metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­bis­(8-hy­droxy­quinoline N-oxide-κO1)cobalt(II)]-μ-2,5-di­methyl­pyrazine 1,4-dioxide-κ2O1:O4] bis­­(perchlorate)]

aSchool of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, People's Republic of China
*Correspondence e-mail: jinminli1957@yahoo.com.cn

(Received 1 March 2010; accepted 8 March 2010; online 13 March 2010)

In the title complex, {[Co(C6H8N2O2)(C9H7NO2)(H2O)2](ClO4)2}n, the CoII ion lies on an inversion centre and is coordinated in a slightly distorted octa­hedral environment. The 2,5-dimethyl­pyrazine 1,4-dioxide ligand, which also lies on an inversion center, acts as a bridging ligand, linking symmetry-related CoII ions [Co⋯Co = 8.669 (3) Å] and forming one-dimensional chains along the b axis. In the crystal structure, these chains are linked by inter­molecular aqua–perchlorate O—H⋯O hydrogen bonds, forming two-dimensional layers which are in turn connected into a three-dimensional network via ππ stacking inter­actions between quinoline rings, with a centroid–centroid distance of 3.580 (3) Å. An intermolecular O—H⋯Cl inter­action is also present.

Related literature

For the isostructural Mn(II) complex, see:, see: Shi et al. (2009[Shi, J. M., Meng, X. Z., Sun, Y. M., Xu, H. Y., Shi, W., Cheng, P. & Liu, L. D. (2009). J. Mol. Struct. 917, 164-169.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H8N2O2)(C9H7NO2)(H2O)2](ClO4)2

  • Mr = 756.32

  • Triclinic, [P \overline 1]

  • a = 8.530 (3) Å

  • b = 8.669 (3) Å

  • c = 11.182 (3) Å

  • α = 84.319 (4)°

  • β = 86.077 (4)°

  • γ = 63.475 (4)°

  • V = 735.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 298 K

  • 0.44 × 0.37 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.706, Tmax = 0.869

  • 3772 measured reflections

  • 2617 independent reflections

  • 2267 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.184

  • S = 1.06

  • 2617 reflections

  • 215 parameters

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H9⋯O7i 0.84 2.59 3.324 (15) 146
O3—H9⋯O5i 0.84 2.42 3.219 (16) 159
O3—H8⋯O5ii 0.84 2.63 3.234 (13) 130
O3—H8⋯O6ii 0.84 2.14 2.970 (7) 166
O3—H8⋯Cl1ii 0.84 2.95 3.739 (3) 155
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of pyrazine 1,4-dioxide and 8-hydroxyquinoline N-oxide play vital roles in a modern coordination chemistry and the isostructural Mn(II) complex of the title compound has already been published (Shi et al., 2009). Our interest in designing new complexes led to us obtaining the title complex, (I), and we report the crystal structure herein.

The coordination geometry of CoII ion in (I) is shown in Fig. 1. The CoII ion is located on inversion centre and assumes a slightly distorted octahedral CoO6 coordination geometry. The centrosymmetric pyrazine 1,4-dioxide ligand functions as bridging connecting two symmetry related CoII ions with a separation of 8.669 (3) Å, forming one-dimensional chains along the b axis. In the crystal structure, these chains are linked by intermolecular O-Haqua···Operchlorate hydrogen bonds to form two-dimensional layers. In addition, there are ππ stacking interactions (Fig. 2) between neighbouring layers involving quilinoline rings with relevant distances being Cg1···Cg2i = 3.580 (3) Å and Cg1···Cg2iperp = 3.410 Å and α = 3.19° [symmetry code (i) 2-x, -y, 1-z; Cg1 and Cg2 are the centroids of C8—C12/N1 ring and C4—C9 ring, respectively; Cg1···Cg2iperp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between ring plane Cg1 and ring plane Cg2i].

Related literature top

For the isostructural Mn(II) complex, see: , see: Shi et al. (2009).

Experimental top

10 ml ethanol solution of 8-hydroxyquinoline N-oxide (0.2015 g, 1.25 mmol) was added into 10 ml of aqueous solution containing hydrated cobalt perchlorate (0.2291 g, 0.626 mmol) and 2,5-dimethylpyrazine 1,4-dioxide (0.0895 g, 0.639 mmol). The resulting solution was stirred for a few minutes. The red single crystals were obtained from the filtrate by slow evaporation for about three weeks.

Refinement top

H atoms from hydroxy and water molecule were found in difference Fourier maps and fixed with O—H = 0.84 Å; other H atoms were placed in calculated positions with C—H = 0.93-0.97 Å. All H atoms were refined as riding, with Uiso(H) = 1.5eq(O) for hydroxy group and water molecule, and Uiso(H) = 1.5 Ueq(C) for methyl group and Uiso(H) = 1.2 Ueq(C) for other groups.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of coordination environment in (I), showing the the atom numbering scheme with displacement ellipsoids drawn at the 30% probability level; Symmetry code: (i) -x+2, -y, -z+2.
[Figure 2] Fig. 2. Part of the crystal structure showing ππ stacking interaction (dashed lines) between adjacent two-dimensional layers.
catena-Poly[[[diaquabis(8-hydroxyquinoline N-oxide-κO1)cobalt(II)]-µ-2,5-dimethylpyrazine 1,4-dioxide-κ2O1:O4] bis(perchlorate)] top
Crystal data top
[Co(C6H8N2O2)(C9H7NO2)(H2O)2](ClO4)2Z = 1
Mr = 756.32F(000) = 387
Triclinic, P1Dx = 1.707 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.530 (3) ÅCell parameters from 1924 reflections
b = 8.669 (3) Åθ = 2.6–27.6°
c = 11.182 (3) ŵ = 0.85 mm1
α = 84.319 (4)°T = 298 K
β = 86.077 (4)°Block, red
γ = 63.475 (4)°0.44 × 0.37 × 0.17 mm
V = 735.9 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2617 independent reflections
Radiation source: fine-focus sealed tube2267 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.706, Tmax = 0.869k = 910
3772 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1181P)2 + 0.9504P]
where P = (Fo2 + 2Fc2)/3
2617 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Co(C6H8N2O2)(C9H7NO2)(H2O)2](ClO4)2γ = 63.475 (4)°
Mr = 756.32V = 735.9 (4) Å3
Triclinic, P1Z = 1
a = 8.530 (3) ÅMo Kα radiation
b = 8.669 (3) ŵ = 0.85 mm1
c = 11.182 (3) ÅT = 298 K
α = 84.319 (4)°0.44 × 0.37 × 0.17 mm
β = 86.077 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2617 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2267 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.869Rint = 0.022
3772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.06Δρmax = 0.89 e Å3
2617 reflectionsΔρmin = 0.60 e Å3
215 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1372 (5)0.4195 (5)0.9207 (3)0.0297 (8)
C20.9253 (6)0.4091 (5)1.0618 (3)0.0315 (9)
H20.87460.34501.10540.038*
C31.2850 (6)0.3280 (6)0.8383 (4)0.0444 (11)
H3A1.37850.23700.88290.067*
H3B1.32560.40770.79920.067*
H3C1.24750.27970.77900.067*
C41.0908 (7)0.2478 (7)0.5122 (4)0.0484 (12)
H41.19110.26410.49640.058*
C51.0843 (6)0.1442 (6)0.6116 (4)0.0346 (9)
C60.9521 (8)0.3287 (7)0.4349 (4)0.0539 (13)
H60.96090.39760.36810.065*
C70.8036 (8)0.3083 (7)0.4557 (4)0.0542 (13)
H70.71170.36320.40290.065*
C80.7873 (6)0.2052 (6)0.5563 (4)0.0385 (10)
C90.9281 (6)0.1257 (5)0.6372 (3)0.0311 (9)
C100.7684 (6)0.0009 (6)0.7554 (4)0.0372 (10)
H100.76200.06990.82290.045*
C110.6310 (6)0.0691 (6)0.6755 (4)0.0402 (10)
H110.53540.04430.68790.048*
C120.6390 (6)0.1744 (7)0.5792 (4)0.0450 (11)
H120.54510.22680.52780.054*
Cl10.38256 (16)0.38330 (16)0.21191 (10)0.0453 (4)
Co11.00000.00001.00000.0255 (3)
N10.9070 (4)0.0284 (4)0.7373 (3)0.0294 (7)
N21.0584 (4)0.3301 (4)0.9833 (3)0.0272 (7)
O11.0368 (4)0.0431 (4)0.8181 (2)0.0336 (7)
O21.1177 (4)0.1644 (4)0.9666 (3)0.0362 (7)
O30.7397 (4)0.1908 (4)0.9808 (3)0.0399 (7)
H80.66310.20001.03530.060*
H90.70580.27600.92920.060*
O40.4024 (10)0.3329 (9)0.3327 (5)0.124 (2)
O50.4894 (19)0.4538 (19)0.1748 (10)0.250 (7)
O60.4261 (10)0.2460 (8)0.1370 (6)0.116 (2)
O70.2142 (12)0.5000 (16)0.1965 (7)0.235 (7)
O81.2287 (4)0.0584 (5)0.6787 (3)0.0483 (8)
H11.19570.01090.73860.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (2)0.029 (2)0.0296 (19)0.0179 (18)0.0033 (16)0.0039 (15)
C20.040 (2)0.033 (2)0.029 (2)0.0230 (19)0.0056 (16)0.0033 (16)
C30.050 (3)0.040 (3)0.050 (3)0.026 (2)0.019 (2)0.015 (2)
C40.063 (3)0.050 (3)0.043 (3)0.036 (3)0.011 (2)0.010 (2)
C50.040 (2)0.037 (2)0.031 (2)0.0203 (19)0.0026 (17)0.0093 (17)
C60.081 (4)0.045 (3)0.038 (3)0.032 (3)0.004 (2)0.005 (2)
C70.067 (4)0.054 (3)0.037 (3)0.024 (3)0.008 (2)0.006 (2)
C80.042 (2)0.038 (2)0.033 (2)0.014 (2)0.0034 (18)0.0055 (18)
C90.042 (2)0.027 (2)0.0264 (19)0.0159 (18)0.0032 (16)0.0081 (15)
C100.041 (2)0.040 (2)0.035 (2)0.022 (2)0.0060 (18)0.0096 (18)
C110.035 (2)0.050 (3)0.039 (2)0.021 (2)0.0050 (18)0.014 (2)
C120.039 (3)0.051 (3)0.038 (2)0.012 (2)0.0062 (19)0.008 (2)
Cl10.0507 (7)0.0481 (7)0.0414 (6)0.0273 (6)0.0088 (5)0.0098 (5)
Co10.0320 (4)0.0199 (4)0.0251 (4)0.0122 (3)0.0005 (3)0.0010 (3)
N10.0329 (18)0.0289 (17)0.0272 (16)0.0136 (15)0.0010 (13)0.0068 (13)
N20.0329 (18)0.0207 (16)0.0309 (17)0.0143 (14)0.0018 (13)0.0045 (13)
O10.0326 (15)0.0389 (16)0.0279 (14)0.0145 (13)0.0049 (11)0.0006 (12)
O20.0453 (17)0.0230 (14)0.0449 (17)0.0197 (13)0.0127 (13)0.0097 (12)
O30.0368 (17)0.0344 (16)0.0402 (17)0.0095 (14)0.0003 (13)0.0018 (13)
O40.156 (6)0.124 (5)0.059 (3)0.036 (4)0.032 (3)0.028 (3)
O50.369 (17)0.364 (17)0.208 (11)0.334 (16)0.114 (10)0.095 (11)
O60.180 (7)0.107 (4)0.100 (4)0.098 (5)0.025 (4)0.029 (3)
O70.135 (7)0.290 (12)0.109 (5)0.074 (7)0.065 (5)0.057 (7)
O80.0461 (19)0.068 (2)0.0434 (18)0.0375 (18)0.0012 (14)0.0017 (16)
Geometric parameters (Å, º) top
C1—N21.355 (5)C10—N11.315 (6)
C1—C2i1.367 (6)C10—C111.392 (6)
C1—C31.470 (6)C10—H100.9300
C2—N21.348 (5)C11—C121.360 (7)
C2—C1i1.367 (6)C11—H110.9300
C2—H20.9300C12—H120.9300
C3—H3A0.9600Cl1—O51.330 (7)
C3—H3B0.9600Cl1—O71.348 (7)
C3—H3C0.9600Cl1—O41.376 (5)
C4—C51.372 (6)Cl1—O61.419 (6)
C4—C61.385 (8)Co1—O22.074 (3)
C4—H40.9300Co1—O2ii2.074 (3)
C5—O81.353 (5)Co1—O1ii2.082 (3)
C5—C91.418 (6)Co1—O12.082 (3)
C6—C71.357 (8)Co1—O3ii2.104 (3)
C6—H60.9300Co1—O32.104 (3)
C7—C81.405 (7)N1—O11.357 (4)
C7—H70.9300N2—O21.321 (4)
C8—C121.407 (7)O3—H80.8448
C8—C91.422 (6)O3—H90.8414
C9—N11.385 (5)O8—H10.8483
N2—C1—C2i117.9 (4)C11—C12—C8120.9 (4)
N2—C1—C3118.7 (4)C11—C12—H12119.5
C2i—C1—C3123.4 (4)C8—C12—H12119.5
N2—C2—C1i121.9 (4)O5—Cl1—O7110.3 (9)
N2—C2—H2119.1O5—Cl1—O4110.0 (7)
C1i—C2—H2119.1O7—Cl1—O4107.4 (5)
C1—C3—H3A109.5O5—Cl1—O6105.0 (6)
C1—C3—H3B109.5O7—Cl1—O6109.8 (6)
H3A—C3—H3B109.5O4—Cl1—O6114.4 (4)
C1—C3—H3C109.5O2—Co1—O2ii180.000 (1)
H3A—C3—H3C109.5O2—Co1—O1ii92.05 (12)
H3B—C3—H3C109.5O2ii—Co1—O1ii87.95 (12)
C5—C4—C6121.8 (5)O2—Co1—O187.95 (12)
C5—C4—H4119.1O2ii—Co1—O192.05 (12)
C6—C4—H4119.1O1ii—Co1—O1180.000 (1)
O8—C5—C4119.0 (4)O2—Co1—O3ii83.25 (12)
O8—C5—C9122.4 (4)O2ii—Co1—O3ii96.75 (12)
C4—C5—C9118.5 (4)O1ii—Co1—O3ii93.87 (12)
C7—C6—C4120.6 (5)O1—Co1—O3ii86.13 (12)
C7—C6—H6119.7O2—Co1—O396.75 (12)
C4—C6—H6119.7O2ii—Co1—O383.25 (12)
C6—C7—C8120.7 (5)O1ii—Co1—O386.13 (12)
C6—C7—H7119.7O1—Co1—O393.87 (12)
C8—C7—H7119.7O3ii—Co1—O3180.000 (1)
C7—C8—C12122.8 (4)C10—N1—O1118.8 (3)
C7—C8—C9118.6 (4)C10—N1—C9122.6 (4)
C12—C8—C9118.6 (4)O1—N1—C9118.5 (3)
N1—C9—C5122.8 (4)O2—N2—C2121.6 (3)
N1—C9—C8117.5 (4)O2—N2—C1118.2 (3)
C5—C9—C8119.7 (4)C2—N2—C1120.2 (3)
N1—C10—C11121.4 (4)N1—O1—Co1123.9 (2)
N1—C10—H10119.3N2—O2—Co1130.8 (2)
C11—C10—H10119.3Co1—O3—H8120.6
C12—C11—C10118.8 (4)Co1—O3—H9125.3
C12—C11—H11120.6H8—O3—H9112.8
C10—C11—H11120.6C5—O8—H1104.7
C6—C4—C5—O8175.1 (4)C5—C9—N1—O14.2 (5)
C6—C4—C5—C92.3 (7)C8—C9—N1—O1177.5 (3)
C5—C4—C6—C70.3 (8)C1i—C2—N2—O2179.8 (4)
C4—C6—C7—C80.2 (8)C1i—C2—N2—C11.5 (7)
C6—C7—C8—C12177.4 (5)C2i—C1—N2—O2179.8 (3)
C6—C7—C8—C91.3 (7)C3—C1—N2—O20.4 (6)
O8—C5—C9—N14.7 (6)C2i—C1—N2—C21.5 (6)
C4—C5—C9—N1178.0 (4)C3—C1—N2—C2178.3 (4)
O8—C5—C9—C8173.5 (4)C10—N1—O1—Co158.2 (4)
C4—C5—C9—C83.8 (6)C9—N1—O1—Co1123.5 (3)
C7—C8—C9—N1178.3 (4)O2—Co1—O1—N1103.8 (3)
C12—C8—C9—N12.9 (6)O2ii—Co1—O1—N176.2 (3)
C7—C8—C9—C53.3 (6)O1ii—Co1—O1—N152 (100)
C12—C8—C9—C5175.4 (4)O3ii—Co1—O1—N1172.8 (3)
N1—C10—C11—C122.2 (7)O3—Co1—O1—N17.2 (3)
C10—C11—C12—C83.4 (7)C2—N2—O2—Co121.7 (5)
C7—C8—C12—C11177.8 (5)C1—N2—O2—Co1159.6 (3)
C9—C8—C12—C110.9 (7)O2ii—Co1—O2—N222 (100)
C11—C10—N1—O1180.0 (4)O1ii—Co1—O2—N258.9 (3)
C11—C10—N1—C91.9 (6)O1—Co1—O2—N2121.1 (3)
C5—C9—N1—C10173.9 (4)O3ii—Co1—O2—N2152.5 (3)
C8—C9—N1—C104.4 (6)O3—Co1—O2—N227.5 (3)
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O7iii0.842.593.324 (15)146
O3—H9···O5iii0.842.423.219 (16)159
O3—H8···O5iv0.842.633.234 (13)130
O3—H8···O6iv0.842.142.970 (7)166
O3—H8···Cl1iv0.842.953.739 (3)155
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C6H8N2O2)(C9H7NO2)(H2O)2](ClO4)2
Mr756.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.530 (3), 8.669 (3), 11.182 (3)
α, β, γ (°)84.319 (4), 86.077 (4), 63.475 (4)
V3)735.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.44 × 0.37 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.706, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
3772, 2617, 2267
Rint0.022
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.184, 1.06
No. of reflections2617
No. of parameters215
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.60

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H9···O7i0.842.593.324 (15)145.9
O3—H9···O5i0.842.423.219 (16)158.8
O3—H8···O5ii0.842.633.234 (13)129.5
O3—H8···O6ii0.842.142.970 (7)165.8
O3—H8···Cl1ii0.842.953.739 (3)155.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J. M., Meng, X. Z., Sun, Y. M., Xu, H. Y., Shi, W., Cheng, P. & Liu, L. D. (2009). J. Mol. Struct. 917, 164–169.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds