18—C19—O4118.50 (18)
C5—C6—H6119.6C19—C20—C21119.4 (2)
C8—C7—C6120.0 (2)C19—C20—H20120.3
C8—C7—H7120.0C21—C20—H20120.3
C6—C7—H7120.0C22—C21—C20120.1 (2)
C7—C8—C9119.8 (2)C22—C21—H21119.9
C7—C8—H8120.1C20—C21—H21119.9
C9—C8—H8120.1C21—C22—C23120.0 (2)
C8—C9—C10120.5 (2)C21—C22—H22120.0
C8—C9—H9119.8C23—C22—H22120.0
C10—C9—H9119.8C22—C23—C18121.9 (2)
C5—C10—C9120.0 (2)C22—C23—H23119.1
C5—C10—H10120.0C18—C23—H23119.1
C9—C10—H10120.0O5—C24—O4121.8 (2)
O1—C11—O2121.8 (2)O5—C24—C25126.7 (3)
O1—C11—C3126.4 (2)O4—C24—C25111.4 (2)
O2—C11—C3111.81 (18)C24—C25—H25A109.5
C13—C12—O2108.6 (2)C24—C25—H25B109.5
C13—C12—H12A110.0H25A—C25—H25B109.5
O2—C12—H12A110.0C24—C25—H25C109.5
C13—C12—H12B110.0H25A—C25—H25C109.5
O2—C12—H12B110.0H25B—C25—H25C109.5
H12A—C12—H12B108.4
C4—N1—C1—N22.8 (3)C12—O2—C11—C3176.56 (17)
C4—N1—C1—S1175.81 (16)C4—C3—C11—O19.3 (4)
C15—N2—C1—N1175.5 (2)C2—C3—C11—O1168.3 (2)
C2—N2—C1—N111.7 (3)C4—C3—C11—O2172.59 (19)
C15—N2—C1—S13.2 (2)C2—C3—C11—O29.8 (2)
C2—N2—C1—S1169.56 (13)C11—O2—C12—C13179.7 (2)
C16—S1—C1—N1177.52 (19)C1—N2—C15—O3177.60 (18)
C16—S1—C1—N21.30 (15)C2—N2—C15—O39.7 (3)
C1—N2—C2—C5103.91 (19)C1—N2—C15—C163.7 (2)
C15—N2—C2—C568.5 (2)C2—N2—C15—C16168.97 (15)
C1—N2—C2—C318.9 (2)O3—C15—C16—C173.7 (3)
C15—N2—C2—C3168.69 (16)N2—C15—C16—C17174.93 (17)
N2—C2—C3—C415.1 (3)O3—C15—C16—S1178.82 (17)
C5—C2—C3—C4106.0 (2)N2—C15—C16—S12.55 (19)
N2—C2—C3—C11167.40 (15)C1—S1—C16—C17176.4 (2)
C5—C2—C3—C1171.5 (2)C1—S1—C16—C150.73 (14)
C11—C3—C4—N1179.53 (19)C15—C16—C17—C18174.58 (18)
C2—C3—C4—N13.1 (3)S1—C16—C17—C182.3 (3)
C11—C3—C4—C140.7 (4)C16—C17—C18—C235.5 (3)
C2—C3—C4—C14178.1 (2)C16—C17—C18—C19174.4 (2)
C1—N1—C4—C37.1 (3)C23—C18—C19—C201.4 (3)
C1—N1—C4—C14171.9 (2)C17—C18—C19—C20178.47 (19)
N2—C2—C5—C10114.6 (2)C23—C18—C19—O4173.64 (17)
C3—C2—C5—C10125.3 (2)C17—C18—C19—O46.5 (3)
N2—C2—C5—C664.7 (2)C24—O4—C19—C2089.8 (2)
C3—C2—C5—C655.3 (2)C24—O4—C19—C1894.9 (2)
C10—C5—C6—C70.7 (3)C18—C19—C20—C211.3 (3)
C2—C5—C6—C7178.63 (19)O4—C19—C20—C21173.78 (19)
C5—C6—C7—C80.3 (4)C19—C20—C21—C220.2 (3)
C6—C7—C8—C90.6 (4)C20—C21—C22—C230.6 (3)
C7—C8—C9—C101.1 (4)C21—C22—C23—C180.4 (3)
C6—C5—C10—C90.3 (3)C19—C18—C23—C220.6 (3)
C2—C5—C10—C9179.1 (2)C17—C18—C23—C22179.28 (19)
C8—C9—C10—C50.6 (4)C19—O4—C24—O55.5 (4)
C12—O2—C11—O11.7 (3)C19—O4—C24—C25172.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1/N2/C15/C16 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.982.583.532 (3)163
C12—H12a···Cg1i0.972.983.902 (3)160
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H22N2O5S
Mr462.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.4236 (3), 9.6807 (3), 14.3345 (5)
α, β, γ (°)87.939 (2), 89.680 (2), 75.287 (2)
V3)1129.86 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.47 × 0.35 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.920, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
20701, 3969, 3438
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.137, 1.06
No. of reflections3969
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: APEX2 (Bruker, 2004), APEX2 andSAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C1/N2/C15/C16 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O5i0.982.583.532 (3)163
C12—H12a···Cg1i0.972.983.902 (3)160
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

The authors thank the Department of Science and Technology (DST) and the SAIF, IIT Madras, Chennai, India, for the X-ray data collection. MMJ is grateful to the University Grant Commission (Western Regional Office), India, for Minor Research Project F. No.47-254/07.

References

First citationAdams, S., Robins, F.-M., Chen, D., Wagag, D., Holbeck, S. L., Morse, H. C., Stroncek, D. & Marincola, F. M. (2005). J. Trans Med. 3. doi:10.1186/1479-5876-3-11.  CrossRef Google Scholar
First citationAtwal, K. S., Rovnyak, G. C., Kimbali, S. D., Floyd, D. M., Moorland, S., Swanson, B. N., Gougoutas, G. Z., Schwartz, J., Smillie, K. M. & Malley, M. F. (1990). J. Med. Chem. 33, 2629–2635.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBaldaniya, B. B. & Jotani, M. M. (2008). Anal Sci. X-ray Struct. Anal. Online, 24, x217–x218.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2007). Acta Cryst. E63, o1937–o1939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M. & Baldaniya, B. B. (2008). Acta Cryst. E64, o739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2009). J. Chem. Crystallogr. 39, 898—901.  Web of Science CSD CrossRef Google Scholar
First citationKappe, C. O. (2000). Eur. J. Med. Chem. 35, 1043–1052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. Available from http://OpenMOPAC.net.  Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWinter, C. A., Risley, E. A. & Nuss, G. W. (1962). Proc. Soc. Exp. Biol. Med. 111, 544–547.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o762-o763
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds