organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o826-o827

9-(2-Ethyl­phen­oxy­carbon­yl)-10-methyl­acridinium tri­fluoro­methane­sulfonate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 2 March 2010; accepted 9 March 2010; online 13 March 2010)

In the crystal structure of the title compound, C23H20NO2+·CF3SO3, the cations form inversion dimers through ππ inter­actions between the acridine ring systems. These dimers are further linked by C—H⋯π inter­actions. The cations and anions are connected by C—H⋯O and C—F⋯π inter­actions. The acridine and benzene ring systems are oriented at a dihedral angle of 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of adjacent acridine units are parallel in the lattice.

Related literature

For general background to 9-(phenoxy­carbon­yl)-10-alkyl­acridinium salts, see: Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2005a[Sikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. C61, o50-o52.],b[Sikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005b). Acta Cryst. C61, o690-o694.]). For inter­molecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Steiner (1999[Steiner, T. (1999). Chem. Commun. pp. 313-314.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Niziołek et al. (2008[Niziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błażejowski, J. (2008). J. Mol. Struct. 920, 231-237.]); Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20NO2+·CF3O3S

  • Mr = 491.47

  • Triclinic, [P \overline 1]

  • a = 9.8519 (4) Å

  • b = 10.9533 (4) Å

  • c = 11.7805 (4) Å

  • α = 104.379 (3)°

  • β = 101.475 (3)°

  • γ = 109.983 (3)°

  • V = 1099.61 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.40 × 0.35 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • 21109 measured reflections

  • 3914 independent reflections

  • 2956 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.10

  • 3914 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O28i 0.93 2.55 3.221 (2) 130
C5—H5⋯O28ii 0.93 2.56 3.222 (3) 129
C24—H24BCg4iii 0.96 2.92 3.603 (2) 129
C26—H26A⋯O29ii 0.96 2.43 3.280 (3) 148
C26—H26CCg4ii 0.96 2.80 3.741 (2) 165
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+2.

Table 2
C—F⋯π inter­actions (Å,°)

Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.

XIJ IJ XJ XIJ
C31—F32⋯Cg3iv 3.474 (2) 4.003 (2) 103.67 (14)
C31—F33⋯Cg1iv 3.241 (2) 4.087 (2) 121.73 (14)
C31—F34⋯Cg3iv 3.762 (2) 4.003 (2) 90.62 (13)
Symmetry code: (iv) −x + 1, −y + 2, −z + 1.

Table 3
ππ inter­actions (Å,°)

Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 1v 4.022 (2) 0.00 3.571 (2) 1.850 (2)
1 3v 3.702 (2) 1.80 3.532 (2) 1.109 (2)
2 3v 3.965 (2) 4.29 3.451 (2) 1.960 (2)
3 1v 3.702 (2) 1.80 3.544 (2) 1.070 (2)
3 2v 3.965 (2) 4.29 3.566 (2) 1.733 (2)
Symmetry code: (v) −x + 1, −y + 1, −z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

9-(Phenoxycarbonyl)-10-alkylacridinium salts have long been known as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are commonly applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The reaction of the cations of these salts with hydrogen peroxide in alkaline media produces light. Our own investigations (Rak et al., 1999) and those of others (Zomer et al., 2001) have revealed that oxidation of acridinium chemiluminogens is accompanied by the removal of the phenoxycarbonyl fragment and the conversion of the remaining molecules to electronically excited, light-emitting 10-alkyl-9-acridinones. It has been found that the efficiency of chemiluminescence – crucial for analytical applications – is affected by the constitution of the phenyl fragment (Zomer & Jacquemijns, 2001). In the search for efficient chemiluminogens we undertook investigations on 9-(phenoxycarbonyl)-10-methylacridinium derivatives substituted in the phenyl fragment. Here we present the structure of one such derivative.

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2005a,b). With respective average deviations from planarity of 0.022 (3) Å and 0.002 (3) Å, the acridine and benzene ring systems are oriented at 20.8 (1)°. The carboxyl group is twisted at an angle of 66.2 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (remain at an angle of 0.0 (1)°) in the lattice. The mutual arrangement of the carboxyl group relative to the acridine skeleton is similar in the compound investigated and its precursor – 2-ethylphenyl acridine-9-carboxylate (Sikorski et al., 2005a). On the other hand, the acridine and benzene ring systems are oriented quite differently in the compound investigated and its precursor.

In the crystal structure, the inversely oriented cations form dimers through multidirectional ππ interactions involving acridine moieties (Table 3, Fig. 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The C–H···O interactions are of the hydrogen bond type (Steiner, 1999; Bianchi et al. 2004). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to 9-(phenoxycarbonyl)-10-alkylacridinium salts, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2005a,b). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Steiner (1999); Takahashi et al. (2001). For the synthesis, see: Niziołek et al. (2008); Sato (1996).

Experimental top

The compound was synthesized in three steps (Niziołek et al., 2008). First, 9-(chlorocarbonyl)-acridine was produced by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. Then, esterification with 2-ethylphenol was carried out in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h) (Sato, 1996). The crude product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). The 2-ethylphenyl acridine-9-carboxylate thus obtained was quaternarized with a five-fold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane. The crude 9-(2-ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 470-471 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and alkyl H atoms, respectively, and constrained to ride on their parrent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic and x = 1.5 for the alkyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) x + 1, y, z + 1; (ii) x + 1, y, z; (iii) –x + 1, –y + 2, –z + 2; (iv) –x + 1, –y + 2, –z + 1; (v) –x + 1, –y + 1, –z + 1.]
9-(2-Ethylphenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate top
Crystal data top
C23H20NO2+·CF3O3SZ = 2
Mr = 491.47F(000) = 508
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8519 (4) ÅCell parameters from 10425 reflections
b = 10.9533 (4) Åθ = 3.1–29.2°
c = 11.7805 (4) ŵ = 0.21 mm1
α = 104.379 (3)°T = 295 K
β = 101.475 (3)°Block, yellow
γ = 109.983 (3)°0.40 × 0.35 × 0.20 mm
V = 1099.61 (7) Å3
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2956 reflections with I > 2σ(I)
Radiation source: Enhanced (Mo) X-ray SourceRint = 0.039
Graphite monochromatorθmax = 25.1°, θmin = 3.1°
Detector resolution: 10.4002 pixels mm-1h = 1111
ω scansk = 1313
21109 measured reflectionsl = 1414
3914 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0737P)2]
where P = (Fo2 + 2Fc2)/3
3914 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H20NO2+·CF3O3Sγ = 109.983 (3)°
Mr = 491.47V = 1099.61 (7) Å3
Triclinic, P1Z = 2
a = 9.8519 (4) ÅMo Kα radiation
b = 10.9533 (4) ŵ = 0.21 mm1
c = 11.7805 (4) ÅT = 295 K
α = 104.379 (3)°0.40 × 0.35 × 0.20 mm
β = 101.475 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
2956 reflections with I > 2σ(I)
21109 measured reflectionsRint = 0.039
3914 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.10Δρmax = 0.20 e Å3
3914 reflectionsΔρmin = 0.30 e Å3
309 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C80.4629 (2)0.70220 (17)0.44477 (16)0.0468 (4)
H80.37810.71360.46000.056*
C70.4857 (2)0.69994 (19)0.33477 (18)0.0561 (5)
H70.41640.70870.27450.067*
C60.6146 (3)0.68432 (19)0.31214 (18)0.0573 (5)
H60.62980.68420.23670.069*
C50.7175 (2)0.66940 (17)0.39617 (17)0.0508 (5)
H50.80140.65910.37800.061*
C40.8753 (2)0.62222 (19)0.79550 (18)0.0535 (5)
H40.95490.60380.77590.064*
C30.8550 (2)0.6234 (2)0.90569 (19)0.0583 (5)
H30.92140.60640.96120.070*
C20.7358 (2)0.64984 (19)0.93822 (18)0.0559 (5)
H20.72470.65181.01510.067*
C10.6372 (2)0.67241 (18)0.85755 (16)0.0499 (5)
H10.55730.68810.87920.060*
C90.55076 (18)0.69321 (15)0.65368 (15)0.0374 (4)
N100.79811 (15)0.65304 (13)0.59893 (13)0.0419 (3)
C130.56732 (19)0.68738 (15)0.53759 (15)0.0381 (4)
C140.69716 (19)0.66950 (15)0.51165 (15)0.0403 (4)
C110.65277 (19)0.67276 (16)0.74035 (15)0.0394 (4)
C120.77656 (19)0.64875 (15)0.70957 (15)0.0404 (4)
C150.4184 (2)0.71774 (16)0.68401 (15)0.0389 (4)
O160.46656 (13)0.83893 (11)0.77566 (10)0.0435 (3)
O170.28868 (14)0.63985 (12)0.63199 (12)0.0554 (4)
C180.3528 (2)0.88341 (16)0.80457 (16)0.0439 (4)
C190.3118 (2)0.86926 (16)0.90748 (17)0.0478 (4)
C200.2093 (2)0.92574 (19)0.9350 (2)0.0615 (6)
H200.17750.91891.00320.074*
C210.1550 (3)0.9905 (2)0.8641 (2)0.0690 (6)
H210.08751.02730.88510.083*
C220.1986 (3)1.0024 (2)0.7621 (2)0.0671 (6)
H220.16021.04600.71400.080*
C230.3001 (2)0.94881 (18)0.73174 (19)0.0552 (5)
H230.33210.95670.66370.066*
C240.3714 (2)0.79938 (18)0.98693 (17)0.0554 (5)
H24A0.36640.83571.06920.067*
H24B0.47740.82210.99330.067*
C250.2850 (3)0.6427 (2)0.9388 (2)0.0644 (5)
H25A0.33460.60400.98910.097*
H25B0.28320.60630.85520.097*
H25C0.18280.61890.94160.097*
C260.9362 (2)0.6389 (2)0.5764 (2)0.0623 (5)
H26A0.94810.65940.50340.093*
H26B0.92570.54590.56550.093*
H26C1.02390.70220.64560.093*
S270.07676 (5)0.73990 (4)0.26699 (4)0.04742 (17)
O280.07260 (15)0.73377 (15)0.22221 (13)0.0649 (4)
O290.09669 (19)0.68219 (15)0.36225 (14)0.0740 (4)
O300.14440 (18)0.70502 (16)0.17469 (13)0.0743 (4)
C310.1906 (3)0.9229 (2)0.3455 (2)0.0740 (6)
F320.1421 (2)0.97409 (17)0.43606 (15)0.1282 (7)
F330.1861 (2)0.99425 (14)0.27126 (17)0.1192 (6)
F340.33510 (19)0.95023 (16)0.39672 (18)0.1263 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0487 (11)0.0493 (10)0.0471 (10)0.0242 (9)0.0164 (9)0.0174 (8)
C70.0650 (14)0.0608 (11)0.0476 (11)0.0298 (10)0.0164 (10)0.0226 (9)
C60.0724 (14)0.0590 (11)0.0465 (11)0.0259 (10)0.0281 (10)0.0219 (9)
C50.0521 (12)0.0501 (10)0.0548 (11)0.0202 (9)0.0292 (10)0.0168 (8)
C40.0414 (11)0.0578 (11)0.0627 (12)0.0277 (9)0.0110 (9)0.0169 (9)
C30.0565 (13)0.0641 (12)0.0565 (12)0.0317 (10)0.0074 (10)0.0226 (9)
C20.0645 (13)0.0650 (12)0.0485 (11)0.0358 (11)0.0167 (10)0.0240 (9)
C10.0541 (12)0.0592 (11)0.0501 (10)0.0328 (9)0.0219 (9)0.0233 (9)
C90.0346 (9)0.0342 (8)0.0447 (9)0.0151 (7)0.0147 (7)0.0123 (7)
N100.0325 (8)0.0425 (7)0.0491 (8)0.0162 (6)0.0158 (7)0.0096 (6)
C130.0388 (9)0.0344 (8)0.0409 (9)0.0157 (7)0.0134 (7)0.0109 (7)
C140.0402 (10)0.0351 (8)0.0429 (9)0.0134 (7)0.0168 (8)0.0090 (7)
C110.0379 (10)0.0372 (8)0.0438 (9)0.0171 (7)0.0133 (8)0.0125 (7)
C120.0354 (9)0.0366 (8)0.0447 (10)0.0145 (7)0.0107 (8)0.0086 (7)
C150.0401 (11)0.0419 (9)0.0410 (9)0.0212 (8)0.0151 (8)0.0166 (7)
O160.0375 (7)0.0442 (6)0.0504 (7)0.0205 (5)0.0174 (6)0.0106 (5)
O170.0375 (8)0.0531 (7)0.0640 (8)0.0168 (6)0.0143 (6)0.0053 (6)
C180.0367 (10)0.0373 (8)0.0559 (11)0.0181 (7)0.0156 (8)0.0079 (8)
C190.0435 (10)0.0404 (9)0.0545 (11)0.0151 (8)0.0194 (9)0.0082 (8)
C200.0549 (13)0.0570 (11)0.0730 (13)0.0250 (10)0.0312 (11)0.0116 (10)
C210.0579 (14)0.0588 (12)0.0956 (17)0.0356 (11)0.0316 (13)0.0131 (12)
C220.0613 (14)0.0552 (11)0.0932 (16)0.0354 (11)0.0211 (12)0.0257 (11)
C230.0530 (12)0.0502 (10)0.0668 (12)0.0251 (9)0.0205 (10)0.0203 (9)
C240.0553 (12)0.0599 (11)0.0536 (11)0.0243 (10)0.0252 (10)0.0163 (9)
C250.0621 (14)0.0642 (12)0.0767 (14)0.0260 (10)0.0307 (11)0.0335 (11)
C260.0382 (11)0.0780 (13)0.0666 (13)0.0265 (10)0.0203 (10)0.0117 (11)
S270.0507 (3)0.0533 (3)0.0460 (3)0.0255 (2)0.0210 (2)0.0191 (2)
O280.0476 (9)0.0797 (9)0.0687 (9)0.0282 (7)0.0186 (7)0.0245 (7)
O290.0943 (12)0.0861 (10)0.0733 (10)0.0504 (9)0.0386 (9)0.0506 (8)
O300.0806 (11)0.1006 (11)0.0617 (9)0.0510 (9)0.0407 (8)0.0266 (8)
C310.0712 (17)0.0610 (13)0.0783 (15)0.0277 (12)0.0042 (13)0.0196 (12)
F320.1628 (18)0.1019 (12)0.0962 (11)0.0735 (12)0.0201 (12)0.0158 (9)
F330.1130 (13)0.0720 (9)0.1535 (15)0.0184 (9)0.0082 (11)0.0619 (10)
F340.0701 (11)0.0882 (10)0.1607 (16)0.0141 (9)0.0251 (11)0.0193 (10)
Geometric parameters (Å, º) top
C8—C71.354 (3)O16—C181.432 (2)
C8—C131.427 (2)C18—C231.379 (2)
C8—H80.9300C18—C191.380 (3)
C7—C61.405 (3)C19—C201.401 (3)
C7—H70.9300C19—C241.500 (3)
C6—C51.352 (3)C20—C211.365 (3)
C6—H60.9300C20—H200.9300
C5—C141.414 (2)C21—C221.375 (3)
C5—H50.9300C21—H210.9300
C4—C31.350 (3)C22—C231.382 (3)
C4—C121.416 (3)C22—H220.9300
C4—H40.9300C23—H230.9300
C3—C21.402 (3)C24—C251.523 (3)
C3—H30.9300C24—H24A0.9700
C2—C11.349 (3)C24—H24B0.9700
C2—H20.9300C25—H25A0.9600
C1—C111.420 (2)C25—H25B0.9600
C1—H10.9300C25—H25C0.9600
C9—C131.398 (2)C26—H26A0.9600
C9—C111.401 (2)C26—H26B0.9600
C9—C151.509 (2)C26—H26C0.9600
N10—C121.371 (2)S27—O301.4242 (14)
N10—C141.374 (2)S27—O291.4307 (14)
N10—C261.488 (2)S27—O281.4331 (15)
C13—C141.437 (2)S27—C311.806 (2)
C11—C121.427 (2)C31—F331.314 (3)
C15—O171.192 (2)C31—F341.326 (3)
C15—O161.3442 (19)C31—F321.330 (3)
C7—C8—C13120.82 (17)C23—C18—O16116.69 (16)
C7—C8—H8119.6C19—C18—O16119.15 (16)
C13—C8—H8119.6C18—C19—C20115.51 (18)
C8—C7—C6119.67 (19)C18—C19—C24123.48 (16)
C8—C7—H7120.2C20—C19—C24121.01 (18)
C6—C7—H7120.2C21—C20—C19121.7 (2)
C5—C6—C7122.33 (18)C21—C20—H20119.1
C5—C6—H6118.8C19—C20—H20119.1
C7—C6—H6118.8C20—C21—C22120.97 (19)
C6—C5—C14119.89 (18)C20—C21—H21119.5
C6—C5—H5120.1C22—C21—H21119.5
C14—C5—H5120.1C21—C22—C23119.4 (2)
C3—C4—C12120.51 (18)C21—C22—H22120.3
C3—C4—H4119.7C23—C22—H22120.3
C12—C4—H4119.7C18—C23—C22118.5 (2)
C4—C3—C2121.39 (18)C18—C23—H23120.8
C4—C3—H3119.3C22—C23—H23120.8
C2—C3—H3119.3C19—C24—C25113.77 (17)
C1—C2—C3119.77 (19)C19—C24—H24A108.8
C1—C2—H2120.1C25—C24—H24A108.8
C3—C2—H2120.1C19—C24—H24B108.8
C2—C1—C11121.50 (18)C25—C24—H24B108.8
C2—C1—H1119.2H24A—C24—H24B107.7
C11—C1—H1119.2C24—C25—H25A109.5
C13—C9—C11120.83 (15)C24—C25—H25B109.5
C13—C9—C15119.28 (15)H25A—C25—H25B109.5
C11—C9—C15119.87 (15)C24—C25—H25C109.5
C12—N10—C14121.94 (14)H25A—C25—H25C109.5
C12—N10—C26117.26 (16)H25B—C25—H25C109.5
C14—N10—C26120.80 (15)N10—C26—H26A109.5
C9—C13—C8122.77 (15)N10—C26—H26B109.5
C9—C13—C14118.70 (16)H26A—C26—H26B109.5
C8—C13—C14118.51 (15)N10—C26—H26C109.5
N10—C14—C5121.66 (16)H26A—C26—H26C109.5
N10—C14—C13119.56 (15)H26B—C26—H26C109.5
C5—C14—C13118.77 (17)O30—S27—O29114.62 (9)
C9—C11—C1122.87 (16)O30—S27—O28115.38 (9)
C9—C11—C12119.01 (15)O29—S27—O28115.01 (9)
C1—C11—C12118.12 (16)O30—S27—C31103.15 (11)
N10—C12—C4121.62 (16)O29—S27—C31103.45 (10)
N10—C12—C11119.71 (15)O28—S27—C31102.78 (10)
C4—C12—C11118.67 (16)F33—C31—F34107.8 (2)
O17—C15—O16125.00 (15)F33—C31—F32106.5 (2)
O17—C15—C9123.94 (15)F34—C31—F32106.5 (2)
O16—C15—C9111.05 (14)F33—C31—S27112.23 (16)
C15—O16—C18117.14 (13)F34—C31—S27112.05 (16)
C23—C18—C19123.94 (16)F32—C31—S27111.42 (18)
C13—C8—C7—C60.7 (3)C9—C11—C12—N103.3 (2)
C8—C7—C6—C50.9 (3)C1—C11—C12—N10177.78 (14)
C7—C6—C5—C140.1 (3)C9—C11—C12—C4177.29 (15)
C12—C4—C3—C20.4 (3)C1—C11—C12—C41.6 (2)
C4—C3—C2—C11.1 (3)C13—C9—C15—O1763.9 (2)
C3—C2—C1—C111.2 (3)C11—C9—C15—O17114.36 (19)
C11—C9—C13—C8177.50 (15)C13—C9—C15—O16115.39 (16)
C15—C9—C13—C80.7 (2)C11—C9—C15—O1666.40 (18)
C11—C9—C13—C144.3 (2)O17—C15—O16—C186.3 (2)
C15—C9—C13—C14177.54 (13)C9—C15—O16—C18172.96 (13)
C7—C8—C13—C9178.04 (16)C15—O16—C18—C2382.25 (18)
C7—C8—C13—C140.2 (2)C15—O16—C18—C19102.93 (18)
C12—N10—C14—C5177.94 (14)C23—C18—C19—C200.5 (3)
C26—N10—C14—C52.0 (2)O16—C18—C19—C20174.87 (14)
C12—N10—C14—C132.1 (2)C23—C18—C19—C24179.24 (17)
C26—N10—C14—C13178.01 (14)O16—C18—C19—C244.8 (2)
C6—C5—C14—N10179.25 (16)C18—C19—C20—C210.2 (3)
C6—C5—C14—C130.8 (2)C24—C19—C20—C21179.50 (18)
C9—C13—C14—N102.6 (2)C19—C20—C21—C220.3 (3)
C8—C13—C14—N10179.08 (14)C20—C21—C22—C230.6 (3)
C9—C13—C14—C5177.38 (14)C19—C18—C23—C220.8 (3)
C8—C13—C14—C50.9 (2)O16—C18—C23—C22175.31 (16)
C13—C9—C11—C1177.50 (15)C21—C22—C23—C180.8 (3)
C15—C9—C11—C10.7 (2)C18—C19—C24—C2583.8 (2)
C13—C9—C11—C121.4 (2)C20—C19—C24—C2596.5 (2)
C15—C9—C11—C12179.56 (13)O30—S27—C31—F3360.3 (2)
C2—C1—C11—C9178.74 (17)O29—S27—C31—F33179.97 (18)
C2—C1—C11—C120.1 (3)O28—S27—C31—F3360.0 (2)
C14—N10—C12—C4175.56 (15)O30—S27—C31—F3461.1 (2)
C26—N10—C12—C44.4 (2)O29—S27—C31—F3458.6 (2)
C14—N10—C12—C115.0 (2)O28—S27—C31—F34178.62 (18)
C26—N10—C12—C11175.04 (14)O30—S27—C31—F32179.70 (16)
C3—C4—C12—N10177.62 (16)O29—S27—C31—F3260.58 (18)
C3—C4—C12—C111.8 (3)O28—S27—C31—F3259.41 (18)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.553.221 (2)130
C5—H5···O28ii0.932.563.222 (3)129
C24—H24B···Cg4iii0.962.923.603 (2)129
C26—H26A···O29ii0.962.433.280 (3)148
C26—H26C···Cg4ii0.962.803.741 (2)165
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC23H20NO2+·CF3O3S
Mr491.47
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.8519 (4), 10.9533 (4), 11.7805 (4)
α, β, γ (°)104.379 (3), 101.475 (3), 109.983 (3)
V3)1099.61 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21109, 3914, 2956
Rint0.039
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.10
No. of reflections3914
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.553.221 (2)130
C5—H5···O28ii0.932.563.222 (3)129
C24—H24B···Cg4iii0.962.923.603 (2)129
C26—H26A···O29ii0.962.433.280 (3)148
C26—H26C···Cg4ii0.962.803.741 (2)165
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+2.
C—F···π interactions (Å,°) top
Cg1 and Cg3 are the centroids of the C9/N10/C11–C14 and C5–C8/C13/C14 rings, respectively.
XI···JI···JX···JXI···J
C31—F32···Cg3iv3.474 (2)4.003 (2)103.67 (14)
C31—F33···Cg1iv3.241 (2)4.087 (2)121.73 (14)
C31—F34···Cg3iv3.762 (2)4.003 (2)90.62 (13)
Symmetry code: (iv) -x + 1, -y+ 2, -z + 1.
ππ interactions (Å,°) top
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
11v4.022 (2)0.003.571 (2)1.850 (2)
13v3.702 (2)1.803.532 (2)1.109 (2)
23v3.965 (2)4.293.451 (2)1.960 (2)
31v3.702 (2)1.803.544 (2)1.070 (2)
32v3.965 (2)4.293.566 (2)1.733 (2)
Symmetry code: (v) -x + 1, -y + 1, -z + 1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

References

First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationNiziołek, A., Zadykowicz, B., Trzybiński, D., Sikorski, A., Krzymiński, K. & Błażejowski, J. (2008). J. Mol. Struct. 920, 231–237.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.  Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Konitz, A. & Błażejowski, J. (2005a). Acta Cryst. C61, o50–o52.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Niziołek, A. & Błażejowski, J. (2005b). Acta Cryst. C61, o690–o694.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1999). Chem. Commun. pp. 313–314.  Web of Science CrossRef Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o826-o827
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds