organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro-N′-[(E)-3-pyridylmethyl­­idene]benzohydrazide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 22 March 2010; accepted 24 March 2010; online 31 March 2010)

In the title moleclue, C13H10N4O3, the methyl­idene–hydrazide [–C(=O)—N—N=C–] fragment is essentially planar, with a maximum deviation of 0.0228 (7) Å. The mean planes of the benzene and pyridine rings make dihedral angles of 25.44 (6) and 5.47 (7)°, respectively, with the mean plane of the methyl­idene–hydrazide fragment. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds link mol­ecules into chains along the b axis. Additional stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds. The O atoms of the nitro group are disordered over two sets of sites of equal occupancy.

Related literature

For the synthesis of related compounds, see: Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]). For the biological activity of benzohydrazides, see: Chakraborty & Patel (1996[Chakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191-195.]). For closely related structures, see: Raj et al. (2008[Raj, B. N. B., Kurup, M. R. P. & Suresh, E. (2008). Spectrochim. Acta Part A, 71, 1253-1260.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o2377.]); Wang et al. (2008[Wang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.]); Qiu et al. (2009[Qiu, F., He, X.-J., Sun, Y.-X. & Zhu, X. (2009). Acta Cryst. E65, o2050.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N4O3

  • Mr = 270.25

  • Monoclinic, P 21 /c

  • a = 14.6158 (3) Å

  • b = 8.1969 (2) Å

  • c = 10.3645 (2) Å

  • β = 100.609 (1)°

  • V = 1220.49 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 123 K

  • 0.20 × 0.16 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.839, Tmax = 0.956

  • 10114 measured reflections

  • 2192 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.06

  • 2192 reflections

  • 190 parameters

  • 66 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N4i 0.88 2.09 2.9108 (14) 154
C8—H8⋯O3ii 0.95 2.50 3.1423 (14) 125
C11—H11⋯O2iii 0.95 2.49 3.364 (8) 152
C11—H11⋯O2′iii 0.95 2.52 3.371 (8) 150
C13—H13⋯O3iv 0.95 2.57 3.1279 (14) 118
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are well known for their anti-bacterial, anti-oxidant, and anti-tumor activities (Zia-ur-Rehman et al., 2009). These are also considered as popular ligands in coordination chemistry due to their ease of synthesis and their ability to be readily modified both electronically and sterically (Chakraborty & Patel, 1996). We have synthesized a novel Schiff base, by the condensation of pyridine-3-carbaldehyde with p-nitrobenzohydrazide, and determined its crystal structure which is presented in this paper.

The structure of the title compound is presented in Fig. 1. The bond distances and angles agree with the cortresponding bond distances and angles reported in closely related compounds (Raj et al., 2008; Fun et al., 2008; Wang et al., 2008; Qiu et al., 2009). The methylidenehydrazide fragment C7/C8/N2/N3/O3 in the title compound is essentially planar with maximum deviation being 0.0228 (7) Å for both C7 and N2 atoms. The mean-planes of the benzene ring (C1–C6) and pyridine ring (C9–C13/N4) make dihedral angles of 25.44 (6) and 5.47 (7)°, respectively, with the mean-plane of the methylidene hydrazide fragment. The structure is stabilized by extensive hydrogen bonding; details have been provided in Table 1.

Related literature top

For the synthesis of related compounds, see: Zia-ur-Rehman et al. (2009). For the biological activity of benzohydrazides, see: Chakraborty & Patel (1996). For closely related structures, see: Raj et al. (2008); Fun et al. (2008); Wang et al. (2008); Qiu et al. (2009).

Experimental top

A mixture of para-nitrobenzohydrazide (0.5 g, 2.76 mmoles), pyridine-3-carbaldehyde (0.26 ml, 2.76 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was heated to reflux for a period of 3.5 hours followed by removal of the solvent under vacuum. The contents were allowed to cool and washed with cold methanol to yield the title compound. Crystals suitable for X-ray crystallographic studies were grown from a methanol solution of the title compound at room temperature by slow evaporation. Yield: 92%. M.p. 547 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 Å; the Uiso(H) were allowed at 1.2Ueq(C/N). The final difference map was essentially featurless. The nitro group was disordered over two sites with N and O atoms occupying equal site occupancy factors, commands SIMU and EADP in SHELXL-97 (Sheldrick, 2008) were used to model the disorder.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997); nitro group was disordered over two sites.
4-Nitro-N'-[(E)-3-pyridylmethylidene]benzohydrazide top
Crystal data top
C13H10N4O3F(000) = 560
Mr = 270.25Dx = 1.471 Mg m3
Monoclinic, P21/cMelting point: 547 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 14.6158 (3) ÅCell parameters from 10114 reflections
b = 8.1969 (2) Åθ = 3.0–68.0°
c = 10.3645 (2) ŵ = 0.91 mm1
β = 100.609 (1)°T = 123 K
V = 1220.49 (5) Å3Plate, yellow
Z = 40.20 × 0.16 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
2192 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω and ϕ scansθmax = 68.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.839, Tmax = 0.956k = 99
10114 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.094H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.519P]
where P = (Fo2 + 2Fc2)/3
2192 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.26 e Å3
66 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H10N4O3V = 1220.49 (5) Å3
Mr = 270.25Z = 4
Monoclinic, P21/cCu Kα radiation
a = 14.6158 (3) ŵ = 0.91 mm1
b = 8.1969 (2) ÅT = 123 K
c = 10.3645 (2) Å0.20 × 0.16 × 0.05 mm
β = 100.609 (1)°
Data collection top
Bruker APEXII
diffractometer
2192 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2098 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.956Rint = 0.016
10114 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03666 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
2192 reflectionsΔρmin = 0.26 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0353 (11)0.277 (2)0.3850 (9)0.0354 (16)0.50
O10.086 (3)0.336 (5)0.295 (3)0.059 (3)0.50
O20.0552 (6)0.1587 (11)0.4450 (5)0.0550 (12)0.50
N1'0.0292 (11)0.259 (2)0.4237 (9)0.0354 (16)0.50
O1'0.082 (3)0.311 (5)0.321 (3)0.059 (3)0.50
O2'0.0525 (6)0.1572 (11)0.4997 (5)0.0550 (12)0.50
O30.36776 (6)0.53420 (11)0.67517 (8)0.0267 (2)
N20.37145 (6)0.60961 (12)0.46461 (9)0.0179 (2)
H2N0.34420.60310.38170.022*
N30.45517 (6)0.69107 (12)0.49965 (9)0.0183 (2)
N40.66815 (7)1.02086 (12)0.31200 (10)0.0203 (2)
C10.23641 (8)0.46958 (15)0.51171 (12)0.0203 (3)
C20.17661 (9)0.52595 (17)0.40038 (13)0.0261 (3)
H20.19650.60960.34840.031*
C30.08809 (9)0.46038 (19)0.36515 (14)0.0329 (3)
H30.04660.49880.28980.040*
C40.06168 (9)0.33806 (18)0.44215 (16)0.0352 (4)
C50.11925 (10)0.27997 (17)0.55309 (16)0.0361 (4)
H50.09920.19530.60400.043*
C60.20687 (9)0.34797 (16)0.58836 (14)0.0280 (3)
H60.24720.31140.66550.034*
C70.33183 (8)0.54003 (14)0.55923 (11)0.0189 (3)
C80.48376 (8)0.75796 (14)0.40288 (11)0.0182 (3)
H80.44900.74300.31680.022*
C90.56840 (8)0.85680 (14)0.42110 (11)0.0179 (3)
C100.59341 (8)0.92553 (15)0.30967 (11)0.0191 (3)
H100.55520.90350.22700.023*
C110.72083 (8)1.05187 (15)0.42965 (12)0.0212 (3)
H110.77441.11860.43340.025*
C120.70067 (8)0.99095 (15)0.54626 (12)0.0219 (3)
H120.73951.01680.62770.026*
C130.62364 (8)0.89241 (15)0.54267 (11)0.0201 (3)
H130.60850.84970.62130.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (18)0.035 (3)0.051 (5)0.0047 (17)0.010 (4)0.013 (4)
O10.027 (3)0.086 (9)0.059 (8)0.015 (4)0.004 (5)0.022 (6)
O20.0311 (8)0.0435 (8)0.093 (4)0.0147 (6)0.018 (3)0.007 (3)
N1'0.0219 (18)0.035 (3)0.051 (5)0.0047 (17)0.010 (4)0.013 (4)
O1'0.027 (3)0.086 (9)0.059 (8)0.015 (4)0.004 (5)0.022 (6)
O2'0.0311 (8)0.0435 (8)0.093 (4)0.0147 (6)0.018 (3)0.007 (3)
O30.0277 (5)0.0329 (5)0.0186 (4)0.0062 (4)0.0022 (3)0.0030 (4)
N20.0158 (5)0.0208 (5)0.0168 (5)0.0024 (4)0.0021 (4)0.0006 (4)
N30.0156 (5)0.0187 (5)0.0205 (5)0.0013 (4)0.0030 (4)0.0014 (4)
N40.0184 (5)0.0215 (5)0.0215 (5)0.0005 (4)0.0053 (4)0.0010 (4)
C10.0192 (6)0.0194 (6)0.0240 (6)0.0001 (4)0.0080 (5)0.0052 (5)
C20.0207 (6)0.0318 (7)0.0263 (6)0.0023 (5)0.0058 (5)0.0034 (5)
C30.0207 (6)0.0429 (8)0.0345 (7)0.0011 (6)0.0032 (5)0.0121 (6)
C40.0184 (6)0.0315 (7)0.0579 (9)0.0057 (5)0.0130 (6)0.0211 (7)
C50.0293 (7)0.0217 (7)0.0631 (10)0.0037 (5)0.0234 (7)0.0006 (7)
C60.0252 (6)0.0227 (6)0.0387 (7)0.0003 (5)0.0126 (5)0.0015 (6)
C70.0197 (6)0.0167 (6)0.0206 (6)0.0005 (4)0.0045 (4)0.0013 (5)
C80.0178 (5)0.0181 (6)0.0182 (5)0.0010 (4)0.0021 (4)0.0005 (4)
C90.0170 (6)0.0163 (6)0.0206 (6)0.0023 (4)0.0040 (4)0.0012 (4)
C100.0180 (6)0.0196 (6)0.0193 (6)0.0012 (4)0.0024 (4)0.0013 (5)
C110.0161 (5)0.0207 (6)0.0271 (6)0.0016 (4)0.0045 (5)0.0013 (5)
C120.0198 (6)0.0235 (6)0.0212 (6)0.0003 (5)0.0008 (5)0.0029 (5)
C130.0208 (6)0.0210 (6)0.0191 (6)0.0016 (5)0.0050 (5)0.0004 (5)
Geometric parameters (Å, º) top
N1—O11.19 (3)C2—H20.9500
N1—O21.213 (16)C3—C41.380 (2)
N1—C41.518 (16)C3—H30.9500
N1'—O2'1.236 (15)C4—C51.379 (2)
N1'—O1'1.27 (2)C5—C61.383 (2)
N1'—C41.460 (17)C5—H50.9500
O3—C71.2205 (15)C6—H60.9500
N2—C71.3532 (15)C8—C91.4617 (16)
N2—N31.3826 (13)C8—H80.9500
N2—H2N0.8800C9—C101.3929 (16)
N3—C81.2788 (15)C9—C131.3964 (16)
N4—C101.3397 (16)C10—H100.9500
N4—C111.3411 (16)C11—C121.3886 (17)
C1—C61.3919 (18)C11—H110.9500
C1—C21.3920 (18)C12—C131.3806 (17)
C1—C71.5061 (16)C12—H120.9500
C2—C31.3865 (18)C13—H130.9500
O1—N1—O2124 (2)C4—C5—H5120.8
O1—N1—C4125 (2)C6—C5—H5120.8
O2—N1—C4111.0 (8)C5—C6—C1120.48 (13)
O2'—N1'—O1'125 (2)C5—C6—H6119.8
O2'—N1'—C4124.5 (9)C1—C6—H6119.8
O1'—N1'—C4111 (2)O3—C7—N2124.48 (11)
C7—N2—N3119.29 (9)O3—C7—C1120.77 (11)
C7—N2—H2N120.4N2—C7—C1114.75 (10)
N3—N2—H2N120.4N3—C8—C9121.82 (10)
C8—N3—N2113.72 (9)N3—C8—H8119.1
C10—N4—C11117.17 (10)C9—C8—H8119.1
C6—C1—C2119.84 (12)C10—C9—C13117.86 (11)
C6—C1—C7116.99 (11)C10—C9—C8117.52 (10)
C2—C1—C7123.10 (11)C13—C9—C8124.57 (11)
C3—C2—C1120.18 (13)N4—C10—C9123.95 (11)
C3—C2—H2119.9N4—C10—H10118.0
C1—C2—H2119.9C9—C10—H10118.0
C4—C3—C2118.43 (14)N4—C11—C12123.02 (11)
C4—C3—H3120.8N4—C11—H11118.5
C2—C3—H3120.8C12—C11—H11118.5
C5—C4—C3122.72 (12)C13—C12—C11119.31 (11)
C5—C4—N1'110.9 (4)C13—C12—H12120.3
C3—C4—N1'126.3 (4)C11—C12—H12120.3
C5—C4—N1126.4 (4)C12—C13—C9118.67 (11)
C3—C4—N1110.8 (4)C12—C13—H13120.7
C4—C5—C6118.33 (13)C9—C13—H13120.7
C7—N2—N3—C8177.02 (10)N1—C4—C5—C6178.1 (7)
C6—C1—C2—C30.52 (19)C4—C5—C6—C11.3 (2)
C7—C1—C2—C3177.23 (11)C2—C1—C6—C51.50 (19)
C1—C2—C3—C40.57 (19)C7—C1—C6—C5178.40 (11)
C2—C3—C4—C50.7 (2)N3—N2—C7—O35.01 (17)
C2—C3—C4—N1'177.6 (8)N3—N2—C7—C1174.08 (9)
C2—C3—C4—N1177.4 (6)C6—C1—C7—O323.95 (17)
O2'—N1'—C4—C52.3 (16)C2—C1—C7—O3152.85 (12)
O1'—N1'—C4—C5180 (2)C6—C1—C7—N2156.92 (11)
O2'—N1'—C4—C3174.9 (10)C2—C1—C7—N226.28 (17)
O1'—N1'—C4—C33 (3)N2—N3—C8—C9176.74 (10)
O2'—N1'—C4—N1168 (6)N3—C8—C9—C10179.54 (11)
O1'—N1'—C4—N114 (4)N3—C8—C9—C132.28 (18)
O1—N1—C4—C5174 (3)C11—N4—C10—C90.60 (17)
O2—N1—C4—C54.7 (15)C13—C9—C10—N41.38 (18)
O1—N1—C4—C38 (3)C8—C9—C10—N4178.82 (10)
O2—N1—C4—C3173.3 (9)C10—N4—C11—C120.44 (17)
O1—N1—C4—N1'158 (7)N4—C11—C12—C130.65 (18)
O2—N1—C4—N1'21 (4)C11—C12—C13—C90.17 (18)
C3—C4—C5—C60.2 (2)C10—C9—C13—C121.11 (17)
N1'—C4—C5—C6177.1 (7)C8—C9—C13—C12178.35 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N4i0.882.092.9108 (14)154
C3—H3···O10.952.372.72 (4)101
C5—H5···O20.952.302.666 (8)102
C8—H8···O3ii0.952.503.1423 (14)125
C11—H11···O2iii0.952.493.364 (8)152
C11—H11···O2iii0.952.523.371 (8)150
C13—H13···O3iv0.952.573.1279 (14)118
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H10N4O3
Mr270.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)14.6158 (3), 8.1969 (2), 10.3645 (2)
β (°) 100.609 (1)
V3)1220.49 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.91
Crystal size (mm)0.20 × 0.16 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.839, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
10114, 2192, 2098
Rint0.016
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.06
No. of reflections2192
No. of parameters190
No. of restraints66
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N4i0.882.092.9108 (14)154.2
C3—H3···O10.952.372.72 (4)101.4
C5—H5···O2'0.952.302.666 (8)101.9
C8—H8···O3ii0.952.503.1423 (14)124.8
C11—H11···O2iii0.952.493.364 (8)152.4
C11—H11···O2'iii0.952.523.371 (8)149.7
C13—H13···O3iv0.952.573.1279 (14)118.1
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab for financial support.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, J. & Patel, R. N. (1996). J. Indian Chem. Soc. 73, 191–195.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o2377.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, F., He, X.-J., Sun, Y.-X. & Zhu, X. (2009). Acta Cryst. E65, o2050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, B. N. B., Kurup, M. R. P. & Suresh, E. (2008). Spectrochim. Acta Part A, 71, 1253–1260.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-Z., Wang, M.-D., Diao, Y.-P. & Cai, Q. (2008). Acta Cryst. E64, o668.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds