organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-2-chloro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 February 2010; accepted 8 March 2010; online 13 March 2010)

In the crystal structure of the title compound, C13H10ClNO3S, the conformation of the of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond. The dihedral angle between the two benzene rings is 73.3 (1)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds occur.

Related literature

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]; 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o326.]); Suchetan et al. (2010[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO3S

  • Mr = 295.73

  • Triclinic, [P \overline 1]

  • a = 8.1087 (8) Å

  • b = 9.3057 (9) Å

  • c = 9.6592 (9) Å

  • α = 74.841 (9)°

  • β = 65.790 (8)°

  • γ = 78.077 (9)°

  • V = 637.52 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.23 mm−1

  • T = 299 K

  • 0.55 × 0.50 × 0.45 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3081 measured reflections

  • 2210 independent reflections

  • 2119 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.147

  • S = 1.19

  • 2210 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (1) 2.12 (1) 2.968 (3) 172 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. In the present work, as part of a study of the effect of ring and the side chain substituents on crystal structures of N-aromatic sulfonamides (Gowda et al., 2009; 2010; Suchetan et al., 2010), the structure of N-(benzoyl)2-chlorobenzenesulfonamide (I) has been determined (Fig.1).

The conformation of the N—H bond in the C—SO2—NH—C(O) segment of the structure is anti to the C=O bond, similar to that observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009) and N-(2-chlorobenzoyl)benzenesulfonamide (III)(Gowda et al., 2010). The molecule is twisted at the s atom with a dihedral angle of 87.3 (1)° between the sulfonyl benzene ring and the C—SO2—NH—C—O segment, compared to the values of 86.5(0.1) in (II), and 87.3 (1)° (molecule 1) and 73.3 (1)° (molecule 2) in (III). Furthermore, the dihedral angle between the two benzene rings is 73.3 (1)° in (I) and 80.3(0.1) in (II), and 69.8 (1)° (molecule 1) and 89.8 (1)° (molecule 2) in (III).

The packing of molecules linked by intermolecular N—H···O (S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2009; 2010); Suchetan et al. (2010).

Experimental top

The title compound was prepared by refluxing a mixture of benzoic acid (0.02 mole), 2-chlorobenzenesulfonamide (0.02 mole) and excess phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into crushed ice. The solid, N-(benzoyl)2- chlorobenzenesulfonamide, obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The compound was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.85 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-Benzoyl-2-chlorobenzenesulfonamide top
Crystal data top
C13H10ClNO3SZ = 2
Mr = 295.73F(000) = 304
Triclinic, P1Dx = 1.541 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.1087 (8) ÅCell parameters from 25 reflections
b = 9.3057 (9) Åθ = 5.0–18.3°
c = 9.6592 (9) ŵ = 4.23 mm1
α = 74.841 (9)°T = 299 K
β = 65.790 (8)°Prism, colourless
γ = 78.077 (9)°0.55 × 0.50 × 0.45 mm
V = 637.52 (11) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 5.0°
Graphite monochromatorh = 93
ω/2θ scansk = 1111
3081 measured reflectionsl = 1111
2210 independent reflections3 standard reflections every 120 min
2119 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.435P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.004
2210 reflectionsΔρmax = 0.68 e Å3
176 parametersΔρmin = 0.66 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.034 (3)
Crystal data top
C13H10ClNO3Sγ = 78.077 (9)°
Mr = 295.73V = 637.52 (11) Å3
Triclinic, P1Z = 2
a = 8.1087 (8) ÅCu Kα radiation
b = 9.3057 (9) ŵ = 4.23 mm1
c = 9.6592 (9) ÅT = 299 K
α = 74.841 (9)°0.55 × 0.50 × 0.45 mm
β = 65.790 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.026
3081 measured reflections3 standard reflections every 120 min
2210 independent reflections intensity decay: 1.0%
2119 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.68 e Å3
2210 reflectionsΔρmin = 0.66 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26198 (12)0.56179 (10)0.59662 (10)0.0624 (4)
S10.08065 (8)0.36244 (7)0.76022 (7)0.0312 (3)
O10.2217 (3)0.2758 (3)0.8694 (2)0.0481 (6)
O20.1288 (3)0.5111 (2)0.6906 (2)0.0433 (5)
O30.0626 (3)0.0405 (2)0.7472 (3)0.0534 (6)
N10.0429 (3)0.2791 (2)0.6135 (2)0.0332 (5)
H1N0.078 (4)0.334 (3)0.5232 (19)0.040*
C10.0729 (3)0.3602 (3)0.8476 (3)0.0298 (6)
C20.2197 (4)0.4454 (3)0.7766 (3)0.0360 (6)
C30.3387 (4)0.4351 (4)0.8484 (4)0.0462 (8)
H30.43680.49150.80120.055*
C40.3125 (5)0.3420 (4)0.9892 (4)0.0496 (8)
H40.39290.33601.03740.059*
C50.1694 (5)0.2573 (4)1.0606 (4)0.0481 (8)
H50.15290.19471.15660.058*
C60.0499 (4)0.2655 (3)0.9892 (3)0.0376 (6)
H60.04630.20721.03660.045*
C70.1137 (3)0.1292 (3)0.6266 (3)0.0323 (6)
C80.2554 (4)0.0906 (3)0.4809 (3)0.0319 (6)
C90.2557 (4)0.0427 (3)0.4419 (4)0.0482 (8)
H90.16710.10590.50590.058*
C100.3871 (6)0.0808 (4)0.3085 (5)0.0642 (11)
H100.38460.16830.28040.077*
C110.5221 (5)0.0087 (5)0.2163 (4)0.0620 (10)
H110.61150.01890.12670.074*
C120.5257 (5)0.1395 (4)0.2561 (4)0.0531 (8)
H120.61910.19900.19460.064*
C130.3913 (4)0.1818 (3)0.3865 (3)0.0392 (7)
H130.39150.27180.41150.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0634 (6)0.0577 (6)0.0523 (6)0.0258 (4)0.0168 (4)0.0179 (4)
S10.0286 (4)0.0371 (4)0.0234 (4)0.0013 (3)0.0053 (3)0.0100 (3)
O10.0312 (10)0.0708 (15)0.0354 (11)0.0156 (10)0.0013 (8)0.0106 (10)
O20.0486 (12)0.0441 (12)0.0323 (11)0.0134 (9)0.0150 (9)0.0146 (9)
O30.0594 (14)0.0387 (11)0.0407 (12)0.0054 (10)0.0056 (10)0.0050 (9)
N10.0396 (12)0.0302 (11)0.0245 (11)0.0018 (9)0.0072 (9)0.0068 (9)
C10.0296 (12)0.0297 (12)0.0261 (13)0.0024 (10)0.0059 (10)0.0111 (10)
C20.0374 (14)0.0289 (13)0.0370 (15)0.0027 (10)0.0089 (11)0.0083 (11)
C30.0424 (16)0.0448 (17)0.057 (2)0.0060 (13)0.0188 (14)0.0184 (15)
C40.0502 (17)0.0561 (19)0.054 (2)0.0074 (14)0.0298 (15)0.0235 (16)
C50.0548 (18)0.0550 (19)0.0315 (15)0.0070 (15)0.0191 (14)0.0094 (14)
C60.0384 (14)0.0398 (15)0.0276 (14)0.0008 (11)0.0078 (11)0.0067 (11)
C70.0353 (13)0.0280 (12)0.0329 (14)0.0057 (10)0.0124 (11)0.0038 (11)
C80.0364 (13)0.0259 (12)0.0342 (14)0.0032 (10)0.0161 (11)0.0080 (10)
C90.0505 (17)0.0339 (15)0.066 (2)0.0019 (13)0.0237 (16)0.0228 (15)
C100.070 (2)0.058 (2)0.081 (3)0.0185 (18)0.036 (2)0.048 (2)
C110.055 (2)0.077 (3)0.049 (2)0.0274 (19)0.0176 (16)0.0360 (19)
C120.0424 (17)0.059 (2)0.0432 (18)0.0059 (14)0.0068 (14)0.0106 (15)
C130.0391 (14)0.0345 (14)0.0386 (16)0.0012 (11)0.0093 (12)0.0095 (12)
Geometric parameters (Å, º) top
Cl1—C21.730 (3)C5—C61.382 (4)
S1—O11.421 (2)C5—H50.9300
S1—O21.423 (2)C6—H60.9300
S1—N11.644 (2)C7—C81.482 (4)
S1—C11.762 (3)C8—C131.387 (4)
O3—C71.206 (3)C8—C91.387 (4)
N1—C71.388 (3)C9—C101.370 (5)
N1—H1N0.853 (10)C9—H90.9300
C1—C61.382 (4)C10—C111.369 (6)
C1—C21.398 (4)C10—H100.9300
C2—C31.378 (4)C11—C121.378 (5)
C3—C41.367 (5)C11—H110.9300
C3—H30.9300C12—C131.373 (4)
C4—C51.371 (5)C12—H120.9300
C4—H40.9300C13—H130.9300
O1—S1—O2118.68 (13)C1—C6—C5120.2 (3)
O1—S1—N1110.43 (12)C1—C6—H6119.9
O2—S1—N1104.55 (11)C5—C6—H6119.9
O1—S1—C1107.69 (13)O3—C7—N1121.8 (3)
O2—S1—C1110.95 (12)O3—C7—C8124.1 (2)
N1—S1—C1103.50 (12)N1—C7—C8114.1 (2)
C7—N1—S1124.95 (19)C13—C8—C9119.5 (3)
C7—N1—H1N117 (2)C13—C8—C7121.4 (2)
S1—N1—H1N118 (2)C9—C8—C7119.0 (3)
C6—C1—C2119.2 (3)C10—C9—C8119.7 (3)
C6—C1—S1118.1 (2)C10—C9—H9120.2
C2—C1—S1122.6 (2)C8—C9—H9120.2
C3—C2—C1119.9 (3)C11—C10—C9120.7 (3)
C3—C2—Cl1118.0 (2)C11—C10—H10119.7
C1—C2—Cl1122.0 (2)C9—C10—H10119.7
C4—C3—C2119.9 (3)C10—C11—C12120.1 (3)
C4—C3—H3120.0C10—C11—H11120.0
C2—C3—H3120.0C12—C11—H11120.0
C3—C4—C5121.0 (3)C13—C12—C11119.9 (3)
C3—C4—H4119.5C13—C12—H12120.0
C5—C4—H4119.5C11—C12—H12120.0
C4—C5—C6119.7 (3)C12—C13—C8120.1 (3)
C4—C5—H5120.2C12—C13—H13120.0
C6—C5—H5120.2C8—C13—H13120.0
O1—S1—N1—C748.3 (3)C2—C1—C6—C51.0 (4)
O2—S1—N1—C7177.1 (2)S1—C1—C6—C5178.5 (2)
C1—S1—N1—C766.7 (2)C4—C5—C6—C10.9 (4)
O1—S1—C1—C68.2 (2)S1—N1—C7—O313.9 (4)
O2—S1—C1—C6139.7 (2)S1—N1—C7—C8165.87 (18)
N1—S1—C1—C6108.7 (2)O3—C7—C8—C13136.3 (3)
O1—S1—C1—C2174.3 (2)N1—C7—C8—C1343.5 (3)
O2—S1—C1—C242.9 (2)O3—C7—C8—C941.1 (4)
N1—S1—C1—C268.7 (2)N1—C7—C8—C9139.2 (3)
C6—C1—C2—C30.4 (4)C13—C8—C9—C101.8 (5)
S1—C1—C2—C3177.8 (2)C7—C8—C9—C10179.2 (3)
C6—C1—C2—Cl1177.9 (2)C8—C9—C10—C112.4 (5)
S1—C1—C2—Cl10.4 (3)C9—C10—C11—C120.8 (6)
C1—C2—C3—C40.3 (4)C10—C11—C12—C131.5 (5)
Cl1—C2—C3—C4178.6 (2)C11—C12—C13—C82.1 (5)
C2—C3—C4—C50.4 (5)C9—C8—C13—C120.5 (4)
C3—C4—C5—C60.2 (5)C7—C8—C13—C12176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (1)2.12 (1)2.968 (3)172 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H10ClNO3S
Mr295.73
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)8.1087 (8), 9.3057 (9), 9.6592 (9)
α, β, γ (°)74.841 (9), 65.790 (8), 78.077 (9)
V3)637.52 (11)
Z2
Radiation typeCu Kα
µ (mm1)4.23
Crystal size (mm)0.55 × 0.50 × 0.45
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3081, 2210, 2119
Rint0.026
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.147, 1.19
No. of reflections2210
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.66

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.853 (10)2.121 (12)2.968 (3)172 (3)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o326.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds