organic compounds
2-Methoxy-9-phenoxyacridine
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
The molecules in the 20H15NO2, form inversion dimers connected through the C—H⋯N and π–π interactions. These dimers are further linked by C—H⋯π interactions. The methoxy group is nearly coplanar with the acridine ring system [dihedral angle = 4.5 (1)°], whereas the phenoxy fragment is nearly perpendicular to it [dihedral angle = 85.0 (1)°]. The mean planes of the acridine ring systems are either parallel or inclined at angles of 14.3 (1), 65.4 (1) and 67.3 (1)° in the crystal.
of the title compound, CRelated literature
For general background to 9-phenoxyacridines, see: Acheson (1973); Albert (1966); Chen et al. (2002); Demeunynck et al. (2001); Lebekhov & Samarin (1969); Ueyama et al. (2002). For related structures, see: Ebead et al. (2005); Sikorski et al. (2007). For intermolecular interactions, see: Hunter et al. (2001); Mazik et al. (2000); Takahashi et al. (2001). For the synthesis, see: Acheson (1973); Chen et al. (2002); Duprè & Robinson (1945).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810008962/ng2741sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008962/ng2741Isup2.hkl
2-Methoxy-9-chloroacridine was prepared by heating 2-[(2-methoxyphenyl)amino]benzoic acid, obtained as described elsewhere (Acheson, 1973), with a sevenfold molar excess of POCl3 (400 K, 3 h). The excess POCl3 was subsequently removed under reduced pressure. The residue was dispersed in CHCl3, stirred in the presence of a mixture of ice and aqueous ammonia, separated by filtration and dried. The crude product was purified chromatographically (neutral Al2O3, CHCl3/toluene, 1/1 v/v). The obtained 2-methoxy-9-chloroacridine was added to the solution of NaOH in phenol (sevenfold molar excess) in equimolar to NaOH amount, at 373 K under continuous stirring. The reactant mixture was kept at 373 K for 1.5 h, subsequently poured into 2M aq NaOH and stored at room temperature overnight. The precipitate was separated by filtration, washed with water and dried (Duprè & Robinson, 1945; Chen et al., 2002). Light-brown crystals of 2-methoxy-9-phenoxyacridine suitable for X-Ray investigations were grown from absolute ethanol solution (m.p. 415-417 K).
H atoms were positioned geometrically, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) (aromatic) or Uiso(H) = 1.5Ueq(C) (methyl).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids. | |
Fig. 2. The arrangement of the molecules in the crystal structure. The C–H···N and C–H···π interactions are represented by dashed lines and π–π interactions by dotted lines. [Symmetry codes: (i) –x, –y, –z+1; (ii) x+1/2, –y+1/2, –z+1; (iii) x+1/2, y, –z+1/2; (iv) x–1, y, z.] |
C20H15NO2 | F(000) = 1264 |
Mr = 301.33 | Dx = 1.294 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 32561 reflections |
a = 8.3042 (2) Å | θ = 3.0–29.3° |
b = 15.5101 (4) Å | µ = 0.08 mm−1 |
c = 24.0192 (6) Å | T = 295 K |
V = 3093.65 (13) Å3 | Plate, light-brown |
Z = 8 | 0.50 × 0.25 × 0.10 mm |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2747 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2322 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.0° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −18→18 |
Tmin = 0.890, Tmax = 0.994 | l = −28→28 |
56825 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.2828P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2747 reflections | Δρmax = 0.15 e Å−3 |
210 parameters | Δρmin = −0.11 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0046 (6) |
C20H15NO2 | V = 3093.65 (13) Å3 |
Mr = 301.33 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.3042 (2) Å | µ = 0.08 mm−1 |
b = 15.5101 (4) Å | T = 295 K |
c = 24.0192 (6) Å | 0.50 × 0.25 × 0.10 mm |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 2747 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 2322 reflections with I > 2σ(I) |
Tmin = 0.890, Tmax = 0.994 | Rint = 0.024 |
56825 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.15 e Å−3 |
2747 reflections | Δρmin = −0.11 e Å−3 |
210 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.18244 (13) | 0.00760 (7) | 0.34444 (4) | 0.0442 (3) | |
H1 | 0.1362 | 0.0364 | 0.3145 | 0.053* | |
C2 | 0.26680 (14) | −0.06681 (7) | 0.33602 (5) | 0.0498 (3) | |
C3 | 0.33776 (16) | −0.11161 (8) | 0.38157 (5) | 0.0560 (3) | |
H3 | 0.3938 | −0.1626 | 0.3751 | 0.067* | |
C4 | 0.32483 (15) | −0.08118 (8) | 0.43386 (5) | 0.0525 (3) | |
H4 | 0.3731 | −0.1112 | 0.4629 | 0.063* | |
C5 | 0.13635 (15) | 0.12529 (8) | 0.56536 (5) | 0.0522 (3) | |
H5 | 0.1883 | 0.0946 | 0.5934 | 0.063* | |
C6 | 0.05228 (16) | 0.19741 (9) | 0.57843 (5) | 0.0591 (3) | |
H6 | 0.0471 | 0.2155 | 0.6153 | 0.071* | |
C7 | −0.02759 (15) | 0.24540 (8) | 0.53666 (5) | 0.0573 (3) | |
H7 | −0.0854 | 0.2945 | 0.5464 | 0.069* | |
C8 | −0.02090 (13) | 0.22067 (7) | 0.48256 (5) | 0.0478 (3) | |
H8 | −0.0737 | 0.2530 | 0.4555 | 0.057* | |
C9 | 0.08142 (12) | 0.11619 (6) | 0.41230 (4) | 0.0383 (2) | |
N10 | 0.23001 (11) | 0.02343 (6) | 0.49857 (4) | 0.0460 (2) | |
C11 | 0.16565 (11) | 0.04083 (6) | 0.39947 (4) | 0.0389 (2) | |
C12 | 0.23839 (12) | −0.00369 (7) | 0.44563 (4) | 0.0416 (3) | |
C13 | 0.06662 (12) | 0.14545 (7) | 0.46691 (4) | 0.0397 (3) | |
C14 | 0.14617 (12) | 0.09591 (7) | 0.50938 (4) | 0.0421 (3) | |
O15 | 0.29423 (13) | −0.10503 (6) | 0.28557 (3) | 0.0676 (3) | |
C16 | 0.2364 (2) | −0.06180 (10) | 0.23706 (5) | 0.0749 (4) | |
H16A | 0.2695 | −0.0929 | 0.2045 | 0.112* | |
H16B | 0.2799 | −0.0045 | 0.2358 | 0.112* | |
H16C | 0.1210 | −0.0589 | 0.2382 | 0.112* | |
O17 | 0.02052 (8) | 0.16615 (5) | 0.36901 (3) | 0.0441 (2) | |
C18 | −0.13908 (11) | 0.15439 (6) | 0.35297 (4) | 0.0352 (2) | |
C19 | −0.24472 (13) | 0.10027 (6) | 0.38029 (4) | 0.0410 (3) | |
H19 | −0.2123 | 0.0697 | 0.4117 | 0.049* | |
C20 | −0.40022 (14) | 0.09241 (8) | 0.35996 (5) | 0.0508 (3) | |
H20 | −0.4727 | 0.0561 | 0.3779 | 0.061* | |
C21 | −0.44883 (14) | 0.13772 (9) | 0.31347 (5) | 0.0572 (3) | |
H21 | −0.5530 | 0.1314 | 0.2998 | 0.069* | |
C22 | −0.34193 (15) | 0.19255 (9) | 0.28733 (5) | 0.0552 (3) | |
H22 | −0.3745 | 0.2235 | 0.2561 | 0.066* | |
C23 | −0.18710 (13) | 0.20176 (7) | 0.30720 (4) | 0.0441 (3) | |
H23 | −0.1158 | 0.2395 | 0.2900 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0460 (6) | 0.0434 (6) | 0.0434 (6) | −0.0019 (5) | −0.0025 (5) | 0.0079 (5) |
C2 | 0.0564 (7) | 0.0440 (6) | 0.0489 (7) | −0.0009 (5) | 0.0051 (5) | 0.0015 (5) |
C3 | 0.0648 (8) | 0.0420 (6) | 0.0612 (8) | 0.0114 (5) | 0.0039 (6) | 0.0071 (5) |
C4 | 0.0579 (7) | 0.0453 (6) | 0.0544 (7) | 0.0097 (5) | −0.0032 (5) | 0.0141 (5) |
C5 | 0.0596 (7) | 0.0521 (7) | 0.0450 (6) | −0.0066 (6) | −0.0065 (5) | 0.0042 (5) |
C6 | 0.0686 (8) | 0.0579 (8) | 0.0508 (7) | −0.0073 (6) | 0.0007 (6) | −0.0078 (6) |
C7 | 0.0558 (7) | 0.0500 (7) | 0.0661 (8) | 0.0012 (6) | 0.0028 (6) | −0.0079 (6) |
C8 | 0.0427 (6) | 0.0436 (6) | 0.0570 (7) | −0.0004 (5) | −0.0019 (5) | 0.0039 (5) |
C9 | 0.0339 (5) | 0.0377 (5) | 0.0432 (6) | −0.0040 (4) | −0.0049 (4) | 0.0119 (4) |
N10 | 0.0487 (5) | 0.0440 (5) | 0.0452 (5) | 0.0003 (4) | −0.0051 (4) | 0.0099 (4) |
C11 | 0.0354 (5) | 0.0374 (5) | 0.0438 (6) | −0.0039 (4) | −0.0014 (4) | 0.0091 (4) |
C12 | 0.0405 (5) | 0.0401 (6) | 0.0442 (6) | −0.0017 (4) | −0.0021 (4) | 0.0095 (5) |
C13 | 0.0343 (5) | 0.0380 (6) | 0.0469 (6) | −0.0058 (4) | −0.0019 (4) | 0.0067 (4) |
C14 | 0.0414 (6) | 0.0407 (6) | 0.0443 (6) | −0.0071 (4) | −0.0030 (4) | 0.0068 (5) |
O15 | 0.0937 (7) | 0.0575 (5) | 0.0515 (5) | 0.0130 (5) | 0.0051 (5) | −0.0031 (4) |
C16 | 0.1016 (11) | 0.0740 (9) | 0.0492 (8) | 0.0065 (8) | −0.0016 (7) | −0.0043 (7) |
O17 | 0.0378 (4) | 0.0443 (4) | 0.0502 (4) | −0.0016 (3) | −0.0052 (3) | 0.0173 (3) |
C18 | 0.0366 (5) | 0.0341 (5) | 0.0349 (5) | 0.0029 (4) | −0.0004 (4) | −0.0010 (4) |
C19 | 0.0472 (6) | 0.0367 (5) | 0.0393 (5) | −0.0018 (4) | −0.0032 (4) | 0.0043 (4) |
C20 | 0.0470 (6) | 0.0497 (7) | 0.0556 (7) | −0.0106 (5) | −0.0013 (5) | 0.0020 (5) |
C21 | 0.0472 (7) | 0.0685 (8) | 0.0560 (7) | −0.0050 (6) | −0.0155 (5) | 0.0019 (6) |
C22 | 0.0540 (7) | 0.0698 (8) | 0.0418 (6) | 0.0042 (6) | −0.0099 (5) | 0.0111 (6) |
C23 | 0.0452 (6) | 0.0500 (6) | 0.0369 (5) | 0.0033 (5) | 0.0037 (4) | 0.0086 (5) |
C1—C2 | 1.3651 (16) | N10—C12 | 1.3413 (14) |
C1—C11 | 1.4256 (15) | N10—C14 | 1.3476 (14) |
C1—H1 | 0.9300 | C11—C12 | 1.4391 (14) |
C2—O15 | 1.3681 (14) | C13—C14 | 1.4378 (14) |
C2—C3 | 1.4237 (17) | O15—C16 | 1.4276 (16) |
C3—C4 | 1.3460 (17) | C16—H16A | 0.9600 |
C3—H3 | 0.9300 | C16—H16B | 0.9600 |
C4—C12 | 1.4282 (16) | C16—H16C | 0.9600 |
C4—H4 | 0.9300 | O17—C18 | 1.3922 (12) |
C5—C6 | 1.3554 (19) | C18—C19 | 1.3801 (14) |
C5—C14 | 1.4220 (16) | C18—C23 | 1.3812 (14) |
C5—H5 | 0.9300 | C19—C20 | 1.3859 (15) |
C6—C7 | 1.4144 (18) | C19—H19 | 0.9300 |
C6—H6 | 0.9300 | C20—C21 | 1.3797 (17) |
C7—C8 | 1.3560 (16) | C20—H20 | 0.9300 |
C7—H7 | 0.9300 | C21—C22 | 1.3805 (18) |
C8—C13 | 1.4250 (16) | C21—H21 | 0.9300 |
C8—H8 | 0.9300 | C22—C23 | 1.3788 (16) |
C9—O17 | 1.3920 (12) | C22—H22 | 0.9300 |
C9—C13 | 1.3934 (14) | C23—H23 | 0.9300 |
C9—C11 | 1.3965 (15) | ||
C2—C1—C11 | 119.54 (10) | C4—C12—C11 | 117.54 (10) |
C2—C1—H1 | 120.2 | C9—C13—C8 | 124.06 (9) |
C11—C1—H1 | 120.2 | C9—C13—C14 | 116.95 (9) |
C1—C2—O15 | 125.66 (10) | C8—C13—C14 | 118.99 (10) |
C1—C2—C3 | 120.75 (11) | N10—C14—C5 | 118.62 (10) |
O15—C2—C3 | 113.59 (10) | N10—C14—C13 | 123.13 (10) |
C4—C3—C2 | 120.85 (11) | C5—C14—C13 | 118.25 (10) |
C4—C3—H3 | 119.6 | C2—O15—C16 | 117.61 (10) |
C2—C3—H3 | 119.6 | O15—C16—H16A | 109.5 |
C3—C4—C12 | 121.32 (10) | O15—C16—H16B | 109.5 |
C3—C4—H4 | 119.3 | H16A—C16—H16B | 109.5 |
C12—C4—H4 | 119.3 | O15—C16—H16C | 109.5 |
C6—C5—C14 | 120.86 (11) | H16A—C16—H16C | 109.5 |
C6—C5—H5 | 119.6 | H16B—C16—H16C | 109.5 |
C14—C5—H5 | 119.6 | C9—O17—C18 | 118.66 (7) |
C5—C6—C7 | 120.77 (11) | C19—C18—C23 | 121.24 (9) |
C5—C6—H6 | 119.6 | C19—C18—O17 | 123.59 (9) |
C7—C6—H6 | 119.6 | C23—C18—O17 | 115.17 (9) |
C8—C7—C6 | 120.77 (12) | C18—C19—C20 | 118.57 (10) |
C8—C7—H7 | 119.6 | C18—C19—H19 | 120.7 |
C6—C7—H7 | 119.6 | C20—C19—H19 | 120.7 |
C7—C8—C13 | 120.35 (11) | C21—C20—C19 | 120.86 (11) |
C7—C8—H8 | 119.8 | C21—C20—H20 | 119.6 |
C13—C8—H8 | 119.8 | C19—C20—H20 | 119.6 |
O17—C9—C13 | 119.33 (9) | C20—C21—C22 | 119.58 (11) |
O17—C9—C11 | 118.88 (9) | C20—C21—H21 | 120.2 |
C13—C9—C11 | 121.64 (9) | C22—C21—H21 | 120.2 |
C12—N10—C14 | 118.10 (9) | C23—C22—C21 | 120.40 (10) |
C9—C11—C1 | 123.79 (9) | C23—C22—H22 | 119.8 |
C9—C11—C12 | 116.22 (9) | C21—C22—H22 | 119.8 |
C1—C11—C12 | 119.99 (9) | C22—C23—C18 | 119.31 (10) |
N10—C12—C4 | 118.53 (9) | C22—C23—H23 | 120.3 |
N10—C12—C11 | 123.94 (10) | C18—C23—H23 | 120.3 |
C11—C1—C2—O15 | −178.96 (10) | C11—C9—C13—C14 | 1.82 (14) |
C11—C1—C2—C3 | 0.15 (17) | C7—C8—C13—C9 | −179.10 (10) |
C1—C2—C3—C4 | −0.73 (19) | C7—C8—C13—C14 | 0.59 (16) |
O15—C2—C3—C4 | 178.49 (11) | C12—N10—C14—C5 | 179.97 (9) |
C2—C3—C4—C12 | 0.68 (19) | C12—N10—C14—C13 | −0.39 (15) |
C14—C5—C6—C7 | −0.13 (19) | C6—C5—C14—N10 | −179.41 (11) |
C5—C6—C7—C8 | −0.47 (19) | C6—C5—C14—C13 | 0.93 (17) |
C6—C7—C8—C13 | 0.22 (18) | C9—C13—C14—N10 | −1.08 (14) |
O17—C9—C11—C1 | −5.34 (14) | C8—C13—C14—N10 | 179.21 (9) |
C13—C9—C11—C1 | 179.14 (9) | C9—C13—C14—C5 | 178.57 (9) |
O17—C9—C11—C12 | 174.41 (8) | C8—C13—C14—C5 | −1.14 (14) |
C13—C9—C11—C12 | −1.11 (14) | C1—C2—O15—C16 | 3.06 (18) |
C2—C1—C11—C9 | −179.81 (10) | C3—C2—O15—C16 | −176.11 (12) |
C2—C1—C11—C12 | 0.45 (15) | C13—C9—O17—C18 | −88.82 (11) |
C14—N10—C12—C4 | −179.03 (10) | C11—C9—O17—C18 | 95.56 (11) |
C14—N10—C12—C11 | 1.18 (15) | C9—O17—C18—C19 | 4.98 (14) |
C3—C4—C12—N10 | −179.88 (11) | C9—O17—C18—C23 | −175.51 (9) |
C3—C4—C12—C11 | −0.07 (17) | C23—C18—C19—C20 | 1.71 (16) |
C9—C11—C12—N10 | −0.46 (15) | O17—C18—C19—C20 | −178.82 (9) |
C1—C11—C12—N10 | 179.31 (10) | C18—C19—C20—C21 | −0.10 (17) |
C9—C11—C12—C4 | 179.75 (9) | C19—C20—C21—C22 | −0.95 (19) |
C1—C11—C12—C4 | −0.49 (15) | C20—C21—C22—C23 | 0.4 (2) |
O17—C9—C13—C8 | 6.01 (15) | C21—C22—C23—C18 | 1.14 (18) |
C11—C9—C13—C8 | −178.49 (9) | C19—C18—C23—C22 | −2.23 (16) |
O17—C9—C13—C14 | −173.68 (8) | O17—C18—C23—C22 | 178.25 (10) |
Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···N10i | 0.93 | 2.60 | 3.487 (2) | 160 |
C6—H6···Cg4ii | 0.93 | 2.80 | 3.459 (2) | 129 |
C16—H16B···Cg4iii | 0.96 | 2.94 | 3.658 (2) | 133 |
C20—H20···Cg2iv | 0.93 | 2.71 | 3.576 (2) | 156 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) x+1/2, y, −z+1/2; (iv) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H15NO2 |
Mr | 301.33 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 295 |
a, b, c (Å) | 8.3042 (2), 15.5101 (4), 24.0192 (6) |
V (Å3) | 3093.65 (13) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.50 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.890, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 56825, 2747, 2322 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.086, 1.10 |
No. of reflections | 2747 |
No. of parameters | 210 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.11 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg2 and Cg4 are the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C19—H19···N10i | 0.93 | 2.60 | 3.487 (2) | 160 |
C6—H6···Cg4ii | 0.93 | 2.80 | 3.459 (2) | 129 |
C16—H16B···Cg4iii | 0.96 | 2.94 | 3.658 (2) | 133 |
C20—H20···Cg2iv | 0.93 | 2.71 | 3.576 (2) | 156 |
Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) x+1/2, y, −z+1/2; (iv) x−1, y, z. |
Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 1i | 3.984 (1) | 0.0 | 3.569 (1) | 1.770 (1) |
2 | 3i | 3.932 (1) | 1.6 | 3.564 (1) | 1.661 (1) |
3 | 2i | 3.932 (1) | 1.6 | 3.541 (1) | 1.707 (1) |
Symmetry codes: (i) –x, –y, –z+1. |
Acknowledgements
This work was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010. BZ is grateful for a fellowship from the European Social Fund, the Polish State Budget and the Budget of the Province of Pomerania within the framework of the "Priority VIII Human Capital Operational Programme, action 8.2, subaction 8.2.2 `Regional Innovation Strategy' ", of the `InnoDoktorant' project of the Province of Pomerania – fellowships for PhD students, 1st edition.
References
Acheson, R. M. (1973). In Acridines, 2nd ed. New York: Interscience. Google Scholar
Albert, A. (1966). In The Acridines, London: Edward Arnold. Google Scholar
Chen, Y.-L., Lu, C.-M., Chen, I.-L., Tsao, L.-T. & Wang, J.-P. (2002). J. Med. Chem. 45, 4689–4694. Web of Science CrossRef PubMed CAS Google Scholar
Demeunynck, M., Charmantray, F. & Martelli, A. (2001). Curr. Pharm. Des. 7, 1703–1724. Web of Science CrossRef PubMed CAS Google Scholar
Duprè, D. J. & Robinson, F. A. (1945). J. Chem. Soc. pp. 549–551. Google Scholar
Ebead, Y., Sikorski, A., Krzymiński, K., Lis, T. & Błażejowski, J. (2005). Acta Cryst. C61, o85–o87. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Lebekhov, A. C. & Samarin, A. S. (1969). Khim. Geterotsikl. Soedin. 5, 838–841. Google Scholar
Mazik, M., Bläser, D. & Boese, R. (2000). Tetrahedron Lett. 41, 5827–5831. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Kowalska, K., Krzymiński, K. & Błażejowski, J. (2007). Acta Cryst. E63, o2670–o2672. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Ueyama, H., Takagi, M. & Takenaka, S. (2002). Analyst, 127, 886–888. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
9-Phenoxyacridines are convenient precursors of 9-substituted acridines owing to their excellent stability during storage at room temperature (Albert, 1966; Acheson, 1973); they effectively react with hydrochlorides of various amines to yield the respective 9-acridinamines. The compounds belonging to this group were proposed as fluorescent labels in medicinal diagnostics (Ueyama et al., 2002) and checked for anti-bacterial (Lebekhov & Samarin, 1969) and anti-inflammatory (Chen et al., 2002) activities. Here we demonstrate the structure of 9-phenoxyacridine substituted with the methoxy group at the acridine moiety; we investigated the parent molecule (i.e. 9-phenoxyacridine) earlier (Ebead et al., 2005). Such substitution may affect spectral features of 9-phenoxyacridine and facilitate its conversion to medically interesting derivatives (Demeunynck et al., 2001).
In the crystal structure, the inversely oriented molecules form dimers through π–π interactions involving acridine skeletons (Table 2, Fig. 2) and C(aromatic)–H···N interactions (Table 1, Fig. 2). These dimers are linked in the crystal lattice by C(aliphatic, aromatic)–H···π interactions (Table 1, Fig. 2). The C–H···N interactions are of the hydrogen bond type (Steiner, 1999). The C–H···π interactions (Takahashi et al., 2001), like the π–π interactions (Hunter et al., 2001) should be of an attractive nature. The crystal structure is stabilized by a network of these short-range specific interactions and by non-specific dispersive interactions between adjacent molecules.
In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridine moiety are typical of acridine based derivatives (Ebead et al., 2005; Sikorski et al., 2007). With a respective average deviation from planarity of 0.0147 (2) Å and 0.0072 (2) Å, the acridine and benzene ring systems are oriented at 85.0 (1)°, i.e. they are nearly perpendicular to each other. On the other hand, the methoxy group is almost co-planar with the acridine skeleton (the angle between the mean plane of the acridine moiety and the plane delineated by C2, O15 and C16 is 4.5 (1)°). C9, N10 and O17 are arranged almost linearly (N10···C9–O17 angle = 174.9 (1)°). The mean planes of the adjacent acridine moieties are either parallel (they remain at an angle of 0.0 (1)° – in dimers) or inclined at angles of 14.3 (1)°, 65.4 (1)° and 67.3 (1)° in the lattice. The molecular structure of the compound investigated is similar to that of 9-phenoxyacridine (Ebead et al., 2005).