organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(Bromo­meth­yl)benz­yl­oxy]-3-meth­oxy­benzaldehyde

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China, and bSchool of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 21 March 2010; accepted 25 March 2010; online 31 March 2010)

In the title compound, C16H15BrO3, the dihedral angle between the mean planes of the two benzene rings is 76.64 (2)°. In the crystal structure, there are weak ππ stacking inter­actions, with a centroid–centroid distance of 3.724 (3) Å, as well as an inter­molecular C⋯Br distance [3.495 (2) Å] which is slightly less than the sum of the van der Waals radii for these atoms.

Related literature

For the applications of related compounds, see: Chen et al. (2001[Chen, Y.-J., Shiao, M.-S., Hsu, M.-L., Tsai, T.-H. & Wang, S.-Y. (2001). J. Agric. Food Chem. 49, 5615-5619.]); Demestre et al. (2009[Demestre, M., Messerli, S. M., Celli, N., Shahhossini, M., Kluwe, L., Mautner, V. & Maruta, H. (2009). Phytother. Res. 23, 226-230.]); Liao et al. (2003[Liao, H.-F., Chen, Y.-Y., Liu, J.-J., Hsu, M.-L., Shieh, H.-J., Liao, H.-J., Shieh, C.-J., Shiao, M.-S. & Chen, Y.-J. (2003). J. Agric. Food Chem. 51, 7907-7912.]); Xia & Hu (2004[Xia, C.-N. & Hu, W.-X. (2004). Chin. J. Synth. Chem. 12, 545-550.]). For a related structure, see: Jin et al. (2009[Jin, L., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2164.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15BrO3

  • Mr = 335.19

  • Monoclinic, P 21 /c

  • a = 14.275 (3) Å

  • b = 11.791 (2) Å

  • c = 8.7315 (17) Å

  • β = 95.671 (3)°

  • V = 1462.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 298 K

  • 0.08 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.798, Tmax = 0.845

  • 7566 measured reflections

  • 2777 independent reflections

  • 2014 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.150

  • S = 1.07

  • 2777 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Vanillin (4-hydroxy-3-methoxybenzaldehyde) and its derivatives are important medicinal intermediates which are extensively employed to prepare bioactive compounds such as anti-hypertension compounds, diureses and deodorisers (Chen, et al., 2001; Demestre, et al., 2009; Liao, et al., 2003; Xia, et al., 2004). Recently, our research has been focused on the development of vanillin-derived azole drugs, and a nitroimidazole derivative has been reported (Jin, et al., 2009). Herein we report the crystal structure of the title compound a potential intermediate for the synthesis of azole antifungal agents.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the mean planes of the two benzene rings is 76.64 (2)°. In the crystal structure, there are weak ππ stacking interactions where Cg···Cg(-x,2-y,1-z) = 3.724 (3)Å [Cg is the centroid of the C2-C7 ring] as well as an intermolecular C13···Br1(-x+1, 0.5+y, 2.5-z) distance [3.495 (2)Å] which is slightly less than the sum of the van der Waals radii for these atoms.

Related literature top

For the applications of related compounds, see: Chen et al. (2001); Demestre et al. (2009); Liao et al. (2003); Xia et al. (2004). For a related structure, see: Jin et al. (2009).

Experimental top

A suspension of 4-hyhydroxy-3-methoxybenzaldehyde (200 mg, 1.31 mmol) and anhydrous potassium carbonate (200 mg, 1.45 mmol, 1.2 equiv) in CH3CN (10 ml) was stirred for 30 min at 338 K, and then tetrabutyl ammonium iodide (TBAI, 5 mg) and 1,3-bis(bromomethyl)benzene (1 g, 3.78 mmol) were added. The resulting mixture was stirred for 5–7 h at 348–353 K (monitored by TLC, eluent, ethyl acetate/petroleum, V/V, 5/1). After the reaction solvent was evaporated under reduced pressure, water (10 mL) was added. The mixture was extracted with chloroform (3×10 ml). The organic layer was collected, dried over anhydrous Na2SO4 and evaporated under reduced pressure to give the crude product, which was purified by silica gel column chromatography (eluent, ethyl acetate/petroleum, V/V, 5/1) to afford the title compound (I). Single crystals were grown by slow evaporation of a solution of (I) in an ethyl acetate and petroleum mixture at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(C) (aromatic and methylene C) or 1.5Ueq(C) (methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
4-[3-(Bromomethyl)benzyloxy]-3-methoxybenzaldehyde top
Crystal data top
C16H15BrO3F(000) = 680
Mr = 335.19Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2434 reflections
a = 14.275 (3) Åθ = 2.3–24.0°
b = 11.791 (2) ŵ = 2.82 mm1
c = 8.7315 (17) ÅT = 298 K
β = 95.671 (3)°Block, colourless
V = 1462.5 (5) Å30.08 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2777 independent reflections
Radiation source: fine-focus sealed tube2014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
h = 1717
Tmin = 0.798, Tmax = 0.845k = 1414
7566 measured reflectionsl = 105
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0765P)2 + 1.2302P]
where P = (Fo2 + 2Fc2)/3
2777 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H15BrO3V = 1462.5 (5) Å3
Mr = 335.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.275 (3) ŵ = 2.82 mm1
b = 11.791 (2) ÅT = 298 K
c = 8.7315 (17) Å0.08 × 0.08 × 0.06 mm
β = 95.671 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2777 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1996)
2014 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.845Rint = 0.031
7566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.07Δρmax = 0.85 e Å3
2777 reflectionsΔρmin = 0.35 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58913 (3)0.68699 (4)1.13810 (7)0.0709 (3)
C10.0081 (3)1.0150 (5)0.1918 (5)0.0559 (11)
H10.03720.94910.15260.067*
C20.0624 (3)1.0028 (4)0.3238 (5)0.0450 (9)
C30.1048 (3)1.0973 (3)0.3971 (5)0.0437 (9)
H30.09151.16930.35720.052*
C40.1657 (3)1.0851 (3)0.5270 (4)0.0409 (9)
C50.1854 (3)0.9748 (3)0.5878 (5)0.0411 (9)
C60.1453 (3)0.8818 (4)0.5123 (5)0.0483 (10)
H60.15980.80930.54930.058*
C70.0832 (3)0.8959 (4)0.3805 (5)0.0492 (10)
H70.05560.83280.33050.059*
C80.1941 (3)1.2830 (4)0.5499 (6)0.0532 (11)
H8A0.21681.28730.45020.080*
H8B0.22781.33630.61800.080*
H8C0.12821.30070.54120.080*
C90.2625 (3)0.8629 (3)0.7868 (5)0.0561 (12)
H9A0.29910.81760.72160.067*
H9B0.20400.82340.79830.067*
C100.3167 (3)0.8807 (3)0.9420 (5)0.0446 (10)
C110.4120 (3)0.8598 (3)0.9632 (5)0.0482 (10)
H110.44300.83590.88020.058*
C120.4628 (3)0.8737 (3)1.1059 (5)0.0486 (10)
C130.4153 (4)0.9079 (3)1.2281 (5)0.0576 (12)
H130.44810.91671.32470.069*
C140.3197 (3)0.9293 (4)1.2093 (6)0.0581 (12)
H140.28860.95271.29250.070*
C150.2709 (3)0.9158 (3)1.0667 (6)0.0530 (11)
H150.20650.93031.05370.064*
C160.5658 (3)0.8494 (4)1.1234 (7)0.0683 (14)
H16A0.59480.88651.21530.082*
H16B0.59420.87981.03560.082*
O10.0319 (2)1.1038 (3)0.1288 (4)0.0668 (9)
O20.2083 (2)1.1717 (2)0.6096 (3)0.0501 (7)
O30.2435 (2)0.9726 (2)0.7192 (3)0.0516 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0595 (3)0.0524 (3)0.0992 (5)0.0119 (2)0.0002 (3)0.0131 (3)
C10.056 (3)0.067 (3)0.045 (3)0.005 (2)0.003 (2)0.007 (2)
C20.040 (2)0.056 (2)0.040 (2)0.0003 (18)0.0050 (18)0.003 (2)
C30.047 (2)0.041 (2)0.044 (2)0.0044 (17)0.0074 (19)0.0016 (19)
C40.041 (2)0.039 (2)0.043 (2)0.0013 (16)0.0025 (18)0.0020 (18)
C50.041 (2)0.040 (2)0.042 (2)0.0006 (16)0.0021 (18)0.0009 (18)
C60.053 (2)0.038 (2)0.053 (3)0.0029 (18)0.004 (2)0.0008 (19)
C70.049 (2)0.048 (2)0.050 (2)0.0055 (19)0.002 (2)0.010 (2)
C80.063 (3)0.039 (2)0.055 (3)0.0037 (19)0.007 (2)0.000 (2)
C90.071 (3)0.033 (2)0.061 (3)0.005 (2)0.011 (2)0.007 (2)
C100.052 (2)0.0263 (18)0.054 (3)0.0026 (16)0.001 (2)0.0082 (18)
C110.051 (2)0.036 (2)0.058 (3)0.0052 (18)0.008 (2)0.006 (2)
C120.051 (2)0.0295 (19)0.064 (3)0.0006 (17)0.002 (2)0.009 (2)
C130.083 (3)0.034 (2)0.052 (3)0.001 (2)0.011 (2)0.003 (2)
C140.072 (3)0.039 (2)0.064 (3)0.001 (2)0.016 (3)0.003 (2)
C150.050 (2)0.033 (2)0.075 (3)0.0017 (18)0.005 (2)0.001 (2)
C160.058 (3)0.046 (3)0.098 (4)0.002 (2)0.009 (3)0.013 (3)
O10.063 (2)0.078 (2)0.055 (2)0.0041 (18)0.0122 (16)0.0038 (19)
O20.0631 (18)0.0365 (15)0.0474 (17)0.0004 (13)0.0112 (14)0.0001 (12)
O30.0621 (18)0.0359 (14)0.0536 (18)0.0014 (13)0.0108 (15)0.0060 (13)
Geometric parameters (Å, º) top
Br1—C161.946 (5)C8—H8C0.9600
C1—O11.216 (6)C9—O31.437 (5)
C1—C21.460 (6)C9—C101.508 (6)
C1—H10.9300C9—H9A0.9700
C2—C71.376 (6)C9—H9B0.9700
C2—C31.393 (6)C10—C111.376 (6)
C3—C41.367 (6)C10—C151.388 (6)
C3—H30.9300C11—C121.388 (6)
C4—O21.358 (5)C11—H110.9300
C4—C51.422 (5)C12—C131.380 (6)
C5—O31.348 (5)C12—C161.492 (6)
C5—C61.375 (6)C13—C141.381 (7)
C6—C71.392 (6)C13—H130.9300
C6—H60.9300C14—C151.375 (7)
C7—H70.9300C14—H140.9300
C8—O21.420 (5)C15—H150.9300
C8—H8A0.9600C16—H16A0.9700
C8—H8B0.9600C16—H16B0.9700
O1—C1—C2125.6 (4)O3—C9—H9B110.2
O1—C1—H1117.2C10—C9—H9B110.2
C2—C1—H1117.2H9A—C9—H9B108.5
C7—C2—C3120.0 (4)C11—C10—C15118.9 (4)
C7—C2—C1118.7 (4)C11—C10—C9120.6 (4)
C3—C2—C1121.2 (4)C15—C10—C9120.4 (4)
C4—C3—C2120.6 (4)C10—C11—C12121.4 (4)
C4—C3—H3119.7C10—C11—H11119.3
C2—C3—H3119.7C12—C11—H11119.3
O2—C4—C3125.2 (4)C13—C12—C11118.4 (4)
O2—C4—C5115.3 (3)C13—C12—C16122.2 (5)
C3—C4—C5119.5 (4)C11—C12—C16119.4 (4)
O3—C5—C6125.8 (4)C12—C13—C14121.1 (4)
O3—C5—C4114.7 (3)C12—C13—H13119.4
C6—C5—C4119.5 (4)C14—C13—H13119.4
C5—C6—C7120.1 (4)C15—C14—C13119.6 (4)
C5—C6—H6119.9C15—C14—H14120.2
C7—C6—H6119.9C13—C14—H14120.2
C2—C7—C6120.3 (4)C14—C15—C10120.6 (4)
C2—C7—H7119.9C14—C15—H15119.7
C6—C7—H7119.9C10—C15—H15119.7
O2—C8—H8A109.5C12—C16—Br1110.9 (3)
O2—C8—H8B109.5C12—C16—H16A109.5
H8A—C8—H8B109.5Br1—C16—H16A109.5
O2—C8—H8C109.5C12—C16—H16B109.5
H8A—C8—H8C109.5Br1—C16—H16B109.5
H8B—C8—H8C109.5H16A—C16—H16B108.1
O3—C9—C10107.6 (3)C4—O2—C8117.4 (3)
O3—C9—H9A110.2C5—O3—C9116.2 (3)
C10—C9—H9A110.2
O1—C1—C2—C7178.7 (4)C15—C10—C11—C120.4 (6)
O1—C1—C2—C34.6 (7)C9—C10—C11—C12178.8 (4)
C7—C2—C3—C41.3 (6)C10—C11—C12—C130.8 (6)
C1—C2—C3—C4175.4 (4)C10—C11—C12—C16179.7 (4)
C2—C3—C4—O2177.8 (4)C11—C12—C13—C140.8 (6)
C2—C3—C4—C50.3 (6)C16—C12—C13—C14179.7 (4)
O2—C4—C5—O30.2 (5)C12—C13—C14—C150.3 (6)
C3—C4—C5—O3177.6 (3)C13—C14—C15—C100.1 (6)
O2—C4—C5—C6179.9 (4)C11—C10—C15—C140.1 (6)
C3—C4—C5—C62.1 (6)C9—C10—C15—C14178.3 (4)
O3—C5—C6—C7177.3 (4)C13—C12—C16—Br1100.3 (5)
C4—C5—C6—C72.5 (6)C11—C12—C16—Br178.6 (5)
C3—C2—C7—C61.0 (6)C3—C4—O2—C85.1 (6)
C1—C2—C7—C6175.8 (4)C5—C4—O2—C8177.3 (4)
C5—C6—C7—C20.9 (6)C6—C5—O3—C91.7 (6)
O3—C9—C10—C11104.6 (4)C4—C5—O3—C9178.0 (3)
O3—C9—C10—C1577.0 (5)C10—C9—O3—C5172.1 (3)

Experimental details

Crystal data
Chemical formulaC16H15BrO3
Mr335.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.275 (3), 11.791 (2), 8.7315 (17)
β (°) 95.671 (3)
V3)1462.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.82
Crystal size (mm)0.08 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick,1996)
Tmin, Tmax0.798, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
7566, 2777, 2014
Rint0.031
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.150, 1.07
No. of reflections2777
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.35

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Southwest University (SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (2007BB5369) for financial support.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-J., Shiao, M.-S., Hsu, M.-L., Tsai, T.-H. & Wang, S.-Y. (2001). J. Agric. Food Chem. 49, 5615–5619.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemestre, M., Messerli, S. M., Celli, N., Shahhossini, M., Kluwe, L., Mautner, V. & Maruta, H. (2009). Phytother. Res. 23, 226–230.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJin, L., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiao, H.-F., Chen, Y.-Y., Liu, J.-J., Hsu, M.-L., Shieh, H.-J., Liao, H.-J., Shieh, C.-J., Shiao, M.-S. & Chen, Y.-J. (2003). J. Agric. Food Chem. 51, 7907–7912.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, C.-N. & Hu, W.-X. (2004). Chin. J. Synth. Chem. 12, 545–550.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds