organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­phen­yl)-4-(4-pyrid­yl)-1,3-oxazol-2-amine

aInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 9 March 2010; accepted 10 March 2010; online 24 March 2010)

In the crystal structure of the title compound, C14H10FN3O, the plane of the isoxazole ring makes dihedral angles of 35.72 (9) and 30.00 (9)°, respectively, with those of the 4-fluoro­phenyl and pyridine rings. The plane of the 4-fluoro­phenyl ring makes a dihedral angle of 45.85 (8)° with that of the pyridine ring. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonding. The two types of hydrogen bonds result in two chains, extending along the a axis, which are related by centres of symmetry.

Related literature

For the biological activity of pyridinyloxazoles, see: Peifer et al. (2006[Peifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113-149.]). For p38α MAP kinase inhibitors having a vicinal 4-fluoro­phen­yl/pyridin-4-yl system connected to a five-membered heterocyclic core, see: Abu Thaher et al. (2009[Abu Thaher, B., Koch, P., Schattel, V. & Laufer, S. (2009). J. Med. Chem. 52, 2613-2617.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10FN3O

  • Mr = 255.25

  • Orthorhombic, P b c a

  • a = 10.1017 (4) Å

  • b = 8.3889 (8) Å

  • c = 29.127 (2) Å

  • V = 2468.3 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 193 K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CORINC; Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]) Tmin = 0.899, Tmax = 0.997

  • 2331 measured reflections

  • 2331 independent reflections

  • 1859 reflections with I > 2σ(I)

  • 3 standard reflections every 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.05

  • 2331 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N4i 1.00 1.99 2.983 (2) 175
N1—H1B⋯N15ii 0.91 2.03 2.929 (2) 165
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Compounds having a vicinal 4-fluorophenyl/pyridin-4-yl system connected to a five-membered heterocyclic core have been considered to be potential p38α MAP kinase inhibitors (Abu Thaher et al. 2009, Peifer et al. 2006).

The microwave-assisted reaction of 2-bromo-2-(4-fluorophenyl)-1-(pyridin-4-yl)ethanone hydrobromide and urea could gave two products, namely 5-(4-flouorophenyl)-4-(pyridin-4-yl)oxazol-2-amine and 4-(4-fluorophenyl)-5-(pyridin-4-yl)-1,3-dihydroimidazol-2-one. The structure determination was undertaken to identify the obtained product and showed that only 5-(4-flouorophenyl)-4-(pyridin-4-yl)oxazol-2-amine was formed in the reaction above-mentioned.

In the crystal structure of the title compound, the isoxazole ring makes dihedral angles of 35.72 (9)° and 30.00 (9)° to the 4-fluorophenyl ring and the pyridine ring, respectively (Figure 1). The 4-fluorophenyl ring makes dihedral angles of 45.85 (8)° to the pyridine ring.

The crystal packing (Figure 2) shows that the amino function acts an a hydrogen bond donor forming hydrogen bonds to the nitrogen atom of the pyridine ring and to the nitrogen atom of the oxale ring of two different molecules. The lenght of the hydrogen bonds is 1.99 Å and 2.03 Å, respectively (Table 1). The two types of hydrogen bonds result in two chains that elongate along the a-axis which are related by centres of symmetry.

Related literature top

For biological activity of pyridinyloxazoles, see: Peifer et al. (2006). For p38α MAP kinase inhibitors having a vicinal 4-fluorophenyl/pyridin-4-yl system connected to a five-membered heterocyclic core, see: Abu Thaher et al. (2009).

Experimental top

2-Bromo-2-(4-fluorophenyl)-1-(pyridin-4-yl)ethanone hydrobromide (150 mg, 0.40 mmol), urea (24 mg, 0.40 mmol) and DMF (1 ml) were combined in a reaction vial. The reaction vessel was heated in a CEM microwave reactor for 10 min at 433 K (initial power 250 W) and afterwards the vessel was cooled down to room temperature by a stream of compressed air. Water and ethyl acetate were added and the organic layer was separated. This layer was washed with water (3x), dried over Na2SO4 and concentrated in vacuo. The yellow residue was suspended twice with DCM/EtOH 95-5, filtered and finally dried. Yield 83 mg (81 %). Suitable crystals of the title compound for X-ray were obtained by slow evaporation at 298 K of a solution of methanol.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The H atoms attached to N1 were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with labelling and displacement ellipsoids are drawn at the 50% propability level.
[Figure 2] Fig. 2. Crystal structure of the title compound with view along the b-axis (hydrogen bonding is shown with dashed lines).
5-(4-Fluorophenyl)-4-(4-pyridyl)-1,3-oxazol-2-amine top
Crystal data top
C14H10FN3OF(000) = 1056
Mr = 255.25Dx = 1.374 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.1017 (4) Åθ = 30–46°
b = 8.3889 (8) ŵ = 0.84 mm1
c = 29.127 (2) ÅT = 193 K
V = 2468.3 (3) Å3Plate, yellow
Z = 80.40 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1859 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 69.9°, θmin = 3.0°
ω/2θ scansh = 012
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
k = 010
Tmin = 0.899, Tmax = 0.997l = 350
2331 measured reflections3 standard reflections every 60 min
2331 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.5691P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2331 reflectionsΔρmax = 0.20 e Å3
173 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00056 (12)
Crystal data top
C14H10FN3OV = 2468.3 (3) Å3
Mr = 255.25Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.1017 (4) ŵ = 0.84 mm1
b = 8.3889 (8) ÅT = 193 K
c = 29.127 (2) Å0.40 × 0.30 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1859 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CORINC; Dräger & Gattow, 1971)
Rint = 0.000
Tmin = 0.899, Tmax = 0.9973 standard reflections every 60 min
2331 measured reflections intensity decay: 2%
2331 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2331 reflectionsΔρmin = 0.17 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.14358 (14)0.10350 (16)0.19761 (4)0.0644 (4)
N10.13607 (15)0.4430 (3)0.45720 (6)0.0541 (5)
H1A0.12640.48600.48900.081*
H1B0.21330.42660.44150.081*
O10.03766 (11)0.36315 (17)0.39018 (4)0.0382 (3)
C20.09228 (16)0.3491 (2)0.37416 (6)0.0329 (4)
C30.17254 (16)0.3972 (2)0.40860 (6)0.0321 (4)
N40.09727 (14)0.44405 (19)0.44663 (5)0.0362 (4)
C50.02508 (16)0.4204 (2)0.43365 (6)0.0378 (4)
C60.10541 (15)0.2869 (2)0.32790 (6)0.0325 (4)
C70.20470 (17)0.3409 (2)0.29845 (6)0.0371 (4)
H70.26440.42080.30870.044*
C80.21765 (18)0.2803 (2)0.25471 (6)0.0423 (5)
H80.28560.31750.23480.051*
C90.1303 (2)0.1652 (2)0.24045 (6)0.0435 (5)
C100.0300 (2)0.1098 (2)0.26787 (7)0.0463 (5)
H100.03000.03140.25690.056*
C110.01776 (17)0.1703 (2)0.31191 (6)0.0394 (4)
H110.05070.13240.33140.047*
C120.31809 (16)0.4044 (2)0.41163 (6)0.0316 (4)
C130.37771 (16)0.5163 (2)0.43992 (6)0.0348 (4)
H130.32540.58910.45710.042*
C140.51470 (17)0.5205 (2)0.44293 (6)0.0395 (4)
H140.55390.59910.46210.047*
N150.59471 (15)0.4203 (2)0.42047 (5)0.0439 (4)
C160.53651 (17)0.3118 (3)0.39376 (7)0.0434 (5)
H160.59150.23880.37770.052*
C170.40105 (17)0.2992 (2)0.38802 (6)0.0371 (4)
H170.36490.22010.36830.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0878 (10)0.0654 (8)0.0399 (6)0.0139 (7)0.0042 (6)0.0098 (6)
N10.0211 (7)0.0942 (14)0.0470 (9)0.0003 (8)0.0007 (7)0.0199 (9)
O10.0204 (6)0.0547 (8)0.0394 (7)0.0007 (5)0.0015 (5)0.0051 (6)
C20.0199 (8)0.0389 (9)0.0400 (9)0.0008 (7)0.0013 (7)0.0024 (7)
C30.0233 (8)0.0345 (8)0.0383 (9)0.0002 (7)0.0002 (7)0.0010 (7)
N40.0236 (7)0.0476 (9)0.0375 (8)0.0002 (6)0.0009 (6)0.0051 (7)
C50.0237 (8)0.0513 (11)0.0384 (10)0.0011 (8)0.0010 (7)0.0059 (8)
C60.0229 (7)0.0369 (9)0.0378 (9)0.0032 (7)0.0047 (7)0.0036 (7)
C70.0294 (8)0.0396 (9)0.0422 (10)0.0006 (7)0.0020 (7)0.0017 (8)
C80.0394 (10)0.0465 (11)0.0410 (10)0.0096 (8)0.0044 (8)0.0064 (9)
C90.0513 (11)0.0455 (11)0.0339 (9)0.0147 (9)0.0062 (8)0.0038 (8)
C100.0401 (10)0.0481 (12)0.0507 (11)0.0015 (9)0.0138 (9)0.0063 (9)
C110.0258 (8)0.0480 (11)0.0444 (10)0.0017 (8)0.0047 (7)0.0005 (9)
C120.0222 (8)0.0362 (9)0.0364 (9)0.0005 (7)0.0014 (7)0.0050 (7)
C130.0269 (8)0.0406 (10)0.0368 (9)0.0008 (7)0.0002 (7)0.0003 (8)
C140.0279 (8)0.0510 (11)0.0396 (10)0.0071 (8)0.0049 (7)0.0010 (9)
N150.0245 (7)0.0632 (11)0.0441 (9)0.0009 (7)0.0029 (6)0.0010 (8)
C160.0274 (9)0.0548 (12)0.0480 (11)0.0074 (8)0.0006 (8)0.0032 (9)
C170.0281 (9)0.0391 (10)0.0442 (10)0.0020 (7)0.0034 (7)0.0023 (8)
Geometric parameters (Å, º) top
F1—C91.358 (2)C8—H80.9500
N1—C51.328 (2)C9—C101.372 (3)
N1—H1A0.9994C10—C111.385 (3)
N1—H1B0.9144C10—H100.9500
O1—C51.360 (2)C11—H110.9500
O1—C21.3981 (19)C12—C131.386 (2)
C2—C31.351 (2)C12—C171.398 (2)
C2—C61.451 (2)C13—C141.387 (2)
C3—N41.400 (2)C13—H130.9500
C3—C121.474 (2)C14—N151.337 (3)
N4—C51.308 (2)C14—H140.9500
C6—C71.395 (2)N15—C161.334 (3)
C6—C111.399 (2)C16—C171.383 (2)
C7—C81.378 (3)C16—H160.9500
C7—H70.9500C17—H170.9500
C8—C91.372 (3)
C5—N1—H1A116.6F1—C9—C8118.89 (18)
C5—N1—H1B116.2C10—C9—C8122.51 (17)
H1A—N1—H1B126.9C9—C10—C11118.74 (18)
C5—O1—C2104.64 (13)C9—C10—H10120.6
C3—C2—O1106.88 (15)C11—C10—H10120.6
C3—C2—C6137.89 (15)C10—C11—C6120.54 (18)
O1—C2—C6115.22 (14)C10—C11—H11119.7
C2—C3—N4110.20 (14)C6—C11—H11119.7
C2—C3—C12130.92 (17)C13—C12—C17117.35 (15)
N4—C3—C12118.87 (15)C13—C12—C3119.78 (16)
C5—N4—C3104.01 (14)C17—C12—C3122.85 (16)
N4—C5—N1128.84 (17)C12—C13—C14119.23 (17)
N4—C5—O1114.27 (15)C12—C13—H13120.4
N1—C5—O1116.89 (15)C14—C13—H13120.4
C7—C6—C11118.51 (17)N15—C14—C13123.78 (18)
C7—C6—C2121.31 (15)N15—C14—H14118.1
C11—C6—C2120.18 (16)C13—C14—H14118.1
C8—C7—C6121.12 (17)C16—N15—C14116.61 (16)
C8—C7—H7119.4N15—C16—C17123.99 (18)
C6—C7—H7119.4N15—C16—H16118.0
C9—C8—C7118.57 (18)C17—C16—H16118.0
C9—C8—H8120.7C16—C17—C12119.03 (17)
C7—C8—H8120.7C16—C17—H17120.5
F1—C9—C10118.59 (19)C12—C17—H17120.5
C5—O1—C2—C30.36 (19)C7—C8—C9—F1179.13 (16)
C5—O1—C2—C6179.09 (15)C7—C8—C9—C100.8 (3)
O1—C2—C3—N40.7 (2)F1—C9—C10—C11178.78 (17)
C6—C2—C3—N4179.0 (2)C8—C9—C10—C111.1 (3)
O1—C2—C3—C12178.41 (17)C9—C10—C11—C60.6 (3)
C6—C2—C3—C120.1 (4)C7—C6—C11—C100.3 (3)
C2—C3—N4—C50.7 (2)C2—C6—C11—C10179.70 (16)
C12—C3—N4—C5178.50 (16)C2—C3—C12—C13151.88 (19)
C3—N4—C5—N1178.7 (2)N4—C3—C12—C1329.1 (2)
C3—N4—C5—O10.5 (2)C2—C3—C12—C1730.1 (3)
C2—O1—C5—N40.1 (2)N4—C3—C12—C17148.94 (17)
C2—O1—C5—N1179.15 (18)C17—C12—C13—C141.0 (3)
C3—C2—C6—C737.0 (3)C3—C12—C13—C14179.18 (17)
O1—C2—C6—C7144.77 (16)C12—C13—C14—N151.1 (3)
C3—C2—C6—C11142.9 (2)C13—C14—N15—C160.3 (3)
O1—C2—C6—C1135.3 (2)C14—N15—C16—C170.5 (3)
C11—C6—C7—C80.6 (3)N15—C16—C17—C120.6 (3)
C2—C6—C7—C8179.34 (16)C13—C12—C17—C160.3 (3)
C6—C7—C8—C90.1 (3)C3—C12—C17—C16178.35 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i1.001.992.983 (2)175
N1—H1B···N15ii0.912.032.929 (2)165
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10FN3O
Mr255.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)10.1017 (4), 8.3889 (8), 29.127 (2)
V3)2468.3 (3)
Z8
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CORINC; Dräger & Gattow, 1971)
Tmin, Tmax0.899, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
2331, 2331, 1859
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.05
No. of reflections2331
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N4i1.001.992.983 (2)175
N1—H1B···N15ii0.912.032.929 (2)165
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z.
 

References

First citationAbu Thaher, B., Koch, P., Schattel, V. & Laufer, S. (2009). J. Med. Chem. 52, 2613–2617.  Web of Science PubMed CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationPeifer, C., Wagner, G. & Laufer, S. (2006). Curr. Top. Med. Chem. 6, 113–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds