organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o796-o797

Ethyl 1-sec-butyl-2-phenyl-1H-benzimidazole-5-carboxyl­ate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 March 2010; accepted 8 March 2010; online 13 March 2010)

In the title mol­ecule, C20H22N2O2, the benzimidazole ring system is essentially planar, with a maximum deviation of 0.024 (1) Å. The dihedral angle between the phenyl and benzimidazole ring system is 43.71 (5)°. The atoms of the butyl group are disordered over two sets of sites with occupancies of 0.900 (4) and 0.100 (4). In the crystal structure, mol­ecules are connected by weak inter­molecular C—H⋯O hydrogen bonds, forming chains along the b axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For background to the applications of benzimidazole compounds, see: Spasov et al. (1999[Spasov, A. R., Iezhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Khim. Farm. Zh. 33, 6-17.]); Grassmann et al. (2002[Grassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367-378.]); Evans et al. (1997[Evans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409-412.]); White et al. (2004[White, A. W., Curtin, N. J., Eastman, B. W., Golding, B. T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K. A., Skalitzky, D. J., Webber, S. E., Yu, X.-H. & Griffin, R. J. (2004). Bioorg. Med. Chem. Lett. 14, 2433-2437.]); Demirayak et al. (2002[Demirayak, S., Abu Mohsen, U. & Caqri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255-260.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O2

  • Mr = 322.40

  • Monoclinic, P 21 /c

  • a = 9.9926 (7) Å

  • b = 12.3287 (11) Å

  • c = 13.9635 (12) Å

  • β = 93.120 (3)°

  • V = 1717.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.36 × 0.17 × 0.16 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.987

  • 22823 measured reflections

  • 6168 independent reflections

  • 4186 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.168

  • S = 1.06

  • 6168 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/N2/C7–C8/C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.93 2.45 3.3781 (17) 172
C20A—H20B⋯O1i 0.96 2.56 3.419 (2) 148
C19A—H19BCg1 0.96 2.80 3.3793 (17) 120
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The benzimidazole motif is an important pharmacophore in drug discovery (Spasov et al., 1999). Substituted benzimidazole derivatives have diverse therapeutic applications as they exhibit antihistamine (Grassmann et al., 2002), anti-HIV-1 (Evans et al., 1997), antitumour (White et al., 2004) and potential anticancer activities (Demirayak et al., 2002). In view of their importance in the field of drug discovery, the crystal structure determination of the title compound was carried out and the results are presented here.

In the asymmetric unit of the title compound (Fig. 1), the benzimidazole ring system is essentially planar with a maximum deviation of 0.024 (1)Å for atom N2. The butyl group is disordered over two sites with occupancies of 0.900 (4) and 0.100 (4). The dihedral angle between the benzimidazole ring system (N1–N2/C7–C13) and the phenyl ring (C1–C6) is 43.71 (5)° . In the crystal structure (Fig. 2), molecules are connected by weak intermolecular C9—H9A···O1i and C20A—H20B···O1i (see Table 1 for symmetry codes) hydrogen bonds, forming one-dimensional chains along the b-axis. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving N1–N2/C7–C8/C13 (centroid Cg1).

Related literature top

For background to the applications of benzimidizole compounds see: Spasov et al. (1999); Grassmann et al. (2002); Evans et al. (1997); White et al. (2004); Demirayak et al. (2002). For details of hydrogen bonding see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A solution of ethyl-3-amino-4-(sec-butylamino) benzoate (200 mg, 0.84 mmol) and sodium bisulfite adduct of benzaldehyde (353 mg, 1.68 mmol) in DMF was treated under microwave conditions at 130°C for 2 minutes. The reaction mixture was then diluted in EtOAc (20 mL) and washed with H2O (20 mL). The organic layer was collected and dried over Na2SO4. The solvent was removed under reduced pressure to afford the crude product, which upon recrystallisation from EtOAc, revealed the title compound as colourless crystals.

Refinement top

All hydrogen atoms were positioned geometrically [C–H = 0.93 or 0.97Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The butyl group is disordered over two sites with refined occupancies of 0.900 (4) and 0.100 (4).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The minor disorder component is shown with open bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen bonds as dashed lines. H atoms are not involved in the hydrogen bond interactions are omitted for clarity.
Ethyl 1-sec-butyl-2-phenyl-1H-benzimidazole-5-carboxylate top
Crystal data top
C20H22N2O2F(000) = 688
Mr = 322.40Dx = 1.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3770 reflections
a = 9.9926 (7) Åθ = 2.9–32.2°
b = 12.3287 (11) ŵ = 0.08 mm1
c = 13.9635 (12) ÅT = 100 K
β = 93.120 (3)°Block, colourless
V = 1717.7 (2) Å30.36 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6168 independent reflections
Radiation source: fine-focus sealed tube4186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 32.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1514
Tmin = 0.972, Tmax = 0.987k = 1718
22823 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.1439P]
where P = (Fo2 + 2Fc2)/3
6168 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C20H22N2O2V = 1717.7 (2) Å3
Mr = 322.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9926 (7) ŵ = 0.08 mm1
b = 12.3287 (11) ÅT = 100 K
c = 13.9635 (12) Å0.36 × 0.17 × 0.16 mm
β = 93.120 (3)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
6168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4186 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.987Rint = 0.055
22823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.06Δρmax = 0.46 e Å3
6168 reflectionsΔρmin = 0.30 e Å3
239 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.48537 (10)0.96613 (8)0.17446 (8)0.0271 (2)
O20.65687 (10)1.02815 (8)0.09245 (8)0.0254 (2)
N10.90319 (11)0.57520 (9)0.18622 (8)0.0193 (2)
N20.99597 (11)0.71445 (9)0.10769 (8)0.0182 (2)
C11.25733 (14)0.59498 (11)0.13359 (10)0.0227 (3)
H1A1.26580.66660.15380.027*
C21.37107 (15)0.53521 (12)0.11435 (11)0.0268 (3)
H2A1.45530.56720.12130.032*
C31.35904 (15)0.42848 (12)0.08494 (11)0.0276 (3)
H3A1.43530.38870.07260.033*
C41.23430 (16)0.38062 (12)0.07376 (10)0.0259 (3)
H4A1.22670.30870.05410.031*
C51.12036 (15)0.43963 (11)0.09179 (10)0.0216 (3)
H5A1.03640.40740.08340.026*
C61.13109 (13)0.54764 (10)0.12256 (9)0.0182 (2)
C71.01178 (13)0.61389 (10)0.13933 (9)0.0172 (2)
C80.81056 (13)0.65853 (10)0.18441 (9)0.0184 (2)
C90.68265 (14)0.66727 (11)0.21995 (10)0.0222 (3)
H9A0.64400.61040.25240.027*
C100.61687 (14)0.76473 (11)0.20428 (10)0.0213 (3)
H10A0.53180.77350.22710.026*
C110.67404 (13)0.85123 (10)0.15492 (9)0.0179 (2)
C120.80110 (13)0.84152 (10)0.11974 (9)0.0179 (2)
H12A0.83890.89820.08650.021*
C130.87006 (13)0.74459 (10)0.13564 (9)0.0165 (2)
C140.59468 (14)0.95227 (10)0.14299 (9)0.0200 (3)
C150.58654 (17)1.13040 (11)0.08026 (12)0.0296 (3)
H15A0.58571.16850.14100.036*
H15B0.49461.11800.05690.036*
C160.65916 (17)1.19568 (12)0.00926 (12)0.0325 (3)
H16A0.61641.26500.00060.049*
H16B0.65721.15800.05100.049*
H16C0.75051.20590.03250.049*
C17A0.90159 (17)0.47759 (12)0.24809 (13)0.0195 (3)0.900 (4)
H17A0.98930.44260.24490.023*0.900 (4)
C18A0.88752 (18)0.51121 (14)0.35205 (12)0.0246 (4)0.900 (4)
H18A0.79710.53720.35950.030*0.900 (4)
H18B0.90160.44830.39310.030*0.900 (4)
C19A0.98655 (19)0.59931 (16)0.38395 (11)0.0279 (4)0.900 (4)
H19A0.98230.61100.45170.042*0.900 (4)
H19B0.96440.66540.35030.042*0.900 (4)
H19C1.07550.57720.37000.042*0.900 (4)
C20A0.79610 (19)0.39498 (14)0.21182 (18)0.0290 (4)0.900 (4)
H20A0.80870.37860.14570.044*0.900 (4)
H20B0.70820.42470.21790.044*0.900 (4)
H20C0.80530.32980.24920.044*0.900 (4)
C17B0.931 (2)0.4995 (15)0.2836 (15)0.030 (4)*0.100 (4)
H17B1.01310.45860.27480.035*0.100 (4)
C18B0.815 (2)0.4191 (17)0.2711 (17)0.046 (5)*0.100 (4)
H18C0.83710.35580.31010.055*0.100 (4)
H18D0.73620.45210.29650.055*0.100 (4)
C19B0.780 (3)0.383 (2)0.1742 (19)0.051 (7)*0.100 (4)
H19D0.70150.33760.17430.077*0.100 (4)
H19E0.85290.34200.15050.077*0.100 (4)
H19F0.76180.44450.13360.077*0.100 (4)
C20B0.944 (2)0.5464 (19)0.3761 (14)0.037 (4)*0.100 (4)
H20D1.01750.51320.41200.055*0.100 (4)
H20E0.86280.53510.40860.055*0.100 (4)
H20F0.96010.62280.37040.055*0.100 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0215 (5)0.0248 (5)0.0358 (6)0.0061 (4)0.0090 (4)0.0004 (4)
O20.0251 (5)0.0176 (4)0.0341 (5)0.0065 (4)0.0076 (4)0.0053 (4)
N10.0176 (5)0.0167 (5)0.0242 (5)0.0018 (4)0.0060 (4)0.0052 (4)
N20.0164 (5)0.0170 (5)0.0217 (5)0.0007 (4)0.0046 (4)0.0004 (4)
C10.0199 (7)0.0207 (6)0.0276 (6)0.0008 (5)0.0039 (5)0.0009 (5)
C20.0182 (7)0.0296 (7)0.0327 (7)0.0025 (5)0.0037 (5)0.0001 (6)
C30.0243 (7)0.0305 (7)0.0286 (7)0.0105 (6)0.0047 (5)0.0016 (5)
C40.0304 (8)0.0229 (6)0.0244 (6)0.0086 (6)0.0013 (5)0.0035 (5)
C50.0222 (7)0.0200 (6)0.0224 (6)0.0020 (5)0.0008 (5)0.0017 (4)
C60.0184 (6)0.0186 (5)0.0180 (5)0.0030 (5)0.0037 (4)0.0014 (4)
C70.0157 (6)0.0178 (5)0.0182 (5)0.0013 (4)0.0026 (4)0.0005 (4)
C80.0171 (6)0.0165 (5)0.0217 (6)0.0007 (4)0.0032 (5)0.0026 (4)
C90.0172 (6)0.0209 (6)0.0289 (7)0.0007 (5)0.0056 (5)0.0058 (5)
C100.0157 (6)0.0213 (6)0.0272 (6)0.0008 (5)0.0054 (5)0.0017 (5)
C110.0165 (6)0.0164 (5)0.0209 (6)0.0009 (4)0.0018 (4)0.0001 (4)
C120.0181 (6)0.0154 (5)0.0205 (6)0.0002 (4)0.0040 (5)0.0002 (4)
C130.0159 (6)0.0150 (5)0.0190 (5)0.0009 (4)0.0036 (4)0.0002 (4)
C140.0192 (6)0.0186 (5)0.0223 (6)0.0016 (5)0.0020 (5)0.0010 (4)
C150.0331 (8)0.0192 (6)0.0373 (8)0.0110 (6)0.0090 (6)0.0046 (5)
C160.0369 (9)0.0224 (6)0.0387 (8)0.0056 (6)0.0075 (7)0.0064 (6)
C17A0.0188 (7)0.0150 (6)0.0249 (8)0.0014 (5)0.0035 (6)0.0065 (6)
C18A0.0219 (8)0.0305 (8)0.0220 (7)0.0040 (7)0.0056 (6)0.0087 (6)
C19A0.0277 (9)0.0365 (10)0.0194 (7)0.0063 (8)0.0005 (6)0.0018 (6)
C20A0.0262 (9)0.0185 (7)0.0426 (13)0.0041 (6)0.0040 (8)0.0028 (8)
Geometric parameters (Å, º) top
O1—C141.2114 (16)C15—C161.495 (2)
O2—C141.3443 (16)C15—H15A0.9700
O2—C151.4488 (16)C15—H15B0.9700
N1—C81.3821 (16)C16—H16A0.9600
N1—C71.3824 (16)C16—H16B0.9600
N1—C17A1.4820 (17)C16—H16C0.9600
N1—C17B1.660 (19)C17A—C18A1.523 (2)
N2—C71.3228 (16)C17A—C20A1.532 (3)
N2—C131.3881 (16)C17A—H17A0.9800
C1—C61.3908 (19)C18A—C19A1.520 (3)
C1—C21.3929 (19)C18A—H18A0.9700
C1—H1A0.9300C18A—H18B0.9700
C2—C31.382 (2)C19A—H19A0.9600
C2—H2A0.9300C19A—H19B0.9600
C3—C41.380 (2)C19A—H19C0.9600
C3—H3A0.9300C20A—H20A0.9600
C4—C51.3857 (19)C20A—H20B0.9600
C4—H4A0.9300C20A—H20C0.9600
C5—C61.4016 (18)C17B—C20B1.41 (3)
C5—H5A0.9300C17B—C18B1.53 (3)
C6—C71.4743 (17)C17B—H17B0.9800
C8—C91.4002 (18)C18B—C19B1.45 (3)
C8—C131.4096 (17)C18B—H18C0.9700
C9—C101.3814 (18)C18B—H18D0.9700
C9—H9A0.9300C19B—H19D0.9600
C10—C111.4076 (18)C19B—H19E0.9600
C10—H10A0.9300C19B—H19F0.9600
C11—C121.3913 (17)C20B—H20D0.9600
C11—C141.4813 (18)C20B—H20E0.9600
C12—C131.3912 (17)C20B—H20F0.9600
C12—H12A0.9300
C14—O2—C15115.59 (11)O2—C14—C11112.60 (11)
C8—N1—C7106.08 (10)O2—C15—C16107.24 (12)
C8—N1—C17A125.86 (11)O2—C15—H15A110.3
C7—N1—C17A126.15 (11)C16—C15—H15A110.3
C8—N1—C17B120.9 (7)O2—C15—H15B110.3
C7—N1—C17B118.9 (7)C16—C15—H15B110.3
C17A—N1—C17B21.9 (7)H15A—C15—H15B108.5
C7—N2—C13104.52 (10)C15—C16—H16A109.5
C6—C1—C2120.08 (13)C15—C16—H16B109.5
C6—C1—H1A120.0H16A—C16—H16B109.5
C2—C1—H1A120.0C15—C16—H16C109.5
C3—C2—C1120.17 (14)H16A—C16—H16C109.5
C3—C2—H2A119.9H16B—C16—H16C109.5
C1—C2—H2A119.9N1—C17A—C18A109.82 (13)
C4—C3—C2120.27 (13)N1—C17A—C20A112.10 (16)
C4—C3—H3A119.9C18A—C17A—C20A113.48 (15)
C2—C3—H3A119.9N1—C17A—H17A107.0
C3—C4—C5120.06 (13)C18A—C17A—H17A107.0
C3—C4—H4A120.0C20A—C17A—H17A107.0
C5—C4—H4A120.0C19A—C18A—C17A112.42 (13)
C4—C5—C6120.30 (13)C19A—C18A—H18A109.1
C4—C5—H5A119.8C17A—C18A—H18A109.1
C6—C5—H5A119.8C19A—C18A—H18B109.1
C1—C6—C5119.11 (12)C17A—C18A—H18B109.1
C1—C6—C7119.10 (11)H18A—C18A—H18B107.9
C5—C6—C7121.73 (12)C20B—C17B—C18B113.7 (17)
N2—C7—N1113.51 (11)C20B—C17B—N1121.4 (15)
N2—C7—C6123.31 (11)C18B—C17B—N1100.4 (14)
N1—C7—C6123.12 (11)C20B—C17B—H17B106.8
N1—C8—C9132.38 (12)C18B—C17B—H17B106.8
N1—C8—C13105.59 (11)N1—C17B—H17B106.8
C9—C8—C13122.03 (12)C19B—C18B—C17B117 (2)
C10—C9—C8116.52 (12)C19B—C18B—H18C108.1
C10—C9—H9A121.7C17B—C18B—H18C108.1
C8—C9—H9A121.7C19B—C18B—H18D108.1
C9—C10—C11122.29 (12)C17B—C18B—H18D108.1
C9—C10—H10A118.9H18C—C18B—H18D107.3
C11—C10—H10A118.9C18B—C19B—H19D109.5
C12—C11—C10120.68 (12)C18B—C19B—H19E109.5
C12—C11—C14121.73 (11)H19D—C19B—H19E109.5
C10—C11—C14117.59 (11)C18B—C19B—H19F109.5
C13—C12—C11118.11 (11)H19D—C19B—H19F109.5
C13—C12—H12A120.9H19E—C19B—H19F109.5
C11—C12—H12A120.9C17B—C20B—H20D109.5
N2—C13—C12129.33 (11)C17B—C20B—H20E109.5
N2—C13—C8110.30 (11)H20D—C20B—H20E109.5
C12—C13—C8120.36 (11)C17B—C20B—H20F109.5
O1—C14—O2122.96 (12)H20D—C20B—H20F109.5
O1—C14—C11124.44 (12)H20E—C20B—H20F109.5
C6—C1—C2—C30.5 (2)C14—C11—C12—C13178.75 (12)
C1—C2—C3—C40.5 (2)C7—N2—C13—C12178.75 (13)
C2—C3—C4—C50.2 (2)C7—N2—C13—C80.44 (14)
C3—C4—C5—C60.8 (2)C11—C12—C13—N2179.43 (12)
C2—C1—C6—C50.1 (2)C11—C12—C13—C81.26 (18)
C2—C1—C6—C7177.39 (12)N1—C8—C13—N20.35 (14)
C4—C5—C6—C10.76 (19)C9—C8—C13—N2179.65 (12)
C4—C5—C6—C7177.94 (12)N1—C8—C13—C12178.83 (12)
C13—N2—C7—N10.37 (15)C9—C8—C13—C121.2 (2)
C13—N2—C7—C6177.83 (12)C15—O2—C14—O12.0 (2)
C8—N1—C7—N20.16 (15)C15—O2—C14—C11178.34 (12)
C17A—N1—C7—N2165.11 (14)C12—C11—C14—O1177.85 (13)
C17B—N1—C7—N2140.5 (8)C10—C11—C14—O11.6 (2)
C8—N1—C7—C6177.63 (12)C12—C11—C14—O22.47 (18)
C17A—N1—C7—C617.4 (2)C10—C11—C14—O2178.11 (12)
C17B—N1—C7—C642.1 (8)C14—O2—C15—C16170.51 (13)
C1—C6—C7—N243.20 (18)C8—N1—C17A—C18A51.0 (2)
C5—C6—C7—N2133.98 (14)C7—N1—C17A—C18A111.06 (15)
C1—C6—C7—N1139.58 (13)C17B—N1—C17A—C18A33.3 (18)
C5—C6—C7—N143.24 (18)C8—N1—C17A—C20A76.11 (19)
C7—N1—C8—C9179.88 (15)C7—N1—C17A—C20A121.83 (15)
C17A—N1—C8—C915.1 (2)C17B—N1—C17A—C20A160.4 (18)
C17B—N1—C8—C940.8 (9)N1—C17A—C18A—C19A49.37 (18)
C7—N1—C8—C130.12 (14)C20A—C17A—C18A—C19A175.71 (14)
C17A—N1—C8—C13164.89 (14)C8—N1—C17B—C20B44 (2)
C17B—N1—C8—C13139.2 (9)C7—N1—C17B—C20B90.2 (18)
N1—C8—C9—C10179.62 (14)C17A—N1—C17B—C20B154 (3)
C13—C8—C9—C100.4 (2)C8—N1—C17B—C18B82.2 (13)
C8—C9—C10—C110.3 (2)C7—N1—C17B—C18B143.5 (10)
C9—C10—C11—C120.1 (2)C17A—N1—C17B—C18B27.8 (13)
C9—C10—C11—C14179.54 (13)C20B—C17B—C18B—C19B169 (2)
C10—C11—C12—C130.65 (19)N1—C17B—C18B—C19B38 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C7–C8/C13 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.932.453.3781 (17)172
C20A—H20B···O1i0.962.563.419 (2)148
C19A—H19B···Cg10.962.803.3793 (17)120
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H22N2O2
Mr322.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9926 (7), 12.3287 (11), 13.9635 (12)
β (°) 93.120 (3)
V3)1717.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.17 × 0.16
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.972, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
22823, 6168, 4186
Rint0.055
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.168, 1.06
No. of reflections6168
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/N2/C7–C8/C13 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.93002.45003.3781 (17)172.00
C20A—H20B···O1i0.96002.56003.419 (2)148.00
C19A—H19B···Cg10.96002.80003.3793 (17)120.00
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NA, ASAR and SAH are grateful to Universiti Sains Malaysia (USM) and the Inter­national Islamic University Malaysia (IIUM) for funding the synthetic chemistry work under the USM Research University Grant (1001/PFARMASI/815026) and the IIUM Research Endowment Grant (EDW B 0902-206). NA also thanks USM for the award of postdoctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirayak, S., Abu Mohsen, U. & Caqri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409–412.  CrossRef CAS Web of Science Google Scholar
First citationGrassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367–378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpasov, A. R., Iezhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Khim. Farm. Zh. 33, 6–17.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhite, A. W., Curtin, N. J., Eastman, B. W., Golding, B. T., Hostomsky, Z., Kyle, S., Li, J., Maegley, K. A., Skalitzky, D. J., Webber, S. E., Yu, X.-H. & Griffin, R. J. (2004). Bioorg. Med. Chem. Lett. 14, 2433–2437.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o796-o797
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds