organic compounds
2-Bromo-2-(5-bromo-1H-1,2,4-triazol-1-yl)-1-(2,4-difluorophenyl)ethanone
aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn
In the title compound, C10H5Br2F2N3O, the mean planes of the benzene and triazole rings form a dihedral angle of 84.86 (2)°. In the weak intermolecular C—H⋯O hydrogen bonds link molecules into extended chains propagating along the c axis.
Related literature
For general properties of 1,2,4-triazole derivatives, see: Garfunkle et al. (2008); Yu et al. (2009). For their antimicrobial activity, see: Luo et al. (2009); Zhang et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536810011359/lh5016sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810011359/lh5016Isup2.hkl
To a solution of 1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone (1.0 g, 4.4 mmol), sodium acetate (1.4 g, 4.4 mmol) and acetic acid (4 ml) was added the mixture of Br2 (0.45 ml) and acetic acid (2.5 ml) dropwise, and stirred at 338-348 K. The progress of the reaction was monitored by TLC. Upon completion, the reaction was extracted with chloroform (15 ml × 3). The filtrate was concentrated and then directly purified by chromatographic column (chloroform) to afford the title compound (I). A crystal suitable for X-ray analysis was grown from a solution of (I) in a mixture of petroleum and chloroform by slow evaporation at room temperature.
Hydrogen atoms were placed in calculated positions with C—H = 0.93Å and 0.98Å with Uiso(H) = 1.2Ueq(C)
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C10H5Br2F2N3O | F(000) = 728 |
Mr = 380.99 | Dx = 2.011 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1838 reflections |
a = 9.273 (2) Å | θ = 2.3–22.5° |
b = 9.375 (2) Å | µ = 6.46 mm−1 |
c = 14.982 (3) Å | T = 298 K |
β = 104.916 (3)° | Block, colourless |
V = 1258.5 (5) Å3 | 0.26 × 0.25 × 0.25 mm |
Z = 4 |
Bruker SMART CCD diffractometer | 2206 independent reflections |
Radiation source: fine-focus sealed tube | 1577 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→11 |
Tmin = 0.199, Tmax = 0.203 | k = −10→11 |
6096 measured reflections | l = −15→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.5764P] where P = (Fo2 + 2Fc2)/3 |
2206 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
C10H5Br2F2N3O | V = 1258.5 (5) Å3 |
Mr = 380.99 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.273 (2) Å | µ = 6.46 mm−1 |
b = 9.375 (2) Å | T = 298 K |
c = 14.982 (3) Å | 0.26 × 0.25 × 0.25 mm |
β = 104.916 (3)° |
Bruker SMART CCD diffractometer | 2206 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1577 reflections with I > 2σ(I) |
Tmin = 0.199, Tmax = 0.203 | Rint = 0.036 |
6096 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.61 e Å−3 |
2206 reflections | Δρmin = −0.49 e Å−3 |
163 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.88429 (6) | 0.61973 (5) | 0.21078 (5) | 0.0741 (2) | |
Br2 | 0.65968 (6) | 0.75021 (7) | 0.40152 (3) | 0.0777 (2) | |
C1 | 0.7324 (6) | 1.0030 (5) | 0.1617 (4) | 0.0783 (17) | |
H1 | 0.7343 | 1.0949 | 0.1387 | 0.094* | |
C2 | 0.7921 (5) | 0.7951 (5) | 0.1945 (3) | 0.0512 (11) | |
C3 | 0.5841 (4) | 0.7348 (5) | 0.2679 (3) | 0.0426 (10) | |
H3 | 0.5927 | 0.6355 | 0.2496 | 0.051* | |
C4 | 0.4187 (5) | 0.7796 (4) | 0.2384 (3) | 0.0426 (10) | |
C5 | 0.3310 (4) | 0.7498 (4) | 0.1425 (3) | 0.0375 (9) | |
C6 | 0.3760 (5) | 0.6720 (4) | 0.0765 (3) | 0.0424 (10) | |
C7 | 0.2865 (5) | 0.6440 (5) | −0.0092 (3) | 0.0502 (11) | |
H7 | 0.3205 | 0.5910 | −0.0521 | 0.060* | |
C8 | 0.1455 (6) | 0.6970 (5) | −0.0291 (3) | 0.0576 (12) | |
C9 | 0.0924 (5) | 0.7769 (6) | 0.0313 (4) | 0.0656 (14) | |
H9 | −0.0044 | 0.8127 | 0.0152 | 0.079* | |
C10 | 0.1867 (5) | 0.8030 (5) | 0.1170 (3) | 0.0553 (12) | |
H10 | 0.1525 | 0.8579 | 0.1591 | 0.066* | |
F1 | 0.5154 (3) | 0.6180 (3) | 0.09542 (17) | 0.0645 (8) | |
F2 | 0.0553 (3) | 0.6703 (4) | −0.11300 (19) | 0.0911 (10) | |
N1 | 0.8368 (5) | 0.9052 (4) | 0.1564 (3) | 0.0719 (13) | |
N2 | 0.6690 (4) | 0.8238 (4) | 0.2223 (2) | 0.0450 (9) | |
N3 | 0.6279 (4) | 0.9620 (4) | 0.2011 (3) | 0.0602 (10) | |
O1 | 0.3620 (4) | 0.8357 (4) | 0.2925 (2) | 0.0640 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0500 (3) | 0.0474 (3) | 0.1299 (5) | 0.0074 (2) | 0.0324 (3) | −0.0047 (3) |
Br2 | 0.0597 (4) | 0.1177 (5) | 0.0494 (3) | −0.0031 (3) | 0.0025 (2) | −0.0060 (3) |
C1 | 0.075 (4) | 0.046 (3) | 0.133 (5) | 0.008 (3) | 0.063 (4) | 0.018 (3) |
C2 | 0.039 (3) | 0.041 (3) | 0.075 (3) | −0.001 (2) | 0.016 (2) | −0.010 (2) |
C3 | 0.039 (2) | 0.044 (2) | 0.045 (2) | −0.0020 (19) | 0.0114 (19) | −0.0029 (19) |
C4 | 0.039 (2) | 0.042 (2) | 0.051 (2) | −0.0024 (19) | 0.019 (2) | −0.0017 (19) |
C5 | 0.034 (2) | 0.038 (2) | 0.044 (2) | −0.0016 (18) | 0.0159 (17) | −0.0005 (18) |
C6 | 0.034 (2) | 0.047 (2) | 0.049 (2) | 0.012 (2) | 0.016 (2) | 0.004 (2) |
C7 | 0.045 (3) | 0.063 (3) | 0.042 (2) | 0.013 (2) | 0.011 (2) | −0.003 (2) |
C8 | 0.055 (3) | 0.064 (3) | 0.047 (3) | 0.008 (3) | 0.001 (2) | −0.003 (2) |
C9 | 0.036 (3) | 0.088 (4) | 0.068 (3) | 0.014 (3) | 0.005 (2) | −0.013 (3) |
C10 | 0.037 (3) | 0.067 (3) | 0.063 (3) | 0.006 (2) | 0.016 (2) | −0.020 (2) |
F1 | 0.0477 (16) | 0.085 (2) | 0.0583 (16) | 0.0246 (14) | 0.0088 (12) | −0.0174 (14) |
F2 | 0.067 (2) | 0.136 (3) | 0.0549 (17) | 0.030 (2) | −0.0130 (15) | −0.0225 (18) |
N1 | 0.065 (3) | 0.048 (3) | 0.120 (4) | 0.000 (2) | 0.056 (3) | 0.006 (2) |
N2 | 0.036 (2) | 0.037 (2) | 0.064 (2) | −0.0055 (16) | 0.0180 (17) | −0.0069 (17) |
N3 | 0.058 (3) | 0.038 (2) | 0.096 (3) | 0.0038 (19) | 0.039 (2) | 0.006 (2) |
O1 | 0.052 (2) | 0.085 (2) | 0.058 (2) | 0.0053 (18) | 0.0201 (16) | −0.0244 (18) |
Br1—C2 | 1.840 (4) | C5—C6 | 1.378 (5) |
Br2—C3 | 1.948 (4) | C5—C10 | 1.387 (6) |
C1—N3 | 1.314 (6) | C6—F1 | 1.348 (4) |
C1—N1 | 1.351 (6) | C6—C7 | 1.362 (6) |
C1—H1 | 0.9300 | C7—C8 | 1.358 (6) |
C2—N1 | 1.297 (6) | C7—H7 | 0.9300 |
C2—N2 | 1.339 (5) | C8—F2 | 1.342 (5) |
C3—N2 | 1.435 (5) | C8—C9 | 1.361 (7) |
C3—C4 | 1.541 (6) | C9—C10 | 1.376 (6) |
C3—H3 | 0.9800 | C9—H9 | 0.9300 |
C4—O1 | 1.196 (5) | C10—H10 | 0.9300 |
C4—C5 | 1.483 (6) | N2—N3 | 1.365 (5) |
N3—C1—N1 | 116.8 (4) | F1—C6—C5 | 119.9 (4) |
N3—C1—H1 | 121.6 | C7—C6—C5 | 123.7 (4) |
N1—C1—H1 | 121.6 | C8—C7—C6 | 117.1 (4) |
N1—C2—N2 | 111.8 (4) | C8—C7—H7 | 121.5 |
N1—C2—Br1 | 125.4 (3) | C6—C7—H7 | 121.5 |
N2—C2—Br1 | 122.8 (3) | F2—C8—C7 | 118.1 (4) |
N2—C3—C4 | 109.4 (3) | F2—C8—C9 | 118.7 (4) |
N2—C3—Br2 | 110.5 (3) | C7—C8—C9 | 123.2 (4) |
C4—C3—Br2 | 110.1 (3) | C8—C9—C10 | 117.8 (4) |
N2—C3—H3 | 108.9 | C8—C9—H9 | 121.1 |
C4—C3—H3 | 108.9 | C10—C9—H9 | 121.1 |
Br2—C3—H3 | 108.9 | C9—C10—C5 | 122.0 (4) |
O1—C4—C5 | 120.8 (4) | C9—C10—H10 | 119.0 |
O1—C4—C3 | 120.2 (4) | C5—C10—H10 | 119.0 |
C5—C4—C3 | 119.0 (3) | C2—N1—C1 | 101.5 (4) |
C6—C5—C10 | 116.2 (4) | C2—N2—N3 | 109.1 (4) |
C6—C5—C4 | 127.1 (4) | C2—N2—C3 | 130.4 (4) |
C10—C5—C4 | 116.7 (4) | N3—N2—C3 | 120.5 (3) |
F1—C6—C7 | 116.4 (3) | C1—N3—N2 | 100.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.93 | 2.55 | 3.229 (5) | 130 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H5Br2F2N3O |
Mr | 380.99 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 9.273 (2), 9.375 (2), 14.982 (3) |
β (°) | 104.916 (3) |
V (Å3) | 1258.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.46 |
Crystal size (mm) | 0.26 × 0.25 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.199, 0.203 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6096, 2206, 1577 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.100, 1.04 |
No. of reflections | 2206 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.49 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.93 | 2.55 | 3.229 (5) | 130 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Acknowledgements
We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.
References
Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Garfunkle, J., Ezzili, C., Rayl, T. J., Hochstatter, D., Hwang, G. I. & Boger, D. L. (2008). J. Med. Chem. 51, 937–947. Web of Science CrossRef PubMed Google Scholar
Luo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386–393. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, G.-P., Xu, L.-Z., Yi, X., Bi, W.-Z., Zhu, Q. & Zhai, Z.-W. (2009). J. Agric. Food Chem. 57, 4854–4860. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, F.-F., Gan, L.-L. & Zhou, C.-H. (2010). Bioorg. Med. Chem. Lett. 20, 1881–1884. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,2,4-Triazole derivatives are important types of nitrogen-containing aromatic heterocyclic compounds with excellent safety profiles, favorable pharmacokinetic characteristics and a wide range of biological activities (Garfunkle et al., 2008; Yu et al., 2009). Our attention has been focused on the discovery of novel 1,2,4-triazole compounds as antimicrobial agents, and we found that some reported 1,2,4-triazole compounds display significant antimicrobial activities (Luo et al., 2009; Zhang et al., 2010). As part of our research research, we report herein structure of the title compound (I).
The molecular structure of the title compound is shown in Fig. 1. The mean planes of the benzene and triazole rings form a dihedral angle of 84.86 (2) °. In the crystal structure weak intermolecular C—H···O hydrogen bonds link molecules into extended chains along the c axis.