organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o1002-o1003

2,2′-[(Propane-1,3-diyldi­nitrilo)bis­­(phenyl­methyl­­idyne)]diphenol

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits 2050, South Africa
*Correspondence e-mail: dave.billing@wits.ac.za

(Received 9 March 2010; accepted 24 March 2010; online 31 March 2010)

In the title mol­ecule, C29H26N2O2, there are two strong intra­molecular O—H⋯N hydrogen bonds involving the hydr­oxy and imine groups, forming S(6) ring motifs. The dihedral angles between adjacent phenyl rings and phenol-containing planes are 85.27 (19) and 91.38 (18)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds connect mol­ecules into a two-dimensional network.

Related literature

The title compound forms part of the group of Schiff bases with a similar method of synthesis as described in Schilf et al. (2007[Schilf, W., Kamienski, B., Szady-Chełmieniecka, A., Grech, E., Makal, A. & Wozniak, K. (2007). J. Mol. Struct. 94-101, 844-845]). The inter­molecular hydrogen bonds O—H⋯N between the hydr­oxy and imine are common to this type of compound as shown with the series of compounds reported by Fernández et al. (2001[Fernández, G. J. M., del Rio-Portilla, F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197-207.]); Kabak (2003[Kabak, M. (2003). J. Mol. Struct. 655, 135-139]); Wojciechowski et al. (2001[Wojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2001). J. Mol. Struct. 650, 191-199.]); Dey et al. (2001[Dey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177-184]); Koşar, et al. (2004[Koşar, B., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2004). Acta Cryst. C60, o458-o460.]); Lu, et al. (2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.]); Qiu & Zhao (2008[Qiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.]); Montazerozohori et al. (2009[Montazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, o1662-o1663.]); Corden et al. (1996[Corden, J. P., Errington, W., Moore, P., Phillips, P. R. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 3199-3202.]). For a decription of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C29H26N2O2

  • Mr = 434.52

  • Monoclinic, P 21 /c

  • a = 18.226 (2) Å

  • b = 8.2303 (9) Å

  • c = 18.642 (2) Å

  • β = 119.086 (5)°

  • V = 2443.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.7 × 0.5 × 0.28 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • 21350 measured reflections

  • 5896 independent reflections

  • 3749 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.173

  • S = 1.03

  • 5896 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 1.80 2.5344 (17) 148
O2—H2A⋯N2 0.82 1.81 2.5431 (18) 148
C17—H17⋯O2i 0.93 2.56 3.481 (2) 168
C18—H18⋯O1ii 0.93 2.47 3.395 (3) 174
C21—H21⋯O2iii 0.93 2.56 3.492 (2) 175
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. There are two strong intramolecular O—H..O hydrogen bonds involving the hydroxyl and imine groups forming S(6) ring motifs (Bernstein et al., 1995). These types of hydrogen bonds are common to some reported molecular structures (Schilf et al., 2007; Fernández et al., 2001; Kabak, 2003; Wojciechowski et al., 2001; Dey et al., 2001; Koşar, et al., 2004; Lu, et al., 2008; Qiu & Zhao, 2008; Montazerozohori et al., 2009; Corden et al., 1996). In the crystal structure, weak intermolecular C—H···O hydrogen bond connect molecules to form a two-dimensional network.

Related literature top

The title compound forms part of the group of Schiff bases with a similar method of synthesis as described in Schilf et al. (2007). The intermolecular hydrogen bonds O—H···N between the hydroxy and imine are common to this type of compound as shown with the series of compounds reported by Fernández et al. (2001); Kabak (2003); Wojciechowski et al. (2001); Dey et al. (2001); Koşar, et al. (2004); Lu, et al. (2008); Qiu & Zhao (2008); Montazerozohori et al. (2009); Corden et al. (1996). For a decription of hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 1.0 mmol (2.00 g) of 2-hydroxybenzophenone, 0.5 mmole (0.42 cm3) of 1,3-propanediamine and 2 drops of glacial acetic acid in 40 ml of methanol was refluxed for 8 h. The excess of solvent (ca. 30 ml) was then evaporated. After cooling to 277 K a yellow solid was produced. The polycrystalline product was collected by filtration, washed with methanol and dried. A yield of 52% was obtained. Recrystalization from an ethanol solution yielded single crystals suitable for x-ray diffraction. Elemental analysis C% 79.67 H% 6.26 N% 6.11%.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.93-0.97 Å, O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXSL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
2,2'-[(Propane-1,3-diyldinitrilo)bis(phenylmethylidyne)]diphenol top
Crystal data top
C29H26N2O2F(000) = 920
Mr = 434.52Dx = 1.181 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21350 reflections
a = 18.226 (2) Åθ = 2.1–23.0°
b = 8.2303 (9) ŵ = 0.07 mm1
c = 18.642 (2) ÅT = 293 K
β = 119.086 (5)°Block, yellow
V = 2443.7 (5) Å30.7 × 0.5 × 0.28 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
Rint = 0.071
ϕ and ω scansθmax = 28°, θmin = 1.3°
21350 measured reflectionsh = 1924
5896 independent reflectionsk = 1010
3749 reflections with I > 2σ(I)l = 2420
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0897P)2 + 0.2258P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.173(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.23 e Å3
5896 reflectionsΔρmin = 0.36 e Å3
300 parameters
Crystal data top
C29H26N2O2V = 2443.7 (5) Å3
Mr = 434.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.226 (2) ŵ = 0.07 mm1
b = 8.2303 (9) ÅT = 293 K
c = 18.642 (2) Å0.7 × 0.5 × 0.28 mm
β = 119.086 (5)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
3749 reflections with I > 2σ(I)
21350 measured reflectionsRint = 0.071
5896 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
5896 reflectionsΔρmin = 0.36 e Å3
300 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17087 (13)0.1655 (3)0.08228 (11)0.0718 (5)
H10.19260.26720.08130.086*
C20.15625 (16)0.0517 (3)0.02117 (14)0.0940 (7)
H20.16890.07760.02010.113*
C30.12367 (14)0.0961 (3)0.02162 (16)0.0947 (8)
H30.11420.17080.01940.114*
C40.10480 (16)0.1362 (3)0.08146 (16)0.0960 (7)
H40.08230.23770.08120.115*
C50.11925 (13)0.0247 (3)0.14328 (13)0.0759 (5)
H50.10620.05190.18420.091*
C60.15300 (9)0.12641 (19)0.14400 (9)0.0501 (4)
C70.17057 (8)0.24201 (18)0.21320 (9)0.0457 (3)
C80.10782 (9)0.36732 (18)0.20194 (9)0.0476 (3)
C90.03699 (10)0.3944 (2)0.12497 (11)0.0612 (4)
H90.02910.33080.08050.073*
C100.02150 (12)0.5138 (3)0.11365 (13)0.0775 (6)
H100.06750.53120.0620.093*
C110.01072 (13)0.6066 (3)0.17994 (16)0.0826 (6)
H110.050.68610.17260.099*
C120.05729 (13)0.5829 (2)0.25660 (14)0.0735 (5)
H120.06320.64610.30040.088*
C130.11810 (10)0.4642 (2)0.26941 (10)0.0548 (4)
C140.30624 (10)0.1168 (2)0.29798 (11)0.0637 (4)
H14A0.31030.10370.24830.076*
H14B0.29350.01170.31280.076*
C150.38907 (10)0.1788 (2)0.36662 (10)0.0590 (4)
H15A0.3850.18690.41650.071*
H15B0.39920.2870.35280.071*
C160.46364 (10)0.0702 (2)0.38294 (10)0.0606 (4)
H16A0.51250.10340.43360.073*
H16B0.45080.04160.38910.073*
C170.66693 (10)0.2305 (2)0.45511 (10)0.0602 (4)
H170.64420.33060.43160.072*
C180.73422 (12)0.2233 (3)0.53470 (12)0.0729 (5)
H180.7560.31850.56440.087*
C190.76854 (12)0.0763 (3)0.56945 (12)0.0743 (5)
H190.8130.07210.62290.089*
C200.73734 (12)0.0646 (3)0.52550 (13)0.0747 (5)
H200.76180.16370.54890.09*
C210.66949 (11)0.0604 (2)0.44627 (11)0.0608 (4)
H210.64810.15640.41720.073*
C220.63373 (9)0.08832 (18)0.41069 (9)0.0469 (3)
C230.55780 (9)0.09263 (18)0.32620 (9)0.0496 (4)
C240.57020 (11)0.10567 (19)0.25341 (10)0.0539 (4)
C250.65069 (12)0.1279 (2)0.26229 (12)0.0676 (5)
H250.69680.1340.31470.081*
C260.66269 (15)0.1409 (3)0.19441 (15)0.0808 (6)
H260.71630.1560.20120.097*
C270.59361 (18)0.1312 (3)0.11627 (15)0.0861 (7)
H270.60130.13870.07060.103*
C280.51399 (16)0.1106 (2)0.10547 (12)0.0769 (6)
H280.46860.10450.05270.092*
C290.50056 (12)0.09859 (19)0.17301 (11)0.0597 (4)
N10.23864 (8)0.23289 (17)0.28316 (8)0.0562 (3)
N20.48206 (8)0.08218 (17)0.31467 (8)0.0564 (3)
O10.18408 (8)0.44387 (17)0.34460 (7)0.0709 (4)
H1A0.21670.37810.34240.106*
O20.42130 (8)0.08050 (17)0.15964 (7)0.0715 (4)
H2A0.42180.0740.20380.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0820 (13)0.0800 (12)0.0680 (11)0.0146 (10)0.0478 (10)0.0153 (9)
C20.1009 (17)0.125 (2)0.0795 (14)0.0200 (15)0.0625 (14)0.0331 (13)
C30.0776 (14)0.1138 (19)0.1001 (16)0.0262 (13)0.0490 (13)0.0609 (14)
C40.0966 (17)0.0856 (15)0.1172 (18)0.0384 (13)0.0610 (16)0.0465 (14)
C50.0807 (13)0.0769 (12)0.0816 (13)0.0279 (10)0.0484 (11)0.0252 (10)
C60.0390 (7)0.0596 (9)0.0508 (8)0.0030 (6)0.0212 (6)0.0107 (7)
C70.0393 (7)0.0540 (8)0.0465 (7)0.0056 (6)0.0229 (6)0.0073 (6)
C80.0400 (7)0.0531 (8)0.0529 (8)0.0062 (6)0.0250 (7)0.0070 (6)
C90.0456 (9)0.0714 (11)0.0615 (10)0.0002 (7)0.0220 (8)0.0086 (8)
C100.0513 (10)0.0855 (13)0.0823 (13)0.0124 (9)0.0221 (9)0.0007 (11)
C110.0607 (12)0.0732 (12)0.1165 (18)0.0144 (9)0.0451 (13)0.0065 (12)
C120.0679 (12)0.0709 (12)0.0926 (14)0.0000 (9)0.0475 (11)0.0229 (10)
C130.0520 (9)0.0573 (9)0.0625 (10)0.0083 (7)0.0338 (8)0.0127 (7)
C140.0450 (9)0.0724 (11)0.0627 (10)0.0065 (7)0.0175 (8)0.0136 (8)
C150.0442 (8)0.0750 (11)0.0546 (9)0.0015 (7)0.0217 (7)0.0083 (8)
C160.0435 (8)0.0848 (12)0.0528 (9)0.0052 (8)0.0229 (7)0.0092 (8)
C170.0553 (9)0.0568 (9)0.0662 (10)0.0005 (7)0.0277 (8)0.0048 (8)
C180.0569 (10)0.0913 (14)0.0704 (12)0.0188 (10)0.0310 (9)0.0281 (10)
C190.0501 (10)0.1127 (17)0.0548 (10)0.0029 (10)0.0213 (8)0.0014 (10)
C200.0621 (11)0.0852 (14)0.0726 (12)0.0204 (10)0.0294 (10)0.0230 (11)
C210.0566 (10)0.0567 (9)0.0669 (10)0.0052 (7)0.0282 (9)0.0009 (8)
C220.0402 (7)0.0523 (8)0.0505 (8)0.0024 (6)0.0237 (7)0.0007 (6)
C230.0455 (8)0.0508 (8)0.0518 (8)0.0035 (6)0.0230 (7)0.0005 (6)
C240.0605 (9)0.0511 (8)0.0554 (9)0.0042 (7)0.0324 (8)0.0011 (7)
C250.0690 (11)0.0714 (11)0.0764 (12)0.0021 (9)0.0465 (10)0.0025 (9)
C260.0994 (16)0.0749 (13)0.1028 (16)0.0019 (11)0.0763 (15)0.0001 (11)
C270.136 (2)0.0732 (13)0.0831 (15)0.0020 (13)0.0797 (16)0.0013 (11)
C280.1119 (17)0.0633 (11)0.0601 (11)0.0001 (11)0.0456 (12)0.0017 (8)
C290.0754 (12)0.0501 (9)0.0562 (9)0.0028 (8)0.0340 (9)0.0002 (7)
N10.0429 (7)0.0685 (9)0.0517 (7)0.0042 (6)0.0187 (6)0.0111 (6)
N20.0442 (7)0.0732 (9)0.0494 (7)0.0036 (6)0.0209 (6)0.0030 (6)
O10.0677 (8)0.0854 (9)0.0572 (7)0.0013 (6)0.0285 (6)0.0219 (6)
O20.0667 (8)0.0858 (9)0.0505 (6)0.0029 (6)0.0193 (6)0.0008 (6)
Geometric parameters (Å, º) top
C1—C61.378 (2)C15—H15B0.97
C1—C21.396 (3)C16—N21.469 (2)
C1—H10.93C16—H16A0.97
C2—C31.356 (3)C16—H16B0.97
C2—H20.93C17—C221.391 (2)
C3—C41.358 (3)C17—C181.393 (3)
C3—H30.93C17—H170.93
C4—C51.394 (3)C18—C191.371 (3)
C4—H40.93C18—H180.93
C5—C61.385 (2)C19—C201.374 (3)
C5—H50.93C19—H190.93
C6—C71.507 (2)C20—C211.392 (3)
C7—N11.2934 (19)C20—H200.93
C7—C81.477 (2)C21—C221.394 (2)
C8—C91.405 (2)C21—H210.93
C8—C131.422 (2)C22—C231.509 (2)
C9—C101.389 (3)C23—N21.293 (2)
C9—H90.93C23—C241.484 (2)
C10—C111.383 (3)C24—C251.406 (2)
C10—H100.93C24—C291.418 (2)
C11—C121.376 (3)C25—C261.389 (3)
C11—H110.93C25—H250.93
C12—C131.408 (2)C26—C271.389 (3)
C12—H120.93C26—H260.93
C13—O11.342 (2)C27—C281.375 (3)
C14—N11.475 (2)C27—H270.93
C14—C151.516 (2)C28—C291.398 (3)
C14—H14A0.97C28—H280.93
C14—H14B0.97C29—O21.349 (2)
C15—C161.528 (2)O1—H1A0.82
C15—H15A0.97O2—H2A0.82
C6—C1—C2119.74 (19)H15A—C15—H15B107.7
C6—C1—H1120.1N2—C16—C15110.13 (13)
C2—C1—H1120.1N2—C16—H16A109.6
C3—C2—C1120.5 (2)C15—C16—H16A109.6
C3—C2—H2119.8N2—C16—H16B109.6
C1—C2—H2119.8C15—C16—H16B109.6
C2—C3—C4120.63 (19)H16A—C16—H16B108.1
C2—C3—H3119.7C22—C17—C18120.06 (16)
C4—C3—H3119.7C22—C17—H17120
C3—C4—C5119.9 (2)C18—C17—H17120
C3—C4—H4120.1C19—C18—C17120.31 (18)
C5—C4—H4120.1C19—C18—H18119.8
C6—C5—C4120.23 (19)C17—C18—H18119.8
C6—C5—H5119.9C18—C19—C20120.11 (17)
C4—C5—H5119.9C18—C19—H19119.9
C1—C6—C5119.07 (16)C20—C19—H19119.9
C1—C6—C7121.98 (15)C19—C20—C21120.55 (17)
C5—C6—C7118.94 (15)C19—C20—H20119.7
N1—C7—C8118.72 (13)C21—C20—H20119.7
N1—C7—C6121.82 (13)C20—C21—C22119.74 (16)
C8—C7—C6119.45 (12)C20—C21—H21120.1
C9—C8—C13118.36 (14)C22—C21—H21120.1
C9—C8—C7121.28 (13)C17—C22—C21119.22 (15)
C13—C8—C7120.37 (13)C17—C22—C23120.95 (13)
C10—C9—C8121.58 (17)C21—C22—C23119.78 (13)
C10—C9—H9119.2N2—C23—C24118.54 (14)
C8—C9—H9119.2N2—C23—C22122.36 (14)
C11—C10—C9119.33 (19)C24—C23—C22119.09 (13)
C11—C10—H10120.3C25—C24—C29118.44 (16)
C9—C10—H10120.3C25—C24—C23121.04 (15)
C12—C11—C10120.99 (17)C29—C24—C23120.51 (15)
C12—C11—H11119.5C26—C25—C24121.34 (19)
C10—C11—H11119.5C26—C25—H25119.3
C11—C12—C13120.75 (17)C24—C25—H25119.3
C11—C12—H12119.6C27—C26—C25119.15 (19)
C13—C12—H12119.6C27—C26—H26120.4
O1—C13—C12119.70 (15)C25—C26—H26120.4
O1—C13—C8121.33 (14)C28—C27—C26120.96 (18)
C12—C13—C8118.98 (16)C28—C27—H27119.5
N1—C14—C15109.80 (14)C26—C27—H27119.5
N1—C14—H14A109.7C27—C28—C29120.7 (2)
C15—C14—H14A109.7C27—C28—H28119.6
N1—C14—H14B109.7C29—C28—H28119.6
C15—C14—H14B109.7O2—C29—C28118.80 (17)
H14A—C14—H14B108.2O2—C29—C24121.83 (15)
C14—C15—C16113.32 (14)C28—C29—C24119.37 (18)
C14—C15—H15A108.9C7—N1—C14122.06 (13)
C16—C15—H15A108.9C23—N2—C16122.40 (13)
C14—C15—H15B108.9C13—O1—H1A109.5
C16—C15—H15B108.9C29—O2—H2A109.5
C6—C1—C2—C30.8 (4)C18—C19—C20—C211.6 (3)
C1—C2—C3—C40.1 (4)C19—C20—C21—C221.0 (3)
C2—C3—C4—C50.2 (4)C18—C17—C22—C211.1 (2)
C3—C4—C5—C60.2 (4)C18—C17—C22—C23176.55 (14)
C2—C1—C6—C51.2 (3)C20—C21—C22—C170.3 (2)
C2—C1—C6—C7177.65 (19)C20—C21—C22—C23177.36 (15)
C4—C5—C6—C10.9 (3)C17—C22—C23—N290.01 (19)
C4—C5—C6—C7177.97 (19)C21—C22—C23—N287.61 (19)
C1—C6—C7—N196.1 (2)C17—C22—C23—C2491.38 (18)
C5—C6—C7—N182.8 (2)C21—C22—C23—C2491.00 (18)
C1—C6—C7—C885.27 (19)N2—C23—C24—C25175.86 (15)
C5—C6—C7—C895.88 (19)C22—C23—C24—C255.5 (2)
N1—C7—C8—C9173.25 (15)N2—C23—C24—C293.1 (2)
C6—C7—C8—C98.1 (2)C22—C23—C24—C29175.57 (13)
N1—C7—C8—C136.6 (2)C29—C24—C25—C260.7 (3)
C6—C7—C8—C13172.08 (13)C23—C24—C25—C26179.70 (16)
C13—C8—C9—C101.0 (3)C24—C25—C26—C270.2 (3)
C7—C8—C9—C10178.90 (17)C25—C26—C27—C280.7 (3)
C8—C9—C10—C111.2 (3)C26—C27—C28—C290.1 (3)
C9—C10—C11—C120.5 (3)C27—C28—C29—O2179.16 (17)
C10—C11—C12—C130.4 (3)C27—C28—C29—C240.9 (3)
C11—C12—C13—O1179.67 (18)C25—C24—C29—O2178.77 (16)
C11—C12—C13—C80.6 (3)C23—C24—C29—O20.2 (2)
C9—C8—C13—O1179.63 (15)C25—C24—C29—C281.2 (2)
C7—C8—C13—O10.5 (2)C23—C24—C29—C28179.77 (15)
C9—C8—C13—C120.1 (2)C8—C7—N1—C14176.84 (14)
C7—C8—C13—C12179.80 (15)C6—C7—N1—C144.5 (2)
N1—C14—C15—C16176.82 (14)C15—C14—N1—C7155.47 (15)
C14—C15—C16—N270.2 (2)C24—C23—N2—C16179.47 (14)
C22—C17—C18—C190.5 (3)C22—C23—N2—C161.9 (2)
C17—C18—C19—C200.8 (3)C15—C16—N2—C23137.49 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.802.5344 (17)148
O2—H2A···N20.821.812.5431 (18)148
C17—H17···O2i0.932.563.481 (2)168
C18—H18···O1ii0.932.473.395 (3)174
C21—H21···O2iii0.932.563.492 (2)175
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC29H26N2O2
Mr434.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.226 (2), 8.2303 (9), 18.642 (2)
β (°) 119.086 (5)
V3)2443.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.7 × 0.5 × 0.28
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21350, 5896, 3749
Rint0.071
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.173, 1.03
No. of reflections5896
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.36

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXSL97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.802.5344 (17)148
O2—H2A···N20.821.812.5431 (18)148
C17—H17···O2i0.932.563.481 (2)168
C18—H18···O1ii0.932.473.395 (3)174
C21—H21···O2iii0.932.563.492 (2)175
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y1/2, z+1/2.
 

Footnotes

On leave from: Faculty of Chemistry Department of General and Coordination Chemistry Maria Curie-Sklodowska University Maria Curie-Sklodowska Sq. 2 20-031 Lublin Poland.

Acknowledgements

The University of the Witwatersrand and the National Research Foundation (GUN 2069064) are thanked for providing the infrastructure and for the award of a research grant required to carry out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorden, J. P., Errington, W., Moore, P., Phillips, P. R. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 3199–3202.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177–184  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernández, G. J. M., del Rio-Portilla, F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197–207.  Google Scholar
First citationKabak, M. (2003). J. Mol. Struct. 655, 135–139  Web of Science CSD CrossRef CAS Google Scholar
First citationKoşar, B., Büyükgüngör, O., Albayrak, Ç. & Odabaşoğlu, M. (2004). Acta Cryst. C60, o458–o460.  CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontazerozohori, M., Habibi, M. H., Hojjati, A., Mokhtari, R., Yamane, Y. & Suzuki, T. (2009). Acta Cryst. E65, o1662–o1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, F. & Zhao, L.-M. (2008). Acta Cryst. E64, o2067.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSchilf, W., Kamienski, B., Szady-Chełmieniecka, A., Grech, E., Makal, A. & Wozniak, K. (2007). J. Mol. Struct. 94–101, 844–845  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojciechowski, G., Ratajczak-Sitarz, M., Katrusiak, A., Schilf, W., Przybylski, P. & Brzezinski, B. (2001). J. Mol. Struct. 650, 191–199.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o1002-o1003
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds