metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Di­bromo-4,4′-di­chloro-2,2′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}nickel(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: kmlo@um.edu.my

(Received 8 March 2010; accepted 23 March 2010; online 27 March 2010)

In the title complex, [Ni(C20H10Br2Cl2N2O2)], the NiII ion is coordinated by two phen­oxy O atoms and two imino N atoms of the tetradentate ligand, forming a slightly distorted square-planar environment. The mol­ecule is essentially planar, with an r.m.s. deviation of 0.088 Å for the mean plane defined by all non-H atoms in the mol­ecule.

Related literature

For applications of nickel(II) complexes containing nitro­gen and oxygen donor ligands, see: Chang et al. (2008[Chang, J., Shannon, E. D. & William, C. S. (2008). J. Electroanal. Chem. 622, 15-21.]). For related structures, see: Wang et al. (2003[Wang, J., Bei, F.-L., Xu, X. Y., Yang, X. J. & Wang, X. (2003). J. Chem. Crystallogr. 33, 845-849.]); Niu et al. (2009[Niu, M., Liu, G., Wang, D. & Dou, J. (2009). Acta Cryst. E65, m1357.]); Azevedo et al. (1994[Azevedo, F., Carrondo, M. A. A. F. de C. T., de Castro, B., Convery, M., Domingues, D., Freire, C., Duarte, M. T., Nielsen, K. & Santos, I. C. (1994). Inorg. Chim. Acta, 219, 43-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H10Br2Cl2N2O2)]

  • Mr = 599.73

  • Monoclinic, P 21 /c

  • a = 10.4289 (2) Å

  • b = 9.2712 (2) Å

  • c = 20.6731 (4) Å

  • β = 102.101 (1)°

  • V = 1954.43 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.38 mm−1

  • T = 296 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.222, Tmax = 0.616

  • 18381 measured reflections

  • 4487 independent reflections

  • 2921 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.085

  • S = 0.99

  • 4487 reflections

  • 302 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Many low-spin square-planar nickel(II) complexes and high-spin octahedral nickel(II) complexes containing nitrogen and oxygen donor ligands have been reported due to their potential industrial applications (e.g. Chang et al., 2008). In continuation of our study on the optical properties of nickel(II) Schiff base complexes, we report here the molecular structure of the title nickel(II) complex.

The molecular structure of the title complex is shown in Fig .1. The the NiII ion is coordinated by two phenoxy oxygen atoms and two imino nitrogen atoms in a slightly distorted square-planar geometry. The molecule is essentially planar with an rms deviation of 0.088Å for the mean plane defined by all non-hydrogen atoms in the molecule. The Ni—O bond distances [1.836 (2), 1.838 (2) Å] and Ni—N bond distances [1.853 (3), 1.858 (3) Å] are similar to those reported for related structures [1.841 (5), 1.847 (5) Å and 1.859 (6), 1.856 (6) Å, respectively, Azevedo et al., 1994; Ni-O 1.840 (5) and Ni-N 1.863 (5), 1.858 (5)Å, Wang et al., 2003; Ni-O 1.839 (2) A and Ni-N 1.825 (2) Å, Niu et al., 2009].

Related literature top

For applications of nickel(II) complexes containing nitrogen and oxygen donor ligands, see: Chang et al. (2008). For related structures, see: Wang et al. (2003); Niu et al. (2009); Azevedo et al. (1994).

Experimental top

The Schiff base, o-phenylenebis(3-bromo-5-chlorosalicylidenaminate was prepared by the condensation reaction between o-phenylenediamine and 3-bromo-5-chlorosalicylaldehyde in ethanol. 0.1 g (0.183 mmol) of the Schiff base ligand and 0.04 g (0.183 mmol) of nickel(II) acetate tetrahydrate were dissolved in 100 ml of absolute ethanol. A few drops of triethylamine were added and the mixture was refluxed for 3 hours. After filtering, a red colored solid was obtained upon slow evaporation of the filtrate. It was recrystalised from DMF to obtain the red crystals suitable for X-ray analysis.

Refinement top

Hydrogen atoms were located in a difference Fourier map, and were allowed to refine isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
{6,6'-Dibromo-4,4'-dichloro-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II) top
Crystal data top
[Ni(C20H10Br2Cl2N2O2)]F(000) = 1168
Mr = 599.73Dx = 2.038 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2542 reflections
a = 10.4289 (2) Åθ = 2.5–22.8°
b = 9.2712 (2) ŵ = 5.38 mm1
c = 20.6731 (4) ÅT = 296 K
β = 102.101 (1)°Tube, red
V = 1954.43 (7) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4487 independent reflections
Radiation source: fine-focus sealed tube2921 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.222, Tmax = 0.616k = 1212
18381 measured reflectionsl = 2625
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0337P)2]
where P = (Fo2 + 2Fc2)/3
4487 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ni(C20H10Br2Cl2N2O2)]V = 1954.43 (7) Å3
Mr = 599.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4289 (2) ŵ = 5.38 mm1
b = 9.2712 (2) ÅT = 296 K
c = 20.6731 (4) Å0.40 × 0.10 × 0.10 mm
β = 102.101 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4487 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2921 reflections with I > 2σ(I)
Tmin = 0.222, Tmax = 0.616Rint = 0.060
18381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.62 e Å3
4487 reflectionsΔρmin = 0.46 e Å3
302 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.42858 (4)0.82303 (5)0.00079 (2)0.03697 (13)
Br20.81519 (4)0.64578 (5)0.13971 (2)0.05814 (14)
Br10.53750 (4)0.96193 (5)0.22642 (2)0.06178 (15)
Cl20.88192 (10)0.28706 (11)0.06471 (6)0.0600 (3)
Cl10.13100 (12)1.35240 (12)0.17562 (7)0.0714 (3)
C150.6015 (3)0.5754 (4)0.05020 (18)0.0378 (8)
O20.4438 (2)0.9051 (3)0.08286 (12)0.0459 (6)
C160.6762 (4)0.4667 (4)0.0737 (2)0.0447 (9)
N10.2791 (3)0.9255 (3)0.03805 (15)0.0394 (7)
C140.4875 (4)0.6290 (4)0.0939 (2)0.0429 (9)
C200.6425 (3)0.6305 (4)0.01441 (18)0.0382 (8)
C170.7884 (4)0.4177 (4)0.0343 (2)0.0442 (9)
C10.3679 (4)1.0010 (4)0.10100 (19)0.0418 (9)
O10.5802 (2)0.7289 (3)0.03987 (12)0.0418 (6)
N20.4122 (3)0.7309 (3)0.08005 (14)0.0372 (7)
C50.1859 (4)1.1734 (4)0.0825 (2)0.0493 (10)
C190.7597 (3)0.5726 (4)0.05273 (18)0.0409 (9)
C20.3932 (4)1.0453 (4)0.16778 (19)0.0434 (9)
C130.3023 (4)0.7792 (4)0.12826 (18)0.0424 (9)
C110.1575 (5)0.7925 (5)0.2344 (2)0.0615 (13)
C90.1218 (4)0.9484 (5)0.1469 (2)0.0548 (11)
C100.0866 (5)0.9001 (5)0.2110 (2)0.0617 (12)
C80.2305 (4)0.8878 (4)0.10542 (18)0.0435 (9)
C180.8314 (4)0.4705 (4)0.0289 (2)0.0451 (10)
C70.2236 (4)1.0247 (4)0.0091 (2)0.0446 (10)
C30.3200 (4)1.1484 (4)0.1905 (2)0.0479 (10)
C40.2165 (4)1.2134 (4)0.1466 (2)0.0511 (10)
C60.2602 (3)1.0669 (4)0.05861 (19)0.0418 (9)
C120.2644 (4)0.7316 (5)0.1927 (2)0.0559 (11)
H140.471 (3)0.581 (3)0.1363 (16)0.028 (8)*
H30.341 (3)1.177 (4)0.2365 (19)0.052 (11)*
H160.643 (3)0.431 (4)0.1153 (19)0.045 (11)*
H180.901 (4)0.432 (4)0.0531 (19)0.049 (12)*
H70.155 (3)1.070 (4)0.0322 (17)0.039 (10)*
H110.125 (5)0.765 (5)0.279 (3)0.097 (17)*
H100.023 (4)0.947 (4)0.239 (2)0.057 (12)*
H50.120 (3)1.212 (4)0.0547 (19)0.044 (11)*
H90.066 (4)1.023 (4)0.132 (2)0.069 (13)*
H120.310 (4)0.651 (5)0.210 (2)0.085 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0367 (3)0.0410 (3)0.0324 (3)0.0011 (2)0.0056 (2)0.0021 (2)
Br20.0541 (3)0.0737 (3)0.0418 (3)0.0081 (2)0.00089 (19)0.0011 (2)
Br10.0653 (3)0.0779 (3)0.0398 (3)0.0091 (2)0.0058 (2)0.0018 (2)
Cl20.0570 (7)0.0536 (6)0.0746 (8)0.0071 (5)0.0256 (6)0.0057 (5)
Cl10.0824 (8)0.0545 (7)0.0866 (9)0.0122 (6)0.0392 (7)0.0079 (6)
C150.039 (2)0.040 (2)0.035 (2)0.0059 (16)0.0088 (17)0.0009 (16)
O20.0452 (15)0.0519 (16)0.0387 (15)0.0094 (12)0.0044 (12)0.0038 (12)
C160.043 (2)0.048 (2)0.044 (3)0.0076 (18)0.010 (2)0.0020 (19)
N10.0404 (17)0.0384 (17)0.0381 (18)0.0021 (14)0.0051 (14)0.0054 (14)
C140.048 (2)0.050 (2)0.032 (2)0.0087 (19)0.0099 (18)0.0027 (18)
C200.035 (2)0.042 (2)0.039 (2)0.0052 (16)0.0125 (17)0.0050 (17)
C170.047 (2)0.040 (2)0.051 (3)0.0036 (17)0.023 (2)0.0005 (18)
C10.046 (2)0.036 (2)0.046 (2)0.0070 (17)0.0151 (19)0.0036 (17)
O10.0373 (14)0.0513 (15)0.0356 (15)0.0052 (11)0.0048 (11)0.0009 (12)
N20.0344 (17)0.0429 (17)0.0332 (17)0.0024 (13)0.0049 (13)0.0026 (13)
C50.046 (3)0.043 (2)0.058 (3)0.0019 (19)0.010 (2)0.006 (2)
C190.038 (2)0.044 (2)0.042 (2)0.0051 (17)0.0102 (17)0.0042 (17)
C20.048 (2)0.046 (2)0.039 (2)0.0016 (17)0.0152 (18)0.0053 (18)
C130.044 (2)0.049 (2)0.033 (2)0.0080 (17)0.0054 (17)0.0059 (17)
C110.067 (3)0.076 (3)0.034 (3)0.010 (2)0.007 (2)0.003 (2)
C90.055 (3)0.055 (3)0.047 (3)0.000 (2)0.005 (2)0.007 (2)
C100.060 (3)0.064 (3)0.051 (3)0.006 (2)0.010 (2)0.011 (2)
C80.045 (2)0.047 (2)0.037 (2)0.0087 (17)0.0019 (18)0.0066 (17)
C180.036 (2)0.047 (2)0.053 (3)0.0006 (18)0.009 (2)0.007 (2)
C70.040 (2)0.041 (2)0.050 (3)0.0021 (18)0.002 (2)0.0094 (19)
C30.055 (3)0.049 (2)0.043 (3)0.009 (2)0.019 (2)0.004 (2)
C40.056 (3)0.042 (2)0.062 (3)0.0010 (18)0.028 (2)0.003 (2)
C60.039 (2)0.039 (2)0.047 (2)0.0020 (16)0.0074 (18)0.0003 (17)
C120.059 (3)0.065 (3)0.041 (3)0.003 (2)0.004 (2)0.003 (2)
Geometric parameters (Å, º) top
Ni1—O21.836 (2)C1—C21.411 (5)
Ni1—O11.838 (2)N2—C131.424 (4)
Ni1—N21.853 (3)C5—C41.349 (6)
Ni1—N11.858 (3)C5—C61.407 (5)
Br2—C191.895 (4)C5—H50.87 (3)
Br1—C21.888 (4)C19—C181.362 (5)
Cl2—C171.752 (4)C2—C31.367 (5)
Cl1—C41.744 (4)C13—C121.381 (5)
C15—C201.410 (5)C13—C81.394 (5)
C15—C161.420 (5)C11—C121.379 (6)
C15—C141.424 (5)C11—C101.388 (7)
O2—C11.297 (4)C11—H110.95 (5)
C16—C171.356 (5)C9—C101.372 (6)
C16—H160.92 (4)C9—C81.389 (5)
N1—C71.297 (5)C9—H90.99 (4)
N1—C81.422 (5)C10—H100.89 (4)
C14—N21.298 (5)C18—H180.87 (4)
C14—H140.97 (3)C7—C61.426 (5)
C20—O11.294 (4)C7—H70.87 (3)
C20—C191.416 (5)C3—C41.393 (6)
C17—C181.379 (5)C3—H30.97 (4)
C1—C61.411 (5)C12—H120.99 (4)
O2—Ni1—O183.74 (11)C20—C19—Br2116.8 (3)
O2—Ni1—N2176.99 (12)C3—C2—C1122.4 (4)
O1—Ni1—N294.91 (12)C3—C2—Br1119.5 (3)
O2—Ni1—N195.14 (12)C1—C2—Br1118.0 (3)
O1—Ni1—N1177.58 (12)C12—C13—C8119.5 (4)
N2—Ni1—N186.31 (13)C12—C13—N2126.9 (4)
C20—C15—C16120.1 (3)C8—C13—N2113.6 (3)
C20—C15—C14121.4 (3)C12—C11—C10119.7 (4)
C16—C15—C14118.4 (3)C12—C11—H11125 (3)
C1—O2—Ni1127.7 (2)C10—C11—H11115 (3)
C17—C16—C15119.9 (4)C10—C9—C8118.8 (4)
C17—C16—H16123 (2)C10—C9—H9118 (3)
C15—C16—H16117 (2)C8—C9—H9123 (3)
C7—N1—C8121.6 (3)C9—C10—C11121.1 (5)
C7—N1—Ni1125.3 (3)C9—C10—H10118 (3)
C8—N1—Ni1113.1 (2)C11—C10—H10120 (3)
N2—C14—C15125.2 (4)C9—C8—C13120.6 (4)
N2—C14—H14122.3 (18)C9—C8—N1125.6 (4)
C15—C14—H14112.5 (18)C13—C8—N1113.7 (3)
O1—C20—C15124.2 (3)C19—C18—C17119.7 (4)
O1—C20—C19119.2 (3)C19—C18—H18122 (3)
C15—C20—C19116.6 (3)C17—C18—H18118 (3)
C16—C17—C18121.2 (4)N1—C7—C6126.4 (4)
C16—C17—Cl2119.4 (3)N1—C7—H7118 (2)
C18—C17—Cl2119.4 (3)C6—C7—H7115 (2)
O2—C1—C6124.9 (4)C2—C3—C4119.4 (4)
O2—C1—C2118.8 (3)C2—C3—H3120 (2)
C6—C1—C2116.3 (3)C4—C3—H3120 (2)
C20—O1—Ni1127.9 (2)C5—C4—C3120.9 (4)
C14—N2—C13120.6 (3)C5—C4—Cl1120.5 (3)
C14—N2—Ni1126.1 (3)C3—C4—Cl1118.6 (3)
C13—N2—Ni1113.2 (2)C5—C6—C1120.7 (4)
C4—C5—C6120.2 (4)C5—C6—C7118.9 (4)
C4—C5—H5122 (2)C1—C6—C7120.3 (3)
C6—C5—H5118 (2)C11—C12—C13120.2 (4)
C18—C19—C20122.4 (4)C11—C12—H12118 (3)
C18—C19—Br2120.7 (3)C13—C12—H12122 (3)

Experimental details

Crystal data
Chemical formula[Ni(C20H10Br2Cl2N2O2)]
Mr599.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.4289 (2), 9.2712 (2), 20.6731 (4)
β (°) 102.101 (1)
V3)1954.43 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.38
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.222, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
18381, 4487, 2921
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.085, 0.99
No. of reflections4487
No. of parameters302
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.46

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Malaya (grant Nos. PS320/2008 C and RG020/09AFR) for supporting this study.

References

First citationAzevedo, F., Carrondo, M. A. A. F. de C. T., de Castro, B., Convery, M., Domingues, D., Freire, C., Duarte, M. T., Nielsen, K. & Santos, I. C. (1994). Inorg. Chim. Acta, 219, 43–45.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, J., Shannon, E. D. & William, C. S. (2008). J. Electroanal. Chem. 622, 15–21.  Google Scholar
First citationNiu, M., Liu, G., Wang, D. & Dou, J. (2009). Acta Cryst. E65, m1357.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Bei, F.-L., Xu, X. Y., Yang, X. J. & Wang, X. (2003). J. Chem. Crystallogr. 33, 845–849.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds