organic compounds
9-(2-Ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 23H20NO2+·CF3SO3−, the cations form inversion dimers through π–π interactions between the acridine ring systems. These dimers are further linked by C—H⋯π interactions. The cations and anions are connected by C—H⋯O and C—F⋯π interactions. The acridine and benzene ring systems are oriented at a dihedral angle of 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel in the lattice.
of the title compound, CRelated literature
For general background to 9-(phenoxycarbonyl)-10-alkylacridinium salts, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a,b). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Niziołek et al. (2008); Sato (1996).
Experimental
Crystal data
|
Data collection
|
Refinement
|
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810008950/ng2739sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008950/ng2739Isup2.hkl
The compound was synthesized in three steps (Niziołek et al., 2008). First, 9-(chlorocarbonyl)-acridine was produced by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. Then, esterification with 2-ethylphenol was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2-ethylphenyl acridine-9-carboxylate thus obtained was quaternarized with a five-fold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2-ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 470-471 K).
H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and alkyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the alkyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. | |
Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x + 1, y, z + 1; (ii) x + 1, y, z; (iii) –x + 1, –y + 2, –z + 2; (iv) –x + 1, –y + 2, –z + 1; (v) –x + 1, –y + 1, –z + 1.] |
C23H20NO2+·CF3O3S− | Z = 2 |
Mr = 491.47 | F(000) = 508 |
Triclinic, P1 | Dx = 1.484 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8519 (4) Å | Cell parameters from 10425 reflections |
b = 10.9533 (4) Å | θ = 3.1–29.2° |
c = 11.7805 (4) Å | µ = 0.21 mm−1 |
α = 104.379 (3)° | T = 295 K |
β = 101.475 (3)° | Block, yellow |
γ = 109.983 (3)° | 0.40 × 0.35 × 0.20 mm |
V = 1099.61 (7) Å3 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2956 reflections with I > 2σ(I) |
Radiation source: Enhanced (Mo) X-ray Source | Rint = 0.039 |
Graphite monochromator | θmax = 25.1°, θmin = 3.1° |
Detector resolution: 10.4002 pixels mm-1 | h = −11→11 |
ω scans | k = −13→13 |
21109 measured reflections | l = −14→14 |
3914 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0737P)2] where P = (Fo2 + 2Fc2)/3 |
3914 reflections | (Δ/σ)max < 0.001 |
309 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C23H20NO2+·CF3O3S− | γ = 109.983 (3)° |
Mr = 491.47 | V = 1099.61 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.8519 (4) Å | Mo Kα radiation |
b = 10.9533 (4) Å | µ = 0.21 mm−1 |
c = 11.7805 (4) Å | T = 295 K |
α = 104.379 (3)° | 0.40 × 0.35 × 0.20 mm |
β = 101.475 (3)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2956 reflections with I > 2σ(I) |
21109 measured reflections | Rint = 0.039 |
3914 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.20 e Å−3 |
3914 reflections | Δρmin = −0.30 e Å−3 |
309 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C8 | 0.4629 (2) | 0.70220 (17) | 0.44477 (16) | 0.0468 (4) | |
H8 | 0.3781 | 0.7136 | 0.4600 | 0.056* | |
C7 | 0.4857 (2) | 0.69994 (19) | 0.33477 (18) | 0.0561 (5) | |
H7 | 0.4164 | 0.7087 | 0.2745 | 0.067* | |
C6 | 0.6146 (3) | 0.68432 (19) | 0.31214 (18) | 0.0573 (5) | |
H6 | 0.6298 | 0.6842 | 0.2367 | 0.069* | |
C5 | 0.7175 (2) | 0.66940 (17) | 0.39617 (17) | 0.0508 (5) | |
H5 | 0.8014 | 0.6591 | 0.3780 | 0.061* | |
C4 | 0.8753 (2) | 0.62222 (19) | 0.79550 (18) | 0.0535 (5) | |
H4 | 0.9549 | 0.6038 | 0.7759 | 0.064* | |
C3 | 0.8550 (2) | 0.6234 (2) | 0.90569 (19) | 0.0583 (5) | |
H3 | 0.9214 | 0.6064 | 0.9612 | 0.070* | |
C2 | 0.7358 (2) | 0.64984 (19) | 0.93822 (18) | 0.0559 (5) | |
H2 | 0.7247 | 0.6518 | 1.0151 | 0.067* | |
C1 | 0.6372 (2) | 0.67241 (18) | 0.85755 (16) | 0.0499 (5) | |
H1 | 0.5573 | 0.6881 | 0.8792 | 0.060* | |
C9 | 0.55076 (18) | 0.69321 (15) | 0.65368 (15) | 0.0374 (4) | |
N10 | 0.79811 (15) | 0.65304 (13) | 0.59893 (13) | 0.0419 (3) | |
C13 | 0.56732 (19) | 0.68738 (15) | 0.53759 (15) | 0.0381 (4) | |
C14 | 0.69716 (19) | 0.66950 (15) | 0.51165 (15) | 0.0403 (4) | |
C11 | 0.65277 (19) | 0.67276 (16) | 0.74035 (15) | 0.0394 (4) | |
C12 | 0.77656 (19) | 0.64875 (15) | 0.70957 (15) | 0.0404 (4) | |
C15 | 0.4184 (2) | 0.71774 (16) | 0.68401 (15) | 0.0389 (4) | |
O16 | 0.46656 (13) | 0.83893 (11) | 0.77566 (10) | 0.0435 (3) | |
O17 | 0.28868 (14) | 0.63985 (12) | 0.63199 (12) | 0.0554 (4) | |
C18 | 0.3528 (2) | 0.88341 (16) | 0.80457 (16) | 0.0439 (4) | |
C19 | 0.3118 (2) | 0.86926 (16) | 0.90748 (17) | 0.0478 (4) | |
C20 | 0.2093 (2) | 0.92574 (19) | 0.9350 (2) | 0.0615 (6) | |
H20 | 0.1775 | 0.9189 | 1.0032 | 0.074* | |
C21 | 0.1550 (3) | 0.9905 (2) | 0.8641 (2) | 0.0690 (6) | |
H21 | 0.0875 | 1.0273 | 0.8851 | 0.083* | |
C22 | 0.1986 (3) | 1.0024 (2) | 0.7621 (2) | 0.0671 (6) | |
H22 | 0.1602 | 1.0460 | 0.7140 | 0.080* | |
C23 | 0.3001 (2) | 0.94881 (18) | 0.73174 (19) | 0.0552 (5) | |
H23 | 0.3321 | 0.9567 | 0.6637 | 0.066* | |
C24 | 0.3714 (2) | 0.79938 (18) | 0.98693 (17) | 0.0554 (5) | |
H24A | 0.3664 | 0.8357 | 1.0692 | 0.067* | |
H24B | 0.4774 | 0.8221 | 0.9933 | 0.067* | |
C25 | 0.2850 (3) | 0.6427 (2) | 0.9388 (2) | 0.0644 (5) | |
H25A | 0.3346 | 0.6040 | 0.9891 | 0.097* | |
H25B | 0.2832 | 0.6063 | 0.8552 | 0.097* | |
H25C | 0.1828 | 0.6189 | 0.9416 | 0.097* | |
C26 | 0.9362 (2) | 0.6389 (2) | 0.5764 (2) | 0.0623 (5) | |
H26A | 0.9481 | 0.6594 | 0.5034 | 0.093* | |
H26B | 0.9257 | 0.5459 | 0.5655 | 0.093* | |
H26C | 1.0239 | 0.7022 | 0.6456 | 0.093* | |
S27 | 0.07676 (5) | 0.73990 (4) | 0.26699 (4) | 0.04742 (17) | |
O28 | −0.07260 (15) | 0.73377 (15) | 0.22221 (13) | 0.0649 (4) | |
O29 | 0.09669 (19) | 0.68219 (15) | 0.36225 (14) | 0.0740 (4) | |
O30 | 0.14440 (18) | 0.70502 (16) | 0.17469 (13) | 0.0743 (4) | |
C31 | 0.1906 (3) | 0.9229 (2) | 0.3455 (2) | 0.0740 (6) | |
F32 | 0.1421 (2) | 0.97409 (17) | 0.43606 (15) | 0.1282 (7) | |
F33 | 0.1861 (2) | 0.99425 (14) | 0.27126 (17) | 0.1192 (6) | |
F34 | 0.33510 (19) | 0.95023 (16) | 0.39672 (18) | 0.1263 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C8 | 0.0487 (11) | 0.0493 (10) | 0.0471 (10) | 0.0242 (9) | 0.0164 (9) | 0.0174 (8) |
C7 | 0.0650 (14) | 0.0608 (11) | 0.0476 (11) | 0.0298 (10) | 0.0164 (10) | 0.0226 (9) |
C6 | 0.0724 (14) | 0.0590 (11) | 0.0465 (11) | 0.0259 (10) | 0.0281 (10) | 0.0219 (9) |
C5 | 0.0521 (12) | 0.0501 (10) | 0.0548 (11) | 0.0202 (9) | 0.0292 (10) | 0.0168 (8) |
C4 | 0.0414 (11) | 0.0578 (11) | 0.0627 (12) | 0.0277 (9) | 0.0110 (9) | 0.0169 (9) |
C3 | 0.0565 (13) | 0.0641 (12) | 0.0565 (12) | 0.0317 (10) | 0.0074 (10) | 0.0226 (9) |
C2 | 0.0645 (13) | 0.0650 (12) | 0.0485 (11) | 0.0358 (11) | 0.0167 (10) | 0.0240 (9) |
C1 | 0.0541 (12) | 0.0592 (11) | 0.0501 (10) | 0.0328 (9) | 0.0219 (9) | 0.0233 (9) |
C9 | 0.0346 (9) | 0.0342 (8) | 0.0447 (9) | 0.0151 (7) | 0.0147 (7) | 0.0123 (7) |
N10 | 0.0325 (8) | 0.0425 (7) | 0.0491 (8) | 0.0162 (6) | 0.0158 (7) | 0.0096 (6) |
C13 | 0.0388 (9) | 0.0344 (8) | 0.0409 (9) | 0.0157 (7) | 0.0134 (7) | 0.0109 (7) |
C14 | 0.0402 (10) | 0.0351 (8) | 0.0429 (9) | 0.0134 (7) | 0.0168 (8) | 0.0090 (7) |
C11 | 0.0379 (10) | 0.0372 (8) | 0.0438 (9) | 0.0171 (7) | 0.0133 (8) | 0.0125 (7) |
C12 | 0.0354 (9) | 0.0366 (8) | 0.0447 (10) | 0.0145 (7) | 0.0107 (8) | 0.0086 (7) |
C15 | 0.0401 (11) | 0.0419 (9) | 0.0410 (9) | 0.0212 (8) | 0.0151 (8) | 0.0166 (7) |
O16 | 0.0375 (7) | 0.0442 (6) | 0.0504 (7) | 0.0205 (5) | 0.0174 (6) | 0.0106 (5) |
O17 | 0.0375 (8) | 0.0531 (7) | 0.0640 (8) | 0.0168 (6) | 0.0143 (6) | 0.0053 (6) |
C18 | 0.0367 (10) | 0.0373 (8) | 0.0559 (11) | 0.0181 (7) | 0.0156 (8) | 0.0079 (8) |
C19 | 0.0435 (10) | 0.0404 (9) | 0.0545 (11) | 0.0151 (8) | 0.0194 (9) | 0.0082 (8) |
C20 | 0.0549 (13) | 0.0570 (11) | 0.0730 (13) | 0.0250 (10) | 0.0312 (11) | 0.0116 (10) |
C21 | 0.0579 (14) | 0.0588 (12) | 0.0956 (17) | 0.0356 (11) | 0.0316 (13) | 0.0131 (12) |
C22 | 0.0613 (14) | 0.0552 (11) | 0.0932 (16) | 0.0354 (11) | 0.0211 (12) | 0.0257 (11) |
C23 | 0.0530 (12) | 0.0502 (10) | 0.0668 (12) | 0.0251 (9) | 0.0205 (10) | 0.0203 (9) |
C24 | 0.0553 (12) | 0.0599 (11) | 0.0536 (11) | 0.0243 (10) | 0.0252 (10) | 0.0163 (9) |
C25 | 0.0621 (14) | 0.0642 (12) | 0.0767 (14) | 0.0260 (10) | 0.0307 (11) | 0.0335 (11) |
C26 | 0.0382 (11) | 0.0780 (13) | 0.0666 (13) | 0.0265 (10) | 0.0203 (10) | 0.0117 (11) |
S27 | 0.0507 (3) | 0.0533 (3) | 0.0460 (3) | 0.0255 (2) | 0.0210 (2) | 0.0191 (2) |
O28 | 0.0476 (9) | 0.0797 (9) | 0.0687 (9) | 0.0282 (7) | 0.0186 (7) | 0.0245 (7) |
O29 | 0.0943 (12) | 0.0861 (10) | 0.0733 (10) | 0.0504 (9) | 0.0386 (9) | 0.0506 (8) |
O30 | 0.0806 (11) | 0.1006 (11) | 0.0617 (9) | 0.0510 (9) | 0.0407 (8) | 0.0266 (8) |
C31 | 0.0712 (17) | 0.0610 (13) | 0.0783 (15) | 0.0277 (12) | 0.0042 (13) | 0.0196 (12) |
F32 | 0.1628 (18) | 0.1019 (12) | 0.0962 (11) | 0.0735 (12) | 0.0201 (12) | −0.0158 (9) |
F33 | 0.1130 (13) | 0.0720 (9) | 0.1535 (15) | 0.0184 (9) | 0.0082 (11) | 0.0619 (10) |
F34 | 0.0701 (11) | 0.0882 (10) | 0.1607 (16) | 0.0141 (9) | −0.0251 (11) | 0.0193 (10) |
C8—C7 | 1.354 (3) | O16—C18 | 1.432 (2) |
C8—C13 | 1.427 (2) | C18—C23 | 1.379 (2) |
C8—H8 | 0.9300 | C18—C19 | 1.380 (3) |
C7—C6 | 1.405 (3) | C19—C20 | 1.401 (3) |
C7—H7 | 0.9300 | C19—C24 | 1.500 (3) |
C6—C5 | 1.352 (3) | C20—C21 | 1.365 (3) |
C6—H6 | 0.9300 | C20—H20 | 0.9300 |
C5—C14 | 1.414 (2) | C21—C22 | 1.375 (3) |
C5—H5 | 0.9300 | C21—H21 | 0.9300 |
C4—C3 | 1.350 (3) | C22—C23 | 1.382 (3) |
C4—C12 | 1.416 (3) | C22—H22 | 0.9300 |
C4—H4 | 0.9300 | C23—H23 | 0.9300 |
C3—C2 | 1.402 (3) | C24—C25 | 1.523 (3) |
C3—H3 | 0.9300 | C24—H24A | 0.9700 |
C2—C1 | 1.349 (3) | C24—H24B | 0.9700 |
C2—H2 | 0.9300 | C25—H25A | 0.9600 |
C1—C11 | 1.420 (2) | C25—H25B | 0.9600 |
C1—H1 | 0.9300 | C25—H25C | 0.9600 |
C9—C13 | 1.398 (2) | C26—H26A | 0.9600 |
C9—C11 | 1.401 (2) | C26—H26B | 0.9600 |
C9—C15 | 1.509 (2) | C26—H26C | 0.9600 |
N10—C12 | 1.371 (2) | S27—O30 | 1.4242 (14) |
N10—C14 | 1.374 (2) | S27—O29 | 1.4307 (14) |
N10—C26 | 1.488 (2) | S27—O28 | 1.4331 (15) |
C13—C14 | 1.437 (2) | S27—C31 | 1.806 (2) |
C11—C12 | 1.427 (2) | C31—F33 | 1.314 (3) |
C15—O17 | 1.192 (2) | C31—F34 | 1.326 (3) |
C15—O16 | 1.3442 (19) | C31—F32 | 1.330 (3) |
C7—C8—C13 | 120.82 (17) | C23—C18—O16 | 116.69 (16) |
C7—C8—H8 | 119.6 | C19—C18—O16 | 119.15 (16) |
C13—C8—H8 | 119.6 | C18—C19—C20 | 115.51 (18) |
C8—C7—C6 | 119.67 (19) | C18—C19—C24 | 123.48 (16) |
C8—C7—H7 | 120.2 | C20—C19—C24 | 121.01 (18) |
C6—C7—H7 | 120.2 | C21—C20—C19 | 121.7 (2) |
C5—C6—C7 | 122.33 (18) | C21—C20—H20 | 119.1 |
C5—C6—H6 | 118.8 | C19—C20—H20 | 119.1 |
C7—C6—H6 | 118.8 | C20—C21—C22 | 120.97 (19) |
C6—C5—C14 | 119.89 (18) | C20—C21—H21 | 119.5 |
C6—C5—H5 | 120.1 | C22—C21—H21 | 119.5 |
C14—C5—H5 | 120.1 | C21—C22—C23 | 119.4 (2) |
C3—C4—C12 | 120.51 (18) | C21—C22—H22 | 120.3 |
C3—C4—H4 | 119.7 | C23—C22—H22 | 120.3 |
C12—C4—H4 | 119.7 | C18—C23—C22 | 118.5 (2) |
C4—C3—C2 | 121.39 (18) | C18—C23—H23 | 120.8 |
C4—C3—H3 | 119.3 | C22—C23—H23 | 120.8 |
C2—C3—H3 | 119.3 | C19—C24—C25 | 113.77 (17) |
C1—C2—C3 | 119.77 (19) | C19—C24—H24A | 108.8 |
C1—C2—H2 | 120.1 | C25—C24—H24A | 108.8 |
C3—C2—H2 | 120.1 | C19—C24—H24B | 108.8 |
C2—C1—C11 | 121.50 (18) | C25—C24—H24B | 108.8 |
C2—C1—H1 | 119.2 | H24A—C24—H24B | 107.7 |
C11—C1—H1 | 119.2 | C24—C25—H25A | 109.5 |
C13—C9—C11 | 120.83 (15) | C24—C25—H25B | 109.5 |
C13—C9—C15 | 119.28 (15) | H25A—C25—H25B | 109.5 |
C11—C9—C15 | 119.87 (15) | C24—C25—H25C | 109.5 |
C12—N10—C14 | 121.94 (14) | H25A—C25—H25C | 109.5 |
C12—N10—C26 | 117.26 (16) | H25B—C25—H25C | 109.5 |
C14—N10—C26 | 120.80 (15) | N10—C26—H26A | 109.5 |
C9—C13—C8 | 122.77 (15) | N10—C26—H26B | 109.5 |
C9—C13—C14 | 118.70 (16) | H26A—C26—H26B | 109.5 |
C8—C13—C14 | 118.51 (15) | N10—C26—H26C | 109.5 |
N10—C14—C5 | 121.66 (16) | H26A—C26—H26C | 109.5 |
N10—C14—C13 | 119.56 (15) | H26B—C26—H26C | 109.5 |
C5—C14—C13 | 118.77 (17) | O30—S27—O29 | 114.62 (9) |
C9—C11—C1 | 122.87 (16) | O30—S27—O28 | 115.38 (9) |
C9—C11—C12 | 119.01 (15) | O29—S27—O28 | 115.01 (9) |
C1—C11—C12 | 118.12 (16) | O30—S27—C31 | 103.15 (11) |
N10—C12—C4 | 121.62 (16) | O29—S27—C31 | 103.45 (10) |
N10—C12—C11 | 119.71 (15) | O28—S27—C31 | 102.78 (10) |
C4—C12—C11 | 118.67 (16) | F33—C31—F34 | 107.8 (2) |
O17—C15—O16 | 125.00 (15) | F33—C31—F32 | 106.5 (2) |
O17—C15—C9 | 123.94 (15) | F34—C31—F32 | 106.5 (2) |
O16—C15—C9 | 111.05 (14) | F33—C31—S27 | 112.23 (16) |
C15—O16—C18 | 117.14 (13) | F34—C31—S27 | 112.05 (16) |
C23—C18—C19 | 123.94 (16) | F32—C31—S27 | 111.42 (18) |
C13—C8—C7—C6 | −0.7 (3) | C9—C11—C12—N10 | 3.3 (2) |
C8—C7—C6—C5 | 0.9 (3) | C1—C11—C12—N10 | −177.78 (14) |
C7—C6—C5—C14 | −0.1 (3) | C9—C11—C12—C4 | −177.29 (15) |
C12—C4—C3—C2 | 0.4 (3) | C1—C11—C12—C4 | 1.6 (2) |
C4—C3—C2—C1 | 1.1 (3) | C13—C9—C15—O17 | 63.9 (2) |
C3—C2—C1—C11 | −1.2 (3) | C11—C9—C15—O17 | −114.36 (19) |
C11—C9—C13—C8 | 177.50 (15) | C13—C9—C15—O16 | −115.39 (16) |
C15—C9—C13—C8 | −0.7 (2) | C11—C9—C15—O16 | 66.40 (18) |
C11—C9—C13—C14 | −4.3 (2) | O17—C15—O16—C18 | −6.3 (2) |
C15—C9—C13—C14 | 177.54 (13) | C9—C15—O16—C18 | 172.96 (13) |
C7—C8—C13—C9 | 178.04 (16) | C15—O16—C18—C23 | −82.25 (18) |
C7—C8—C13—C14 | −0.2 (2) | C15—O16—C18—C19 | 102.93 (18) |
C12—N10—C14—C5 | −177.94 (14) | C23—C18—C19—C20 | 0.5 (3) |
C26—N10—C14—C5 | 2.0 (2) | O16—C18—C19—C20 | 174.87 (14) |
C12—N10—C14—C13 | 2.1 (2) | C23—C18—C19—C24 | −179.24 (17) |
C26—N10—C14—C13 | −178.01 (14) | O16—C18—C19—C24 | −4.8 (2) |
C6—C5—C14—N10 | 179.25 (16) | C18—C19—C20—C21 | −0.2 (3) |
C6—C5—C14—C13 | −0.8 (2) | C24—C19—C20—C21 | 179.50 (18) |
C9—C13—C14—N10 | 2.6 (2) | C19—C20—C21—C22 | 0.3 (3) |
C8—C13—C14—N10 | −179.08 (14) | C20—C21—C22—C23 | −0.6 (3) |
C9—C13—C14—C5 | −177.38 (14) | C19—C18—C23—C22 | −0.8 (3) |
C8—C13—C14—C5 | 0.9 (2) | O16—C18—C23—C22 | −175.31 (16) |
C13—C9—C11—C1 | −177.50 (15) | C21—C22—C23—C18 | 0.8 (3) |
C15—C9—C11—C1 | 0.7 (2) | C18—C19—C24—C25 | −83.8 (2) |
C13—C9—C11—C12 | 1.4 (2) | C20—C19—C24—C25 | 96.5 (2) |
C15—C9—C11—C12 | 179.56 (13) | O30—S27—C31—F33 | 60.3 (2) |
C2—C1—C11—C9 | 178.74 (17) | O29—S27—C31—F33 | −179.97 (18) |
C2—C1—C11—C12 | −0.1 (3) | O28—S27—C31—F33 | −60.0 (2) |
C14—N10—C12—C4 | 175.56 (15) | O30—S27—C31—F34 | −61.1 (2) |
C26—N10—C12—C4 | −4.4 (2) | O29—S27—C31—F34 | 58.6 (2) |
C14—N10—C12—C11 | −5.0 (2) | O28—S27—C31—F34 | 178.62 (18) |
C26—N10—C12—C11 | 175.04 (14) | O30—S27—C31—F32 | 179.70 (16) |
C3—C4—C12—N10 | 177.62 (16) | O29—S27—C31—F32 | −60.58 (18) |
C3—C4—C12—C11 | −1.8 (3) | O28—S27—C31—F32 | 59.41 (18) |
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.55 | 3.221 (2) | 130 |
C5—H5···O28ii | 0.93 | 2.56 | 3.222 (3) | 129 |
C24—H24B···Cg4iii | 0.96 | 2.92 | 3.603 (2) | 129 |
C26—H26A···O29ii | 0.96 | 2.43 | 3.280 (3) | 148 |
C26—H26C···Cg4ii | 0.96 | 2.80 | 3.741 (2) | 165 |
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C23H20NO2+·CF3O3S− |
Mr | 491.47 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 9.8519 (4), 10.9533 (4), 11.7805 (4) |
α, β, γ (°) | 104.379 (3), 101.475 (3), 109.983 (3) |
V (Å3) | 1099.61 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.40 × 0.35 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21109, 3914, 2956 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.116, 1.10 |
No. of reflections | 3914 |
No. of parameters | 309 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.30 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.55 | 3.221 (2) | 130 |
C5—H5···O28ii | 0.93 | 2.56 | 3.222 (3) | 129 |
C24—H24B···Cg4iii | 0.96 | 2.92 | 3.603 (2) | 129 |
C26—H26A···O29ii | 0.96 | 2.43 | 3.280 (3) | 148 |
C26—H26C···Cg4ii | 0.96 | 2.80 | 3.741 (2) | 165 |
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+2. |
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively. |
X—I···J | I···J | X···J | X—I···J |
C31—F32···Cg3iv | 3.474 (2) | 4.003 (2) | 103.67 (14) |
C31—F33···Cg1iv | 3.241 (2) | 4.087 (2) | 121.73 (14) |
C31—F34···Cg3iv | 3.762 (2) | 4.003 (2) | 90.62 (13) |
Symmetry code: (iv) -x + 1, -y+ 2, -z + 1. |
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 1v | 4.022 (2) | 0.00 | 3.571 (2) | 1.850 (2) |
1 | 3v | 3.702 (2) | 1.80 | 3.532 (2) | 1.109 (2) |
2 | 3v | 3.965 (2) | 4.29 | 3.451 (2) | 1.960 (2) |
3 | 1v | 3.702 (2) | 1.80 | 3.544 (2) | 1.070 (2) |
3 | 2v | 3.965 (2) | 4.29 | 3.566 (2) | 1.733 (2) |
Symmetry code: (v) -x + 1, -y + 1, -z + 1. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. Web of Science CrossRef PubMed CAS Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błażejowski, J. (2008). J. Mol. Struct. 920, 231–237. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470. Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. C61, o50–o52. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005b). Acta Cryst. C61, o690–o694. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (1999). Chem. Commun. pp. 313–314. Web of Science CrossRef Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
9-(Phenoxycarbonyl)-10-alkylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are commonly applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer et al., 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of one such derivative.
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.022 (3) Å and 0.002 (3) Å, the acridine and benzene ring systems are oriented at 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) in the lattice. The mutual arrangement of the carboxyl group relative to the acridine skeleton is similar in the compound investigated and its precursor – 2-ethylphenyl acridine-9-carboxylate (Sikorski et al., 2005a). On the other hand, the acridine and benzene ring systems are oriented quite differently in the compound investigated and its precursor.
In the crystal structure, the inversely oriented cations form dimers through multidirectional π–π interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The C–H···O interactions are of the hydrogen bond type (Steiner, 1999; Bianchi et al. 2004). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.