organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(bromo­meth­yl)-2-nitro­benzene

aDepartment of Chemistry, GC University Lahore 54000, Pakistan, and bDepartment of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057, USA
*Correspondence e-mail: kth7@georgetown.edu

(Received 4 February 2010; accepted 24 February 2010; online 13 March 2010)

In the title compound, C8H7Br2NO2, an inter­mediate for the synthesis of macrocycles, the NO2 group makes a dihedral angle of 65.07 (19)° with the arene ring, and the bromo­methyl substituents adopt a trans conformation about the ring such that the mol­ecule closely approximates C2 symmetry.

Related literature

For related structures, see: Li et al. (2006[Li, Q.-X., Cai, L., Wang, X.-F. & Shen, Y.-J. (2006). Acta Cryst. E62, o5726-o5727.]); Qin et al. (2005[Qin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257-o3258.]). For related compounds, see: Raatikainen et al. (2008[Raatikainen, K., Huuskonen, J., Kolehmainen, E. & Rissanen, K. (2008). Chem. Eur. J. 14, 3297-3305.]); Mough et al. (2004[Mough, S. T., Goeltz, J. C. & Holman, K. T. (2004). Angew. Chem. Int. Ed. 43, 5631-5635.]). For the synthesis, see: Boeckmann & Vögtle (1981[Boeckmann, K. & Vögtle, F. (1981). Liebigs Ann. Chem. 3, 467-475.]).

[Scheme 1]

Experimental

Crystal data
  • C8H7Br2NO2

  • Mr = 308.97

  • Monoclinic, P 21 /n

  • a = 7.7837 (13) Å

  • b = 7.7573 (13) Å

  • c = 15.938 (3) Å

  • β = 90.933 (3)°

  • V = 962.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.39 mm−1

  • T = 185 K

  • 0.20 × 0.20 × 0.08 mm

Data collection
  • Bruker SMART 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.285, Tmax = 0.553

  • 8228 measured reflections

  • 2259 independent reflections

  • 1812 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.083

  • S = 1.06

  • 2259 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −1.31 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Derivatives of 1,3-bis(bromomethyl)benzene have been widely used to synthesize macrocycles via SN2 reactions. For recent examples, see Raatikainen et al., 2008 and Mough et al., 2004.

The crystal structure of the title compound is in comparison with the already reported 1,3-bis(bromomethyl)benzene (II) (Li et al., 2006) and 2,3-bis(bromomethyl)-1-methoxy-4-nitrobenzene (III) (Qin et al., 2005). The nitro group of I is oriented at a dihedral angle of 65.07(0.19)° to the arene ring. The bromomethyl groups (C7/Br1 and C8/Br2) are oriented anti to each other and exhibit almost identical dihedral angles with respect to arene ring carbons atoms (80.34(0.27)° and 80.99(0.28)°, respectively). The molecules therefore closely approximate C2 point group symmetry in the crystal.

Related literature top

For related structures, see: Li et al. (2006); Qin et al. (2005). For related compounds, see: Raatikainen et al. (2008); Mough et al. (2004). For the synthesis, see: Boeckmann & Vögtle (1981).

Experimental top

The title compound was prepared following the method reported by Boeckmann and Vögtle et al., 1981.

Refinement top

The aromatic and methylene H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 0.99 Å, Uiso = 1.2Ueq (C) for methylene

Electron density synthesis with coefficients Fo—Fc: Highest peak 1.35 at 0.7472 0.2174 0.6981 [ 0.78 A from BR2 ] Deepest hole -1.31 at 0.7372 0.0534 0.6462 [ 0.75 A from BR2 ]

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled thermal ellipsoid plot of (I) at the 50% probability level.
[Figure 2] Fig. 2. The unit cell packing diagram of (I) as viewed down the b axis.
1,3-Bis(bromomethyl)-2-nitrobenzene top
Crystal data top
C8H7Br2NO2F(000) = 592
Mr = 308.97Dx = 2.133 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1024 reflections
a = 7.7837 (13) Åθ = 2.6–28.0°
b = 7.7573 (13) ŵ = 8.39 mm1
c = 15.938 (3) ÅT = 185 K
β = 90.933 (3)°Needles, colorless
V = 962.2 (3) Å30.20 × 0.20 × 0.08 mm
Z = 4
Data collection top
Bruker SMART 1K
diffractometer
2259 independent reflections
Radiation source: fine-focus sealed tube1812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scanθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.285, Tmax = 0.553k = 1010
8228 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.9462P]
where P = (Fo2 + 2Fc2)/3
2259 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 1.31 e Å3
Crystal data top
C8H7Br2NO2V = 962.2 (3) Å3
Mr = 308.97Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7837 (13) ŵ = 8.39 mm1
b = 7.7573 (13) ÅT = 185 K
c = 15.938 (3) Å0.20 × 0.20 × 0.08 mm
β = 90.933 (3)°
Data collection top
Bruker SMART 1K
diffractometer
2259 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1812 reflections with I > 2σ(I)
Tmin = 0.285, Tmax = 0.553Rint = 0.041
8228 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 1.35 e Å3
2259 reflectionsΔρmin = 1.31 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20766 (5)0.59088 (5)0.74548 (2)0.03326 (13)
Br20.26732 (6)0.86865 (6)0.32665 (3)0.04186 (15)
C10.2474 (4)0.6504 (4)0.5246 (2)0.0211 (7)
N10.2391 (4)0.8324 (4)0.55227 (19)0.0245 (7)
C20.1776 (4)0.6087 (4)0.4461 (2)0.0203 (7)
C30.1891 (5)0.4378 (5)0.4212 (2)0.0238 (8)
H30.14500.40510.36760.029*
O10.3753 (4)0.9089 (4)0.5617 (2)0.0434 (8)
C60.3228 (4)0.5301 (5)0.5786 (2)0.0205 (7)
C50.3295 (5)0.3604 (5)0.5504 (2)0.0249 (8)
H50.38070.27500.58550.030*
C70.3935 (5)0.5748 (5)0.6637 (2)0.0281 (8)
H7A0.45500.68640.66100.034*
H7B0.47680.48540.68200.034*
O20.0993 (4)0.8953 (4)0.5634 (2)0.0426 (8)
C40.2638 (5)0.3131 (5)0.4729 (2)0.0260 (8)
H40.26950.19650.45500.031*
C80.0943 (5)0.7371 (5)0.3889 (2)0.0259 (8)
H8A0.02390.81740.42220.031*
H8B0.01700.67660.34870.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0391 (2)0.0396 (2)0.0212 (2)0.00245 (18)0.00494 (16)0.00610 (16)
Br20.0346 (2)0.0541 (3)0.0370 (3)0.0017 (2)0.00213 (18)0.0232 (2)
C10.0198 (17)0.0187 (17)0.0247 (18)0.0006 (14)0.0027 (14)0.0005 (14)
N10.0324 (18)0.0223 (16)0.0188 (15)0.0027 (13)0.0022 (13)0.0000 (12)
C20.0161 (16)0.0231 (18)0.0218 (18)0.0003 (14)0.0033 (14)0.0018 (14)
C30.0227 (18)0.030 (2)0.0190 (18)0.0043 (15)0.0030 (15)0.0041 (15)
O10.0381 (17)0.0343 (16)0.058 (2)0.0126 (14)0.0095 (15)0.0141 (15)
C60.0153 (16)0.0287 (18)0.0175 (17)0.0005 (14)0.0020 (14)0.0005 (14)
C50.0254 (19)0.0218 (17)0.028 (2)0.0038 (15)0.0060 (16)0.0076 (15)
C70.0247 (19)0.038 (2)0.0215 (19)0.0002 (16)0.0013 (15)0.0014 (16)
O20.0310 (16)0.0359 (16)0.061 (2)0.0146 (13)0.0064 (15)0.0158 (15)
C40.0258 (19)0.0215 (18)0.031 (2)0.0022 (15)0.0074 (16)0.0021 (15)
C80.0228 (19)0.031 (2)0.0236 (19)0.0007 (16)0.0001 (15)0.0058 (15)
Geometric parameters (Å, º) top
Br1—C71.967 (4)C3—H30.9500
Br2—C81.971 (4)C6—C51.392 (5)
C1—C61.392 (5)C6—C71.497 (5)
C1—C21.395 (5)C5—C41.379 (5)
C1—N11.480 (5)C5—H50.9500
N1—O21.209 (4)C7—H7A0.9900
N1—O11.222 (4)C7—H7B0.9900
C2—C31.387 (5)C4—H40.9500
C2—C81.491 (5)C8—H8A0.9900
C3—C41.392 (5)C8—H8B0.9900
C6—C1—C2123.6 (3)C6—C5—H5119.2
C6—C1—N1118.4 (3)C6—C7—Br1110.6 (2)
C2—C1—N1118.0 (3)C6—C7—H7A109.5
O2—N1—O1124.5 (3)Br1—C7—H7A109.5
O2—N1—C1118.2 (3)C6—C7—H7B109.5
O1—N1—C1117.3 (3)Br1—C7—H7B109.5
C3—C2—C1116.9 (3)H7A—C7—H7B108.1
C3—C2—C8119.6 (3)C5—C4—C3119.4 (3)
C1—C2—C8123.5 (3)C5—C4—H4120.3
C2—C3—C4121.6 (3)C3—C4—H4120.3
C2—C3—H3119.2C2—C8—Br2111.1 (2)
C4—C3—H3119.2C2—C8—H8A109.4
C1—C6—C5116.9 (3)Br2—C8—H8A109.4
C1—C6—C7123.3 (3)C2—C8—H8B109.4
C5—C6—C7119.7 (3)Br2—C8—H8B109.4
C4—C5—C6121.7 (3)H8A—C8—H8B108.0
C4—C5—H5119.2
C6—C1—N1—O2115.0 (4)N1—C1—C6—C5179.6 (3)
C2—C1—N1—O264.5 (5)C2—C1—C6—C7178.4 (3)
C6—C1—N1—O165.5 (5)N1—C1—C6—C71.0 (5)
C2—C1—N1—O1115.1 (4)C1—C6—C5—C40.3 (5)
C6—C1—C2—C31.5 (5)C7—C6—C5—C4179.1 (3)
N1—C1—C2—C3179.1 (3)C1—C6—C7—Br180.1 (4)
C6—C1—C2—C8179.0 (3)C5—C6—C7—Br199.3 (3)
N1—C1—C2—C80.4 (5)C6—C5—C4—C30.2 (5)
C1—C2—C3—C41.2 (5)C2—C3—C4—C50.6 (5)
C8—C2—C3—C4179.2 (3)C3—C2—C8—Br298.9 (3)
C2—C1—C6—C51.0 (5)C1—C2—C8—Br280.6 (4)

Experimental details

Crystal data
Chemical formulaC8H7Br2NO2
Mr308.97
Crystal system, space groupMonoclinic, P21/n
Temperature (K)185
a, b, c (Å)7.7837 (13), 7.7573 (13), 15.938 (3)
β (°) 90.933 (3)
V3)962.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)8.39
Crystal size (mm)0.20 × 0.20 × 0.08
Data collection
DiffractometerBruker SMART 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.285, 0.553
No. of measured, independent and
observed [I > 2σ(I)] reflections
8228, 2259, 1812
Rint0.041
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.083, 1.06
No. of reflections2259
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 1.31

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and X-SEED (Barbour, 2001), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Footnotes

Current address: Department of Chemistry, Georgetown University, 37th and O St NW, Washington, DC 20057 USA.

Acknowledgements

The authors acknowledge Higher Education Commission of Pakistan for providing a fellowship to MNA under the Inter­national Research Support Initiative Programme (IRSIP). KTH acknowledges grant support from the National Science Foundation (DMR-0349316).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBoeckmann, K. & Vögtle, F. (1981). Liebigs Ann. Chem. 3, 467–475.  Google Scholar
First citationBruker (2001). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, Q.-X., Cai, L., Wang, X.-F. & Shen, Y.-J. (2006). Acta Cryst. E62, o5726–o5727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMough, S. T., Goeltz, J. C. & Holman, K. T. (2004). Angew. Chem. Int. Ed. 43, 5631–5635.  Web of Science CSD CrossRef CAS Google Scholar
First citationQin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257–o3258.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaatikainen, K., Huuskonen, J., Kolehmainen, E. & Rissanen, K. (2008). Chem. Eur. J. 14, 3297–3305.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds