metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(R)-Hydr­­oxy(6-meth­oxy­quinolinium-4-yl)meth­yl]-8-vinyl-1-azoniabi­cyclo­[2.2.2]octane tetra­chloridoferrate(III) chloride monohydrate

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 22 January 2010; accepted 2 March 2010; online 6 March 2010)

In the title salt, (C20H26N2O2)[FeCl4]Cl·H2O, the FeIII atom exists in a tetra­hedral coordination environment. The cation, anions and water mol­ecules are linked by N—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds into a layer network.

Related literature

For ferroelectricity and SHG of chiral coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]); Qu et al. (2003[Qu, Z.-R., Chen, Z.-F., Zhang, J., Xiong, R.-G., Abrahams, B. F. & Xue, Z.-L. (2003). Organometallics 22, 2814-2816.]). For related transition-metal complexes, see: Zhao et al. (2003[Zhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z. G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166-4168.]).

[Scheme 1]

Experimental

Crystal data
  • (C20H26N2O2)[FeCl4]Cl·H2O

  • Mr = 577.54

  • Monoclinic, P 21

  • a = 6.6838 (10) Å

  • b = 18.843 (2) Å

  • c = 10.8716 (10) Å

  • β = 104.918 (17)°

  • V = 1323.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.82, Tmax = 0.88

  • 12145 measured reflections

  • 5166 independent reflections

  • 3650 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.118

  • S = 1.01

  • 5166 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2490 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl5 0.96 2.10 3.023 (4) 161
N2—H2C⋯Cl5i 0.96 2.08 3.039 (4) 173
O2—H2B⋯O3 0.85 2.00 2.799 (6) 156
O3—H3B⋯Cl5ii 0.85 2.71 3.070 (6) 108
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) [-x, y+{\script{1\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007), Chiral quinine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Zhao et al., 2003; Qu et al.,2003). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound

The asymmetric unit of the title compound,C20H26N2O2.FeCl4.Cl.H2O(Fig.1), consists of one protoned quinine and a tetrachloro-ironanion with the FeIII ion in a slightly distorted tetrahedral coordination environment, The crystal structure is stabilized by intermolecular N—H···Cl, O—H···Cl and O—H···O hydrogen bonds.The H-bonds form of1D chain viewedalong the a-axis (Fig.2).

Related literature top

For ferroelectricity and SHG, see: Fu et al. (2007); Qu et al. (2003). For related transition-metal complexes, see: Zhao et al. (2003).

Experimental top

A mixture of quinine (1 mmol, 0.324 g ), FeCl3(1 mmol, 0.156 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 20 ml water by heating to 353 K (0.5 h) forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 11 days.

Refinement top

All H atoms of quinine were placed in calculated positions , with C—H = 0.93-0.98 Å O—H = 0.85 Å and N—H = 0.96 Å, and re?ned using a riding model, with Uiso(H)=1.2Ueq(C, N, O) or 1.5 Ueq(C) for methyl H atoms.H3A and H3B were located in difference fourier maps.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing viewed along the c axis. Hydrogen bonds are drawn as dashed lines
2-[(R)-Hydroxy(6-methoxyquinolinium-4-yl)methyl]-8-vinyl-1- azoniabicyclo[2.2.2]octane tetrachloridoferrate(III) chloride monohydrate top
Crystal data top
(C20H26N2O2)[FeCl4]Cl·H2OF(000) = 594
Mr = 577.54Dx = 1.450 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3650 reflections
a = 6.6838 (10) Åθ = 2.9–26.0°
b = 18.843 (2) ŵ = 1.10 mm1
c = 10.8716 (10) ÅT = 293 K
β = 104.918 (17)°Block, yellow
V = 1323.1 (3) Å30.30 × 0.26 × 0.22 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
5166 independent reflections
Radiation source: fine-focus sealed tube3650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2323
Tmin = 0.82, Tmax = 0.88l = 1313
12145 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5166 reflectionsΔρmax = 0.32 e Å3
281 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 2490 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
(C20H26N2O2)[FeCl4]Cl·H2OV = 1323.1 (3) Å3
Mr = 577.54Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.6838 (10) ŵ = 1.10 mm1
b = 18.843 (2) ÅT = 293 K
c = 10.8716 (10) Å0.30 × 0.26 × 0.22 mm
β = 104.918 (17)°
Data collection top
Rigaku SCXmini
diffractometer
5166 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3650 reflections with I > 2σ(I)
Tmin = 0.82, Tmax = 0.88Rint = 0.038
12145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.32 e Å3
S = 1.01Δρmin = 0.30 e Å3
5166 reflectionsAbsolute structure: Flack (1983), 2490 Friedel pairs
281 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1691 (8)0.4587 (3)0.0478 (5)0.0721 (13)
H1A0.07000.43060.07060.087*
C20.2105 (7)0.5255 (3)0.0993 (4)0.0631 (11)
H2A0.13590.54260.15440.076*
C30.3610 (6)0.5673 (2)0.0701 (4)0.0520 (10)
C40.4661 (6)0.5415 (2)0.0214 (4)0.0508 (9)
C50.4159 (7)0.4721 (3)0.0707 (4)0.0623 (11)
C60.5180 (8)0.4417 (3)0.1549 (4)0.0762 (14)
H6A0.48410.39620.18650.091*
C70.6682 (8)0.4797 (3)0.1902 (4)0.0750 (14)
H7A0.73910.45950.24470.090*
C80.7173 (8)0.5502 (3)0.1442 (4)0.0646 (12)
C90.6189 (7)0.5800 (2)0.0622 (3)0.0567 (10)
H9A0.65210.62600.03270.068*
C100.9150 (9)0.6537 (3)0.1527 (5)0.0857 (16)
H10A1.02180.67010.19010.129*
H10B0.96240.65670.06160.129*
H10C0.79380.68260.18180.129*
C110.4201 (6)0.6379 (2)0.1375 (3)0.0508 (9)
H11A0.45400.67210.07810.061*
C120.6126 (6)0.62488 (19)0.2487 (3)0.0467 (9)
H12A0.70890.59590.21560.056*
C130.5696 (7)0.5844 (2)0.3628 (4)0.0565 (10)
H13A0.42290.58610.35830.068*
H13B0.60980.53510.36010.068*
C140.6917 (7)0.6182 (3)0.4861 (4)0.0622 (11)
H14A0.67830.58930.55850.075*
C150.6009 (9)0.6922 (3)0.4946 (5)0.0815 (14)
H15A0.45750.68810.49760.098*
H15B0.67740.71570.57180.098*
C160.6143 (8)0.7356 (3)0.3786 (5)0.0770 (14)
H16A0.47630.74770.32850.092*
H16B0.68940.77930.40580.092*
C170.9372 (7)0.6747 (3)0.3784 (4)0.0672 (12)
H17A1.01080.71800.41080.081*
H17B1.01370.65060.32610.081*
C180.9227 (7)0.6269 (3)0.4897 (4)0.0667 (12)
H18A0.99090.65130.56890.080*
C191.0326 (9)0.5569 (3)0.4871 (6)0.0859 (16)
H19A0.98330.52740.41720.103*
C201.1894 (11)0.5353 (4)0.5747 (7)0.126 (3)
H20A1.24280.56340.64590.151*
H20B1.24930.49150.56670.151*
N10.2684 (6)0.4343 (2)0.0331 (4)0.0677 (10)
H1B0.23530.38750.06730.081*
N20.7244 (6)0.69263 (18)0.2997 (3)0.0574 (9)
H2C0.73730.72110.22890.069*
O10.8655 (5)0.5813 (2)0.1892 (3)0.0807 (10)
O20.2546 (5)0.66425 (17)0.1827 (3)0.0638 (8)
H2B0.22110.70510.15090.096*
Cl50.2012 (3)0.27667 (8)0.07702 (16)0.1153 (6)
Cl30.8401 (4)0.35869 (11)0.53267 (16)0.1329 (7)
Cl40.6722 (3)0.24251 (8)0.26529 (17)0.1000 (5)
Cl20.3307 (3)0.37297 (11)0.3350 (2)0.1408 (9)
Fe10.64976 (11)0.35002 (3)0.33590 (7)0.0748 (2)
Cl10.7554 (2)0.42527 (7)0.21006 (13)0.0801 (4)
O30.2399 (9)0.7902 (3)0.0442 (6)0.156 (2)
H3B0.19000.81900.08870.234*
H3A0.14290.77430.01620.234*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.073 (3)0.061 (3)0.081 (3)0.006 (2)0.017 (3)0.003 (3)
C20.062 (3)0.068 (3)0.064 (3)0.005 (2)0.026 (2)0.002 (2)
C30.056 (2)0.056 (2)0.043 (2)0.0083 (18)0.0107 (19)0.0022 (18)
C40.056 (2)0.052 (2)0.040 (2)0.0091 (18)0.0052 (19)0.0009 (18)
C50.070 (3)0.065 (3)0.048 (2)0.010 (2)0.008 (2)0.000 (2)
C60.089 (4)0.073 (3)0.065 (3)0.011 (3)0.017 (3)0.015 (3)
C70.083 (4)0.094 (4)0.045 (2)0.018 (3)0.012 (3)0.015 (2)
C80.075 (3)0.082 (3)0.038 (2)0.010 (2)0.015 (2)0.004 (2)
C90.068 (3)0.064 (3)0.038 (2)0.005 (2)0.013 (2)0.0013 (19)
C100.090 (4)0.110 (5)0.063 (3)0.019 (3)0.033 (3)0.002 (3)
C110.060 (3)0.051 (2)0.042 (2)0.0082 (18)0.0150 (19)0.0027 (18)
C120.059 (2)0.0405 (19)0.0438 (19)0.0040 (16)0.0192 (18)0.0006 (16)
C130.056 (2)0.065 (3)0.046 (2)0.003 (2)0.0091 (19)0.010 (2)
C140.063 (3)0.080 (3)0.044 (2)0.002 (2)0.014 (2)0.009 (2)
C150.095 (4)0.083 (4)0.073 (3)0.011 (3)0.034 (3)0.015 (3)
C160.094 (4)0.056 (3)0.080 (3)0.010 (2)0.020 (3)0.019 (2)
C170.065 (3)0.073 (3)0.064 (3)0.012 (2)0.017 (2)0.004 (2)
C180.063 (3)0.079 (3)0.049 (2)0.002 (2)0.003 (2)0.010 (2)
C190.068 (3)0.087 (4)0.094 (4)0.002 (3)0.006 (3)0.001 (3)
C200.107 (5)0.117 (5)0.140 (6)0.028 (4)0.006 (5)0.027 (5)
N10.076 (3)0.053 (2)0.071 (2)0.0045 (19)0.012 (2)0.006 (2)
N20.069 (2)0.0482 (19)0.057 (2)0.0006 (16)0.0193 (18)0.0030 (16)
O10.085 (2)0.109 (3)0.0543 (18)0.005 (2)0.0304 (17)0.0106 (19)
O20.0635 (18)0.0644 (19)0.0641 (17)0.0230 (15)0.0178 (15)0.0030 (15)
Cl50.1995 (19)0.0617 (8)0.1125 (12)0.0004 (9)0.0904 (13)0.0178 (8)
Cl30.201 (2)0.1015 (12)0.0886 (10)0.0237 (14)0.0246 (11)0.0161 (10)
Cl40.1138 (11)0.0722 (8)0.1292 (13)0.0163 (8)0.0588 (10)0.0050 (8)
Cl20.1171 (13)0.1379 (16)0.203 (2)0.0635 (11)0.1064 (14)0.0824 (15)
Fe10.0851 (5)0.0634 (4)0.0877 (5)0.0254 (4)0.0437 (4)0.0243 (4)
Cl10.0798 (8)0.0780 (8)0.0897 (8)0.0127 (6)0.0352 (7)0.0281 (7)
O30.163 (5)0.090 (3)0.211 (6)0.004 (3)0.040 (4)0.019 (4)
Geometric parameters (Å, º) top
C1—N11.314 (6)C13—H13B0.9700
C1—C21.377 (7)C14—C151.533 (7)
C1—H1A0.9300C14—C181.543 (7)
C2—C31.378 (6)C14—H14A0.9800
C2—H2A0.9300C15—C161.525 (7)
C3—C41.442 (6)C15—H15A0.9700
C3—C111.521 (6)C15—H15B0.9700
C4—C91.414 (6)C16—N21.503 (6)
C4—C51.420 (6)C16—H16A0.9700
C5—N11.362 (6)C16—H16B0.9700
C5—C61.397 (6)C17—N21.497 (6)
C6—C71.367 (7)C17—C181.531 (7)
C6—H6A0.9300C17—H17A0.9700
C7—C81.428 (7)C17—H17B0.9700
C7—H7A0.9300C18—C191.513 (7)
C8—O11.346 (6)C18—H18A0.9800
C8—C91.358 (6)C19—C201.288 (8)
C9—H9A0.9300C19—H19A0.9300
C10—O11.435 (7)C20—H20A0.9300
C10—H10A0.9600C20—H20B0.9300
C10—H10B0.9600N1—H1B0.9599
C10—H10C0.9600N2—H2C0.9601
C11—O21.411 (5)O2—H2B0.8499
C11—C121.541 (5)Cl3—Fe12.196 (2)
C11—H11A0.9800Cl4—Fe12.1852 (16)
C12—N21.511 (5)Cl2—Fe12.1734 (17)
C12—C131.545 (5)Fe1—Cl12.2085 (13)
C12—H12A0.9800O3—H3B0.8501
C13—C141.517 (6)O3—H3A0.8499
C13—H13A0.9700
N1—C1—C2120.6 (5)C15—C14—C18108.1 (4)
N1—C1—H1A119.7C13—C14—H14A109.7
C2—C1—H1A119.7C15—C14—H14A109.7
C1—C2—C3120.8 (4)C18—C14—H14A109.7
C1—C2—H2A119.6C16—C15—C14109.2 (4)
C3—C2—H2A119.6C16—C15—H15A109.8
C2—C3—C4118.7 (4)C14—C15—H15A109.8
C2—C3—C11120.2 (4)C16—C15—H15B109.8
C4—C3—C11121.0 (4)C14—C15—H15B109.8
C9—C4—C5118.3 (4)H15A—C15—H15B108.3
C9—C4—C3124.2 (4)N2—C16—C15108.9 (4)
C5—C4—C3117.5 (4)N2—C16—H16A109.9
N1—C5—C6119.7 (5)C15—C16—H16A109.9
N1—C5—C4119.2 (4)N2—C16—H16B109.9
C6—C5—C4121.1 (5)C15—C16—H16B109.9
C7—C6—C5119.1 (5)H16A—C16—H16B108.3
C7—C6—H6A120.4N2—C17—C18109.9 (4)
C5—C6—H6A120.4N2—C17—H17A109.7
C6—C7—C8120.6 (4)C18—C17—H17A109.7
C6—C7—H7A119.7N2—C17—H17B109.7
C8—C7—H7A119.7C18—C17—H17B109.7
O1—C8—C9125.8 (5)H17A—C17—H17B108.2
O1—C8—C7113.7 (4)C19—C18—C17111.6 (4)
C9—C8—C7120.5 (5)C19—C18—C14113.2 (4)
C8—C9—C4120.3 (4)C17—C18—C14108.0 (4)
C8—C9—H9A119.8C19—C18—H18A107.9
C4—C9—H9A119.8C17—C18—H18A107.9
O1—C10—H10A109.5C14—C18—H18A107.9
O1—C10—H10B109.5C20—C19—C18124.7 (6)
H10A—C10—H10B109.5C20—C19—H19A117.7
O1—C10—H10C109.5C18—C19—H19A117.7
H10A—C10—H10C109.5C19—C20—H20A120.0
H10B—C10—H10C109.5C19—C20—H20B120.0
O2—C11—C3110.2 (4)H20A—C20—H20B120.0
O2—C11—C12110.7 (3)C1—N1—C5123.2 (4)
C3—C11—C12107.4 (3)C1—N1—H1B118.4
O2—C11—H11A109.5C5—N1—H1B118.4
C3—C11—H11A109.5C17—N2—C16109.1 (3)
C12—C11—H11A109.5C17—N2—C12109.1 (3)
N2—C12—C11112.8 (3)C16—N2—C12113.4 (4)
N2—C12—C13107.4 (3)C17—N2—H2C108.4
C11—C12—C13114.7 (3)C16—N2—H2C108.4
N2—C12—H12A107.2C12—N2—H2C108.4
C11—C12—H12A107.2C8—O1—C10116.8 (4)
C13—C12—H12A107.2C11—O2—H2B109.0
C14—C13—C12109.5 (3)Cl2—Fe1—Cl4109.81 (9)
C14—C13—H13A109.8Cl2—Fe1—Cl3108.14 (9)
C12—C13—H13A109.8Cl4—Fe1—Cl3109.65 (7)
C14—C13—H13B109.8Cl2—Fe1—Cl1109.82 (6)
C12—C13—H13B109.8Cl4—Fe1—Cl1108.41 (6)
H13A—C13—H13B108.2Cl3—Fe1—Cl1111.00 (8)
C13—C14—C15107.7 (4)H3B—O3—H3A109.5
C13—C14—C18112.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl50.962.103.023 (4)161
N2—H2C···Cl5i0.962.083.039 (4)173
O2—H2B···O30.852.002.799 (6)156
O3—H3B···Cl5ii0.852.713.070 (6)108
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C20H26N2O2)[FeCl4]Cl·H2O
Mr577.54
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.6838 (10), 18.843 (2), 10.8716 (10)
β (°) 104.918 (17)
V3)1323.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.82, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
12145, 5166, 3650
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.118, 1.01
No. of reflections5166
No. of parameters281
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.30
Absolute structureFlack (1983), 2490 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl50.962.103.023 (4)160.6
N2—H2C···Cl5i0.962.083.039 (4)173.2
O2—H2B···O30.852.002.799 (6)155.8
O3—H3B···Cl5ii0.852.713.070 (6)107.5
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1/2, z.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQu, Z.-R., Chen, Z.-F., Zhang, J., Xiong, R.-G., Abrahams, B. F. & Xue, Z.-L. (2003). Organometallics 22, 2814–2816.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Qu, Z.-R., Ye, Q., Abrahams, B. F., Wang, Y.-P., Liu, Z. G., Xue, Z.-L., Xiong, R.-G. & You, X.-Z. (2003). Chem. Mater. 15, 4166–4168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds