organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-2-(5-bromo-1H-1,2,4-triazol-1-yl)-1-(2,4-di­fluoro­phen­yl)ethanone

aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 20 March 2010; accepted 25 March 2010; online 31 March 2010)

In the title compound, C10H5Br2F2N3O, the mean planes of the benzene and triazole rings form a dihedral angle of 84.86 (2)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into extended chains propagating along the c axis.

Related literature

For general properties of 1,2,4-triazole derivatives, see: Garfunkle et al. (2008[Garfunkle, J., Ezzili, C., Rayl, T. J., Hochstatter, D., Hwang, G. I. & Boger, D. L. (2008). J. Med. Chem. 51, 937-947.]); Yu et al. (2009[Yu, G.-P., Xu, L.-Z., Yi, X., Bi, W.-Z., Zhu, Q. & Zhai, Z.-W. (2009). J. Agric. Food Chem. 57, 4854-4860.]). For their anti­microbial activity, see: Luo et al. (2009[Luo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386-393.]); Zhang et al. (2010[Zhang, F.-F., Gan, L.-L. & Zhou, C.-H. (2010). Bioorg. Med. Chem. Lett. 20, 1881-1884.]).

[Scheme 1]

Experimental

Crystal data
  • C10H5Br2F2N3O

  • Mr = 380.99

  • Monoclinic, P 21 /c

  • a = 9.273 (2) Å

  • b = 9.375 (2) Å

  • c = 14.982 (3) Å

  • β = 104.916 (3)°

  • V = 1258.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.46 mm−1

  • T = 298 K

  • 0.26 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.199, Tmax = 0.203

  • 6096 measured reflections

  • 2206 independent reflections

  • 1577 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.04

  • 2206 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.55 3.229 (5) 130
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole derivatives are important types of nitrogen-containing aromatic heterocyclic compounds with excellent safety profiles, favorable pharmacokinetic characteristics and a wide range of biological activities (Garfunkle et al., 2008; Yu et al., 2009). Our attention has been focused on the discovery of novel 1,2,4-triazole compounds as antimicrobial agents, and we found that some reported 1,2,4-triazole compounds display significant antimicrobial activities (Luo et al., 2009; Zhang et al., 2010). As part of our research research, we report herein structure of the title compound (I).

The molecular structure of the title compound is shown in Fig. 1. The mean planes of the benzene and triazole rings form a dihedral angle of 84.86 (2) °. In the crystal structure weak intermolecular C—H···O hydrogen bonds link molecules into extended chains along the c axis.

Related literature top

For general properties of 1,2,4-triazole derivatives, see: Garfunkle et al. (2008); Yu et al. (2009). For their antimicrobial activity, see: Luo et al. (2009); Zhang et al. (2010).

Experimental top

To a solution of 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (1.0 g, 4.4 mmol), sodium acetate (1.4 g, 4.4 mmol) and acetic acid (4 ml) was added the mixture of Br2 (0.45 ml) and acetic acid (2.5 ml) dropwise, and stirred at 338-348 K. The progress of the reaction was monitored by TLC. Upon completion, the reaction was extracted with chloroform (15 ml × 3). The filtrate was concentrated and then directly purified by chromatographic column (chloroform) to afford the title compound (I). A crystal suitable for X-ray analysis was grown from a solution of (I) in a mixture of petroleum and chloroform by slow evaporation at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å and 0.98Å with Uiso(H) = 1.2Ueq(C)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-Bromo-2-(5-bromo-1H-1,2,4-triazol-1-yl)-1-(2,4-difluorophenyl)ethanone top
Crystal data top
C10H5Br2F2N3OF(000) = 728
Mr = 380.99Dx = 2.011 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1838 reflections
a = 9.273 (2) Åθ = 2.3–22.5°
b = 9.375 (2) ŵ = 6.46 mm1
c = 14.982 (3) ÅT = 298 K
β = 104.916 (3)°Block, colourless
V = 1258.5 (5) Å30.26 × 0.25 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2206 independent reflections
Radiation source: fine-focus sealed tube1577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1011
Tmin = 0.199, Tmax = 0.203k = 1011
6096 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5764P]
where P = (Fo2 + 2Fc2)/3
2206 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C10H5Br2F2N3OV = 1258.5 (5) Å3
Mr = 380.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.273 (2) ŵ = 6.46 mm1
b = 9.375 (2) ÅT = 298 K
c = 14.982 (3) Å0.26 × 0.25 × 0.25 mm
β = 104.916 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2206 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1577 reflections with I > 2σ(I)
Tmin = 0.199, Tmax = 0.203Rint = 0.036
6096 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.61 e Å3
2206 reflectionsΔρmin = 0.49 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.88429 (6)0.61973 (5)0.21078 (5)0.0741 (2)
Br20.65968 (6)0.75021 (7)0.40152 (3)0.0777 (2)
C10.7324 (6)1.0030 (5)0.1617 (4)0.0783 (17)
H10.73431.09490.13870.094*
C20.7921 (5)0.7951 (5)0.1945 (3)0.0512 (11)
C30.5841 (4)0.7348 (5)0.2679 (3)0.0426 (10)
H30.59270.63550.24960.051*
C40.4187 (5)0.7796 (4)0.2384 (3)0.0426 (10)
C50.3310 (4)0.7498 (4)0.1425 (3)0.0375 (9)
C60.3760 (5)0.6720 (4)0.0765 (3)0.0424 (10)
C70.2865 (5)0.6440 (5)0.0092 (3)0.0502 (11)
H70.32050.59100.05210.060*
C80.1455 (6)0.6970 (5)0.0291 (3)0.0576 (12)
C90.0924 (5)0.7769 (6)0.0313 (4)0.0656 (14)
H90.00440.81270.01520.079*
C100.1867 (5)0.8030 (5)0.1170 (3)0.0553 (12)
H100.15250.85790.15910.066*
F10.5154 (3)0.6180 (3)0.09542 (17)0.0645 (8)
F20.0553 (3)0.6703 (4)0.11300 (19)0.0911 (10)
N10.8368 (5)0.9052 (4)0.1564 (3)0.0719 (13)
N20.6690 (4)0.8238 (4)0.2223 (2)0.0450 (9)
N30.6279 (4)0.9620 (4)0.2011 (3)0.0602 (10)
O10.3620 (4)0.8357 (4)0.2925 (2)0.0640 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0500 (3)0.0474 (3)0.1299 (5)0.0074 (2)0.0324 (3)0.0047 (3)
Br20.0597 (4)0.1177 (5)0.0494 (3)0.0031 (3)0.0025 (2)0.0060 (3)
C10.075 (4)0.046 (3)0.133 (5)0.008 (3)0.063 (4)0.018 (3)
C20.039 (3)0.041 (3)0.075 (3)0.001 (2)0.016 (2)0.010 (2)
C30.039 (2)0.044 (2)0.045 (2)0.0020 (19)0.0114 (19)0.0029 (19)
C40.039 (2)0.042 (2)0.051 (2)0.0024 (19)0.019 (2)0.0017 (19)
C50.034 (2)0.038 (2)0.044 (2)0.0016 (18)0.0159 (17)0.0005 (18)
C60.034 (2)0.047 (2)0.049 (2)0.012 (2)0.016 (2)0.004 (2)
C70.045 (3)0.063 (3)0.042 (2)0.013 (2)0.011 (2)0.003 (2)
C80.055 (3)0.064 (3)0.047 (3)0.008 (3)0.001 (2)0.003 (2)
C90.036 (3)0.088 (4)0.068 (3)0.014 (3)0.005 (2)0.013 (3)
C100.037 (3)0.067 (3)0.063 (3)0.006 (2)0.016 (2)0.020 (2)
F10.0477 (16)0.085 (2)0.0583 (16)0.0246 (14)0.0088 (12)0.0174 (14)
F20.067 (2)0.136 (3)0.0549 (17)0.030 (2)0.0130 (15)0.0225 (18)
N10.065 (3)0.048 (3)0.120 (4)0.000 (2)0.056 (3)0.006 (2)
N20.036 (2)0.037 (2)0.064 (2)0.0055 (16)0.0180 (17)0.0069 (17)
N30.058 (3)0.038 (2)0.096 (3)0.0038 (19)0.039 (2)0.006 (2)
O10.052 (2)0.085 (2)0.058 (2)0.0053 (18)0.0201 (16)0.0244 (18)
Geometric parameters (Å, º) top
Br1—C21.840 (4)C5—C61.378 (5)
Br2—C31.948 (4)C5—C101.387 (6)
C1—N31.314 (6)C6—F11.348 (4)
C1—N11.351 (6)C6—C71.362 (6)
C1—H10.9300C7—C81.358 (6)
C2—N11.297 (6)C7—H70.9300
C2—N21.339 (5)C8—F21.342 (5)
C3—N21.435 (5)C8—C91.361 (7)
C3—C41.541 (6)C9—C101.376 (6)
C3—H30.9800C9—H90.9300
C4—O11.196 (5)C10—H100.9300
C4—C51.483 (6)N2—N31.365 (5)
N3—C1—N1116.8 (4)F1—C6—C5119.9 (4)
N3—C1—H1121.6C7—C6—C5123.7 (4)
N1—C1—H1121.6C8—C7—C6117.1 (4)
N1—C2—N2111.8 (4)C8—C7—H7121.5
N1—C2—Br1125.4 (3)C6—C7—H7121.5
N2—C2—Br1122.8 (3)F2—C8—C7118.1 (4)
N2—C3—C4109.4 (3)F2—C8—C9118.7 (4)
N2—C3—Br2110.5 (3)C7—C8—C9123.2 (4)
C4—C3—Br2110.1 (3)C8—C9—C10117.8 (4)
N2—C3—H3108.9C8—C9—H9121.1
C4—C3—H3108.9C10—C9—H9121.1
Br2—C3—H3108.9C9—C10—C5122.0 (4)
O1—C4—C5120.8 (4)C9—C10—H10119.0
O1—C4—C3120.2 (4)C5—C10—H10119.0
C5—C4—C3119.0 (3)C2—N1—C1101.5 (4)
C6—C5—C10116.2 (4)C2—N2—N3109.1 (4)
C6—C5—C4127.1 (4)C2—N2—C3130.4 (4)
C10—C5—C4116.7 (4)N3—N2—C3120.5 (3)
F1—C6—C7116.4 (3)C1—N3—N2100.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.553.229 (5)130
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H5Br2F2N3O
Mr380.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.273 (2), 9.375 (2), 14.982 (3)
β (°) 104.916 (3)
V3)1258.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)6.46
Crystal size (mm)0.26 × 0.25 × 0.25
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.199, 0.203
No. of measured, independent and
observed [I > 2σ(I)] reflections
6096, 2206, 1577
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.04
No. of reflections2206
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.49

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.553.229 (5)130
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarfunkle, J., Ezzili, C., Rayl, T. J., Hochstatter, D., Hwang, G. I. & Boger, D. L. (2008). J. Med. Chem. 51, 937–947.  Web of Science CrossRef PubMed Google Scholar
First citationLuo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386–393.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, G.-P., Xu, L.-Z., Yi, X., Bi, W.-Z., Zhu, Q. & Zhai, Z.-W. (2009). J. Agric. Food Chem. 57, 4854–4860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, F.-F., Gan, L.-L. & Zhou, C.-H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds